
FOUNDATIONS OF

TIGHT CLOSURE THEORY

by Melvin Hochster

These notes give an introduction to tight closure theory based on Lectures given in
Math 711 in Fall, 2007, at the University of Michigan. In the current version, only the
positive characteristic theory is covered. There are several novel aspects to this treatment.
One is that the theory for all modules, not just finitely generated modules, is developed
systematically. It is shown that all the known methods of proving the existence of test
elements yield completely stable test elements that can be used in testing tight closure for
all pairs of modules. The notion of strong F-regularity is developed without the hypothesis
that the ring be F-finite. The definition is simply that every submodule of every module
is closed, without the hypothesis of finite generation. This agrees with the usual definition
in the F-finite case, which is developed first in these notes. A great deal of revision and
expansion are planned.

The structure of the individual lectures has been preserved. References often refer to a
result as, say, “the Theorem on p. k of the Lecture of . . . ”. The page numbering meant is
internal to the lecture and is not shown explicitly. Thus, if the Lecture begins on p. n, the
result specified would be on page n+ k − 1.

I have not tried to give complete references. When references are given, they occur in
full in the text where they are cited. At this time there is no separate list.

|
Subsidiary material has been included in the notes that was not covered in detail in

the lectures. Such material has usually been indicated by enclosing it in special brackets.
This paragraph is an example of the use of these indicators.

|

There are five problem sets interspersed, with solutions given at the end.

The author would like to thank Karl Schwede and Kevin Tucker for their very helpful
comments.

The author would also like to thank the National Science Foundation for its support
through grant DMS0400633.
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Math 711: Lecture of September 5, 2007

Throughout these lecture notes all given rings are assumed commutative, associative,
with identity and modules are assumed unital. Homomorphisms are assumed to preserve
the identity. With a few exceptions that will be noted as they occur, given rings are
assumed to be Noetherian. However, we usually include this hypothesis, especially in
formal statements of theorems.

Our objective is to discuss tight closure closure theory and its connection with the
existence of big Cohen-Macaulay algebras, as well as the applications that each of these
have: they have many in common.

|
At certain points in these notes we will include material not covered in class that we

want to assume. We indicate where such digressions begin and end with double bars before
and after, just as we have done for these two paragraphs. On first perusal, the reader may
wish to read only the unfamiliar definitions and the statements of theorems given, and
come back to the proofs later.

In particular, the write-up of this first lecture is much longer than will be usual, since
a substantial amount of prerequisite material is explained, often in detail, in this manner.

|

By a quasilocal ring (R, m, K) we mean a ring with a unique maximal ideal m: in this
notation, K = R/m. A quasilocal ring is called local if it is Noetherian. A homomorphism
h : R→ S from a quasilocal ring (R, m, K) to a quasilocal ring (S, mS ,KS) is called local
if h(m) ⊆ mS , and then h induces a map of residue fields K → KS .

If x1, . . . , xn ∈ R and M is an R-module, the sequence x1, . . . , xn is called a possibly
improper regular sequence on M if x1 is not a zerodivisor on M and for all i, 0 ≤ i ≤ n−1,
xi+1 is not a zerodivisor on M/(x1, . . . , xi)M . A possibly improper regular sequence is
called a regular sequence on M if, in addition, (∗) (x1, . . . , xn)M 6= M . When (∗) fails,
the regular sequence is called improper. When (∗) holds we may say that the regular
sequence is proper for emphasis, but this use of the word “proper” is not necessary.

Note that every sequence of elements is an improper regular sequence on the 0 module,
and that a sequence of any length consisting of the element 1 (or units of the ring) is an
improper regular sequence on every module.

If x1, . . . , xn ∈ m, the maximal ideal of a local ring (R, m, K), and M is a nonzero
finitely generated R-module, then it is automatic that if x1, . . . , xn is a possibly improper
regular sequence on M then x1, . . . , xn is a regular sequence on M : we know that mM 6=
M by Nakayama’s Lemma.
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If x1, . . . , xn ∈ R is a possibly improper regular sequence on M and and S is any flat
R-algebra, then the images of x1, . . . , xn in S form a possibly improper regular sequence
on S ⊗R M . By a straightforward induction on n, this reduces to the case where n = 1,
where it follows from the observation that if 0→M →M is exact, where the map is given
by multiplication by x, this remains true when we apply S⊗R . In particular, this holds
when S is a localization of R.

If x1, . . . , xn is a regular sequence on M and S is flat over R, it remains a regular
sequence provided that S ⊗R

(
M/(x1, . . . , xn)M

)
6= 0, which is always the case when S

is faithfully flat over R.

|

Nakayama’s Lemma, including the homogeneous case

Recall that in Nakayama’s Lemma one has a finitely generated module M over a quasilo-
cal ring (R, m, K). The lemma states that if M = mM then M = 0. (In fact, if
u1, . . . , uh is a set of generators of M with h minimum, the fact that M = mM implies
that M = mu1 + · · ·muh. In particular, uh = f1u1 + · · · + fhuh, and so (1 − fh)uh =
f1u1 + · · ·+fh−1uh−1 (or 0 if h = 1). Since 1−fh is a unit, uh is not needed as a generator,
a contradiction unless h = 0.)

By applying this result to M/N , one can conclude that if M is finitely generated (or
finitely generated over N), and M = N + mM , then M = N . In particular, elements
of M whose images generate M/mM generate M : if N is the module they generate, we
have M = N + mM . Less familiar is the homogeneous form of the Lemma: it does not
need M to be finitely generated, although there can be only finitely many negative graded
components (the detailed statement is given below).

First recall that if H is an additive semigroup with 0 and R is an H-graded ring, we
also have the notion of an H-graded R-module M : M has a direct sum decomposition

M =
⊕
h∈H

Mh

as an abelian group such that for all h, k ∈ H, RhMk ⊆ Mh+k. Thus, every Mh is an
R0-module. A submodule N of M is called graded (or homogeneous) if

N =
⊕
h∈H

(N ∩Mh).

An equivalent statement is that the homogeneous components in M of every element of N
are in N , and another is that N is generated by forms of M .

Note that if we have a subsemigroup H ⊆ H ′, then any H-graded ring or module can
be viewed as an H ′-graded ring or module by letting the components corresponding to
elements of H ′ −H be zero.

In particular, an N-graded ring is also Z-graded, and it makes sense to consider a Z-
graded module over an N-graded ring.
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Nakayama’s Lemma, homogeneous form. Let R be an N-graded ring and let M be
any Z-graded module such that M−n = 0 for all sufficiently large n (i.e., M has only
finitely many nonzero negative components). Let I be the ideal of R generated by elements
of positive degree. If M = IM , then M = 0. Hence, if N is a graded submodule such that
M = N + IM , then N = M , and a homogeneous set of generators for M/IM generates
M .

Proof. If M = IM and u ∈ M is nonzero homogeneous of smallest degree d, then u is a
sum of products itvt where each it ∈ I has positive degree, and every vt is homogeneous,
necessarily of degree ≥ d. Since every term itvt has degree strictly larger than d, this is a
contradiction. The final two statements follow exactly as in the case of the usual form of
Nakayama’s Lemma. �

|

In general, regular sequences are not permutable: in the polynomial ring R = K[x, y, z]
over the field K, x− 1, xy, xz is a regular sequence but xy, xz, x− 1 is not. However, if M
is a finitely generated nonzero module over a local ring (R, m, K), a regular sequence on
M is permutable. This is also true if R is N-graded, M is Z-graded but nonzero in only
finitely many negative degrees, and the elements of the regular sequence in R have positive
degree.

|
To see why, note that we get all permutations if we can transpose two consecutive

terms of a regular sequence. If we kill the ideal generated by the preceding terms times the
module, we come down to the case where we are transposing the first two terms. Since the
ideal generated by these two terms does not depend on their order, it suffices to consider
the case of regular sequences x, y of length 2. The key point is to prove that y is not a
zerodivisor on M . Let N ⊆ M by the annihilator of y. If u ∈ N , yu = 0 ∈ xM implies
that u ∈ xM , so that u = xv. Then y(xv) = 0, and x is not a zerodivsior on M , so that
yv = 0, and v ∈ N . This shows that N = xN , contradicting Nakayama’s Lemma (the
local version or the homogeneous version, whichever is appropriate).

The next part of the argument does not need the local or graded hypothesis: it works
quite generally. We need to show that x is a nonzerodivisor on M/yM . Suppose that
xu = yv. Since y is a nonzerodivisor on xM , we have that v = xw, and xu = yxw. Thus
x(u− yw) = 0. Since x is a nonzerodivisor on M , we have that u = yw, as required. �

|

The Krull dimension of a ring R may be characterized as the supremum of lengths of
chains of prime ideals of R, where the length of the strictly ascending chain

P0 ⊂ P1 ⊂ · · · ⊂ Pn
is n. The Krull dimension of the local ring (R, m, K) may also be characterized as
the least integer n such that there exists a sequence x1, . . . , xn ∈ m such that m =
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Rad
(
(x1, . . . , xn)R

)
(equivalently, such that R = R/(x1, . . . , xn)R is a zero-dimensional

local ring, which means that R is an Artinian local ring).

Such a sequence is called a system of parameters for R.

|
One can always construct a system of parameters for the local ring (R, m, K) as

follows. If dim (R) = 0 the system is empty. Otherwise, the maximal ideal cannot be
contained in the union of the minimal primes of R. Choose x1 ∈ m not in any minimal
prime of R. In fact, it suffices to choose x1 not in any minimal primes P such that
dim (R/P ) = dim (R). Once x1, . . . , xk have been chosen so that x1, . . . , xk is part of a
system of parameters (equivalently, such that dim

(
R/(x1, . . . , xk)R

)
= dim (R)− k) ), if

k < dim (R) the minimal primes of (x1, . . . , xk)R cannot cover m. It follows that we can
choose xk+1 not in any such minimal prime, and then x1, . . . , xk+1 is part of a system of
parameters. By induction, we eventually reach a system of parameters for R. Notices that
in choosing xk+1, it actually suffices to avoid only those minimal primes Q of (x1, . . . , xk)R
such that dim (R/Q) = dim

(
R/(x1, . . . , xk)R

)
(which is dim (R)− k).

|

A local ring is called Cohen-Macaulay if some (equivalently, every) system of parameters
is a regular sequence on R. These include regular local rings: if one has a minimal set
of generators of the maximal ideal, the quotient by each in turn is again regular and
so is a domain, and hence every element is a nonzerodivisor modulo the ideal generated
by its predecessors. Moreover, local complete intersections, i.e., local rings of the form
R/(f1, . . . , fh) where R is regular and f1, . . . , fh is part of a system of parameters for
R, are Cohen-Macaulay. It is quite easy to see that if R is Cohen-Macaulay, so is R/I
whenever I is generated by a regular sequence.

If R is a Cohen-Macaulay local ring, the localization of R at any prime ideal is Cohen-
Macaulay. We define an arbitrary Noetherian ring to be Cohen-Macaulay if all of its local
rings at maximal ideals (equivalently, at prime ideals) are Cohen-Macaulay.

|

Cohen-Macaulay rings in the graded and local cases

We want to put special emphasis on the graded case for several reasons. One is its
importance in projective geometry. Beyond that, there are many theorems about the
graded case that make it easier both to understand and to do calculations. Moreover,
many of the most important examples of Cohen-Macaulay rings are graded.

We first note:

Proposition. Let M be an N-graded or Z-graded module over an N-graded or Z-graded
Noetherian ring S. Then every associated prime of M is homogeneous. Hence, every
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minimal prime of the support of M is homogeneous and, in particular the associated (hence,
the minimal) primes of S are homogeneous.

Proof. Any associated prime P of M is the annihilator of some element u of M , and then
every nonzero multiple of u 6= 0 can be thought of as a nonzero element of S/P ∼= Su ⊆M ,
and so has annihilator P as well. If ui is a nonzero homogeneous component of u of degree
i, its annihilator Ji is easily seen to be a homogeneous ideal of S. If Jh 6= Ji we can
choose a form F in one and not the other, and then Fu is nonzero with fewer homgeneous
components then u. Thus, the homogeneous ideals Ji are all equal to, say, J , and clearly
J ⊆ P . Suppose that s ∈ P −J and subtract off all components of S that are in J , so that
no nonzero component is in J . Let sa /∈ J be the lowest degree component of s and ub be
the lowest degree component in u. Then sa ub is the only term of degree a + b occurring
in su = 0, and so must be 0. But then sa ∈ AnnS ub = Jb = J , a contradiction. �

Corollary. Let K be a field and let R be a finitely generated N-graded K-algebra with
R0 = K. Let M =

⊕∞
d=1Rj be the homogeneous maximal ideal of R. Then dim (R) =

height (M) = dim (RM).

Proof. The dimension of R will be equal to the dimension of R/P for one of the minimal
primes P of R. Since P is minimal, it is an associated prime and therefore is homogenous.
Hence, P ⊆M. The domain R/P is finitely generated over K, and therefore its dimension
is equal to the height of every maximal ideal including, in particular, M/P . Thus,

dim (R) = dim (R/P ) = dim
(
(R/P )M

)
≤ dimRM ≤ dim (R),

and so equality holds throughout, as required. �

Proposition (homogeneous prime avoidance). Let R be an N-graded algebra, and
let I be a homogeneous ideal of R whose homogeneous elements have positive degree. Let
P1, . . . , Pk be prime ideals of R. Suppose that every homogeneous element f ∈ I is in⋃k
i=1 Pi. Then I ⊆ Pj for some j, 1 ≤ j ≤ k.

Proof. We have that the set H of homogeneous elements of I is contained in
⋃k
i=1 Pk. If

k = 1 we can conclude that I ⊆ P1. We use induction on k. Without loss of generality,
we may assume that H is not contained in the union of any k − 1 if the Pj . Hence, for
every i there is a homogeous element gi ∈ I that is not in any of the Pj for j 6= i, and
so it must be in Pi. We shall show that if k > 1 we have a contradiction. By raising the
gi to suitable positive powers we may assume that they all have the same degree. Then
gk−1

1 + g2 · · · gk ∈ I is a homogeneous element of I that is not in any of the Pj : g1 is not
in Pj for j > 1 but is in P1, and g2 · · · gk is in each of P2, . . . , Pk but is not in P1. �

Now suppose that R is a finitely generated N-graded algebra over R0 = K, where K is
a field. By a homogenous system of parameters for R we mean a sequence of homogeneous
elements F1, . . . , Fn of positive degree in R such that n = dim (R) and R/F1, . . . , Fn) has
Krull dimension 0. When R is a such a graded ring, a homogeneous system of parameters
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always exists. By homogeneous prime avoidance, there is a form F1 that is not in the union
of the minimal primes of R. Then dim (R/F1) = dim (R)−1. For the inductive step, choose
forms of positive degree F2, . . . , Fn whose images in R/F1R are a homogeneous system
of parameters for R/F1R. Then F1, . . . , Fn is a homogeneous system of parameters for
R. �

Moreover, we have:

Theorem. Let R be a finitely generated N-graded K-algebra with R0 = K such that
dim (R) = n. A homogeneous system of parameters F1, . . . , Fn for R always exists. More-
over, if F1, . . . , Fn is a sequence of homogeneous elements of positive degree, then the
following statements are equivalent.

(1) F1, . . . , Fn is a homogeneous system of parameters.

(2) m is nilpotent modulo (F1, . . . , Fn)R.

(3) R/(F1, . . . , Fn)R is finite-dimensional as a K-vector space.

(4) R is module-finite over the subring K[F1, . . . , Fn].

Moreover, when these conditions hold, F1, . . . , Fn are algebraically independent over K,
so that K[F1, . . . , Fn] is a polynomial ring.

Proof. We have already shown existence.

(1) ⇒ (2). If F1, . . . , Fn is a homogeneous system of parameters, we have that

dim
(
R/F1, . . . , Fn)

)
= 0.

We then know that all prime ideals are maximal. But we know as well that the maximal
ideals are also minimal primes, and so must be homogeneous. Since there is only one
homogenous maximal ideal, it must be m/(F1, . . . , Fn)R, and it follows that m is nilpotent
on (F1, . . . , Fn)R.

(2) ⇒ (3). If m is nilpotent modulo (F1, . . . , Fn)R, then the homogeneous maximal
ideal of R = R/(F1, . . . , Fn)R is nilpotent, and it follows that [R]d = 0 for all d � 0.
Since each Rd is a finite dimensional vector space over K, it follows that R itself is finite-
dimensional as a K-vector space.

(3) ⇒ (4). This is immediate from the homogeneous form of Nakayama’s Lemma: a
finite set of homogeneous elements of R whose images in R are a K-vector space basis
will span R over K[F1, . . . , Fn], since the homogenous maximal ideal of K[F1, . . . , Fn] is
generated by F1, . . . , Fn.

(4)⇒ (1). If R is module-finite over K[F1, . . . , Fn], this is preserved mod (F1, . . . , Fn),
so that R/(F1, . . . , Fn) is module-finite over K, and therefore zero-dimensional as a ring.

Finally, when R is a module-finite extension of K[F1, . . . , Fn], the two rings have the
same dimension. Since K[F1, . . . , Fn] has dimension n, the elements F1, . . . , Fn must be
algebraically independent. �
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The technique described in the discussion that follows is very useful both in the local
and graded cases.

Discussion: making a transition from one system of parameters to another. Let R be a
Noetherian ring of Krull dimension n, and assume that one of the two situations described
below holds.

(1) (R, m, K) is local and f1, . . . , fn and g1, . . . , gn are two systems of parameters.

(2) R is finitely generated N-graded over R0 = K, a field, m is the homogeneous maximal
ideal, and f1, . . . , fn and g1, . . . , gn are two homogeneous systems of parameters for
R.

We want to observe that in this situation there is a finite sequence of systems of parame-
ters (respectively, homogeneous systems of parameters in case (2)) starting with f1, . . . , fn
and ending with g1, . . . , gn such that any two consecutive elements of the sequence agree
in all but one element (i.e., after reordering, only the i th terms are possibly different for a
single value of i, 1 ≤ i ≤ n). We can see this by induction on n. If n = 1 there is nothing
to prove. If n > 1, first note that we can choose h (homogeneous of positive degree in the
graded case) so as to avoid all minimal primes of (f2, . . . , fn)R and all minimal primes of
(g2, . . . , gn)R. Then it suffices to get a sequence from h, f2, . . . , fn to h, g2, . . . , gn, since
the former differs from f1, . . . , fn in only one term and the latter differs from g1, . . . , gn in
only one term. But this problem can be solved by working in R/hR and getting a sequence
from the images of f2, . . . , fn to the images of g2, . . . , gn, which we can do by the induc-
tion hypothesis. We lift all of the systems of parameters back to R by taking, for each one,
h and inverse images of the elements in the sequence in R (taking a homogeneous inverse
image in the graded case), and always taking the same inverse image for each element of
R/hR that occurs. �

The following result now justifies several assertions about Cohen-Macaulay rings made
without proof earlier.

Note that a regular sequence in the maximal ideal of a local ring (R, m, K) is always
part of a system of parameters: each element is not in any associated prime of the ideal
generated by its predecessors, and so cannot be any minimal primes of that ideal. It follows
that as we kill successive elements of the sequence, the dimension of the quotient drops by
one at every step.

Corollary. Let (R, m, K) be a local ring. There exists a system of parameters that is a
regular sequence if and only if every system of parameters is a regular sequence. In this
case, for every prime ideal I of R of height k, there is a regular sequence of length k in I.

Moreover, for every prime ideal P of R, RP also has the property that every system of
parameters is a regular sequence.

Proof. For the first statement, we can choose a chain as in the comparison statement just
above. Thus, we can reduce to the case where the two systems of parameters differ in only
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one element. Because systems of parameters are permutable and regular sequences are
permutable in the local case, we may assume that the two systems agree except possibly
for the last element. We may therefore kill the first dim (R) − 1 elements, and so reduce
to the case where x and y are one element systems of parameters in a local ring R of
dimension 1. Then x has a power that is a multiple of y, say xh = uy, and y has a power
that is a multiple of x. If x is not a zerodivisor, neither is xh, and it follows that y is not
a zerodivisor. The converse is exactly similar.

Now suppose that I is any ideal of height h. Choose a maximal sequence of elements
(it might be empty) of I that is part of a system of parameters, say x1, . . . , xk. If k < h,
then I cannot be contained in the union of the minimal primes of (x1, . . . , xk): otherwise,
it will be contained in one of them, say Q, and the height of Q is bounded by k. Chose
xk+1 ∈ I not in any minimal prime of (x1, . . . , xk)R. Then x1, . . . , xk+1 is part of a
system of parameters for R, contradicting the maximality of the sequence x1, . . . , xk.

Finally, consider the case where I = P is prime. Then P contains a regular sequence
x1, . . . , xk, which must also be regular in RP , and, hence, part of a system of parameters.
Since dim (RP ) = k, it must be a system of parameters. �

Lemma. Let K be a field and assume either that

(1) R is a regular local ring of dimension n and x1, . . . , xn is a system of parameters

or

(2) R = K[x1, . . . , xn] is a graded polynomial ring over K in which each of the xi is a
form of positive degree.

Let M be a nonzero finitely generated R-module which is Z-graded in case (2). Then M
is free if and only if x1, . . . , xn is a regular sequence on M .

Proof. The “only if” part is clear, since x1, . . . , xn is a regular sequence on R and M
is a direct sum of copies of R. Let m = (x1, . . . , xn)R. Then V = M/mM is a finite-
dimensional K-vector space that is graded in case (2). Choose a K-vector space basis for
V consisting of homogeneous elements in case (2), and let u1, . . . , uh ∈ M be elements
of M that lift these basis elements and are homogeneous in case (2). Then the uj span
M by the relevant form of Nakayama’s Lemma, and it suffices to prove that they have no
nonzero relations over R. We use induction on n. The result is clear if n = 0.

Assume n > 0 and let N = {(r1, . . . , rh) ∈ Rh : r1u1+· · ·+rhuh = 0}. By the induction
hypothesis, the images of the uj in M/x1M are a free basis for M/x1M . It follow that if
ρ = (r1, . . . , rh) ∈ N , then every rj is 0 in R/x1R, i.e., that we can write rj = x1sj for all
j. Then x1(s1u1 + · · ·+ shuh) = 0, and since x1 is not a zerodivisor on M , we have that
s1u1 + · · ·+ shuh = 0, i.e., that σ = (s1, . . . , sh) ∈ N . Then ρ = x1σ ∈ x1N , which shows
that N = x1N . Thus, N = 0 by the appropriate form of Nakayama’s Lemma. �

We next observe:
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Theorem. Let R be a finitely generated graded algebra of dimension n over R0 = K, a
field. Let m denote the homogeneous maximal ideal of R. The following conditions are
equivalent.

(1) Some homogeneous system of parameters is a regular sequence.

(2) Every homogeneous system of parameters is a regular sequence.

(3) For some homogeneous system of parameters F1, . . . , Fn, R is a free-module over
K[F1, . . . , Fn].

(4) For every homogeneous system of parameters F1, . . . , Fn, R is a free-module over
K[F1, . . . , Fn].

(5) Rm is Cohen-Macaulay.

(6) R is Cohen-Macaulay.

Proof. The proof of the equivalence of (1) and (2) is the same as for the local case, already
given above.

The preceding Lemma yields the equivalence of (1) and (3), as well as the equivalence
of (2) and (4). Thus, (1) through (4) are equivalent.

It is clear that (6) ⇒ (5). To see that (5) ⇒ (2) consider a homogeneous system of
parameters in R. It generates an ideal whose radical is m, and so it is also a system
of parameters for Rm. Thus, the sequence is a regular sequence in Rm. We claim that
it is also a regular sequence in R. If not, xk+1 is contained in an associated prime of
(x1, . . . , xk) for some k, 0 ≤ k ≤ n − 1. Since the associated primes of a homogeneous
ideal are homogeneous, this situation is preserved when we localize at m, which gives a
contradiction.

To complete the proof, it will suffice to show that (1) ⇒ (6). Let F1, . . . , Fn be a ho-
mogeneous system of parameters for R. Then R is a free module over A = K[F1, . . . , Fn],
a polynomial ring. Let Q be any maximal ideal of R and let P denote its contraction to
A, which will be maximal. These both have height n. Then AP → RQ is faithfully flat.
Since A is regular, AP is Cohen-Macaulay. Choose a system of parameters for AP . These
form a regular sequence in AP , and, hence, in the faithfully flat extension RQ. It follows
that RQ is Cohen-Macaulay. �

|

From part (2) of the Lemma on p. 8 we also have:

Theorem. Let R be a module-finite local extension of a regular local ring A. Then R is
Cohen-Macaulay if and only if R is A-free.

It it is not always the case that a local ring (R, m, K) is module-finite over a regular
local ring in this way. But it does happen frequently in the complete case. Notice that the
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property of being a regular sequence is preserved by completion, since the completion R̂ of
a local ring is faithfully flat over R, and so is the property of being a system of parameters.

Hence, R is Cohen-Macaulay if and only if R̂ is Cohen-Macaulay.

If R is complete and contains a field, then there is a coefficient field for R, i.e., a field
K ⊆ R that maps isomorphically onto the residue class field K of R. Then, if x1, . . . , xn
is a system of parameters, R turns out to be module-finite over the formal power series
ring K[[x1, . . . , xn]] in a natural way. Thus, in the complete equicharacteristic local case,
we can always find a regular ring A ⊆ R such that R is module-finite over A, and think of
the Cohen-Macaulay property as in the Theorem above.

The structure theory of complete local rings is discussed in detail in the Lecture Notes
from Math 615, Winter 2007: see the Lectures of March 21, 23, 26, 28, and 30 as well as
the Lectures of April 2 and April 4.

|

Cohen-Macaulay modules

All of what we have said about Cohen-Macaulay rings generalizes to a theory of Cohen-
Macaulay modules. We give a few of the basic definitions and results here: the proofs are
very similar to the ring case, and are left to the reader.

If M is a module over a ring R, the Krull dimension of M is the Krull dimension of
R/AnnR(I). If (R, m, K) is local and M 6= 0 is finitely generated of Krull dimension
d, a system of parameters for M is a sequence of elements x1, . . . , xd ∈ m such that,
equivalently:

(1) dim
(
M/(x1, . . . , xd)M

)
= 0.

(2) The images of x1, . . . , xd form a system of parameters in R/AnnRM .

In this local situation, M is Cohen-Macaulay if one (equivalently, every) system of
parameters for M is a regular sequence on M . If J is an ideal of R/AnnRM of height h,
then it contains part of a system of parameters for R/AnnRM of height h, and this will
be a regular sequence on M . It follows that the Cohen-Macaulay property for M passes
to MP for every prime P in the support of M . The arguments are all essentially the same
as in the ring case.

If R is any Noetherian ring M 6= 0 is any finitely generated R-module, M is called
Cohen-Macaulay if all of its localizations at maximal (equivalently, at prime) ideals in its
support are Cohen-Macaulay.

|

The Cohen-Macaulay condition is increasingly restrictive as the Krull dimension in-
creases. In dimension 0, every local ring is Cohen-Macaulay. In dimension one, it is
sufficient, but not necessary, that the ring be reduced: the precise characterization in di-
mension one is that the maximal ideal not be an embbeded prime ideal of (0). Note that
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K[[x, y]]/(x2) is Cohen-Macaulay, while K[[x, y]]/(x2, xy) is not. Also observe that all
one-dimensional domains are Cohen-Macaulay.

In dimension 2, it suffices, but is not necessary, that the ring R be normal, i.e., integrally
closed in its ring of fractions. Note that a normal Noetherian ring is a finite product of
normal domains. If (R, m, K) is local and normal, then it is a doman. The associated
primes of a principal ideal are minimal if R is normal. Hence, if x, y is a system of
parameters, y is not in any associated prime of xR, i.e., it is not in any associated prime
of the module R/xR, and so y is not a zerodivisor modulo xR.

The two dimensional domains K[[x2, x2, y, xy]] and K[x4, x3y, xy3, y4]] (one may also
use single brackets) are not Cohen-Macaulay: as an exercise, the reader may try to see
that y is a zerodivisor mod x2 in the first, and that y4 is a zerodivisor mod x4 in the
second. On the other hand, while K[[x2, x3, y2, y3]] is not normal, it is Cohen-Macaulay.

|

Direct summands of rings

Let R ⊆ S be rings. We want to discuss the consequences of the hypothesis that the
inclusion R ↪→ S splits as a map of R-modules. When this occurs, we shall simply say
that R is a direct summand of S. When we have such a splitting, we have an R-linear map
ρ : S → R that is the identity on R. Here are some facts.

Proposition. Let R be a direct summand of S. Then:

(a) For every ideal I of R, IS ∩R = I.

(b) If S is Noetherian, then R is Noetherian.

(c) If R is an N-graded ring with R0 = A and S is Noetherian , then R is finitely generated
over A.

(d) If S is a normal domain, then R is normal.

Proof. Let ρ be a splitting.

(a) If r ∈ R is such that r =
∑h
i=1 fisi with the fi ∈ I and the si ∈ S, so that r is

a typical element of IS ∩ R, then r = ρ(r) =
∑n
i=1 fiρ(si), since the fi ∈ R. Since each

ρ(si) ∈ R, we have that r ∈ I.

(b) If {In}n is a nondecreasing chain of ideals of R, we have that the chain {InS}n is
stable from some point on, say ItS = INS for all t ≥ N . We may then apply (a) to obtain
that It = ItS ∩R = INS ∩R = IN for all t ≥ N .

(c) From part (b), R is Noetherian, and so the ideal J spanned by all forms of pos-
itive degree is finitely generated, say by forms F1, . . . , Fn of positive degree. Then
R = A[F1, . . . , Fn]: otherwise, choose a form G of least degree that is in R and not
in A[F1, . . . , Fn]. Then G ∈ J , and so we can write G as a sum of terms HjFj where every
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Hj is a nonzero form such that deg(Hj) + deg(Fj) = deg(G). Since deg(Hj) < deg(G),
every Hj ∈ A[F1, . . . , Fn], and the result follows.

(d) Let a, b ∈ R with b 6= 0 such that a/b is integral over R. Then a/b is an element of
frac (S) integral over S as well, and so a/b ∈ S. Thus, a ∈ bS ∩ R = bR by part (a). and
so a = br with r ∈ R. This shows that r = a/b ∈ R. �

|

|

Segre products

Let R and S be finitely generated N-graded K-algebras with R0 = S0 = K. We define
the Segre product R©s K S of R and S over K to be the ring

∞⊕
n=1

Rn ⊗K Sn,

which is a subring of R ⊗K S. In fact, R ⊗K S has a grading by N × N whose (m,n)
component is Rm ⊗K Sn. (There is no completely standard notation for Segre products:
the one used here is only one possbility.) The vector space⊕

m6=n

Rm ⊗K Sn ⊆ R⊗K S

is an R©s K S-submodule of R ⊗K S that is an R©s K S-module complement for R©s K S.
That is, R©s K S is a direct summand of R⊗K S when the latter is regarded as an R©s K S-
module. It follows that R©s K S is Noetherian and, hence, finitely generated over K.
Moreover, if R⊗K S is normal then so is R©s K S. In particular, if R is normal and S is a
polynomial ring over K then R©s K S is normal.

|

Let S = K[X, Y, Z]/(X3 + Y 3 + Z3) = K[x, y, z], where K is a field of characteristic
different from 3: this is a homogeneous coordinate ring of an elliptic curve C, and is often
referred to as a cubical cone. Let T = K[s, t], a polynomial ring, which is a homogeneous
coordinate ring for the projective line P1 = P1

K . The Segre product of these two rings
is R = K[xs, ys, zs, xt, yt, zt] ⊆ S[s, t], which is a homogeneous coordinate ring for the
smooth projective variety C×P1. This ring is a normal domain with an isolated singularity
at the origin: that is, its localization at any prime ideal except the homogeneous maximal
ideal m is regular. R and Rm are normal but not Cohen-Macaulay.
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|
We give a proof that R is not Cohen-Macaulay. The equations

(zs)3 +
(
(xs)3 + (ys)3

)
= 0 and (zt)3 +

(
(xt)3 + (yt)3

)
= 0

show that zs and zt are both integral over D = K[xs, ys, xt, zt] ⊆ R. The elements
x, y, s, and t are algebraically independent, and the fraction field of D is K(xs, ys, t/s),
so that dim (D) = 3, and

D ∼= K[X11, X12, X21, X22]/(X11X22 −X12X21)

with X11, X12, X21, X22 mapping to xs, ys, xt, yt respectively.

It is then easy to see that ys, xt, xs− yt is a homogeneous system of parameters for D,
and, consequently, for R as well. The relation

(zs)(zt)(xs− yt) = (zs)2(xt)− (zt)2(ys)

now shows that R is not Cohen-Macaulay, for (zs)(zt) /∈ (xt, ys)R. To see this, suppose
otherwise. The map

K[x, y, z, s, t]→ K[x, y, z]

that fixes K[x, y, z] while sending s 7→ 1 and t 7→ 1 restricts to give a K-algebra map

K[xs, ys, zs, xt, yt, zt]→ K[x, y, z].

If (zs)(zt) ∈ (xt, ys)R, applying this map gives z2 ∈ (x, y)K[x, y, z], which is false — in
fact, K[x, y, z]/(x, y) ∼= K[z]/(z3). �

|

Cohen-Macaulay rings are wonderfully well-behaved in many ways: we shall discuss this
at considerable length later. Of course, regular rings are even better.

One of the main objectives in these lectures is to discuss two ways of dealing with rings
in which the Cohen-Macaulay property fails. One is the development of a tight closure
theory. The other is to prove the existence of “lots” of big Cohen-Macaulay algebras.
These two methods are closely related, and we shall explore that relationship. In any case,
one conclusion that one may reach is that rings that do not have the Cohen-Macaulay
property nonetheless have better behavior than one might at first expect.

The situation right now is that there are relatively satisfactory results for both of these
techniques for Noetherian rings containing a field. There are also results for local rings of
mixed characteristic in dimension at most 3. (For a mixed characteristic local domain, the
characteristic of the residue class field is a positive prime p while the characteristic of the
fraction field is 0. The p-adic integers give an example, as well as module-finite extensions
of formal power series rings over the p-adic integers.)
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The integral closure of an ideal

The Briançon-Skoda theorem discussed in (2) below refers to the integral closure I of
an ideal I. We make the following comments: for proofs, see the Lecture Notes from Math
711, Fall 2006, September 13 and September 15 (those notes also give a detailed treatment
of the Lipman-Sathaye proof of the Briançon-Skoda theorem). If I ⊆ R and u ∈ R then
u ∈ I precisely if for some n, u satisfies a monic polynomial

xn + r1x
n−1 + · · ·+ rn = 0

with rj ∈ Ij , 1 ≤ j ≤ n.

Alternatively, if one forms the Rees ring

R[It] = R+ It+ I2t2 + I3t3 + · · ·+ Intn + · · · ⊆ R[t],

where t is an indeterminate, the integral closure of R[It] in R[t] has the form

R+ J1t+ J2t
2 + J3t

3 + · · ·+ Jnt
n + · · ·

where every Jn ⊆ R is an ideal. It turns out that J1 = I, and, in fact, Jn = In for all
n ≥ 1.

It turns out as well that for u ∈ R, one has that u ∈ I if and only if u ∈ IV for every
map from R to a valuation domain V . When R is Noetherian, it suffices to consider maps
to Noetherian discrete valuation domains (we refer to such a domain as a DVR: this is
the same as a regular local ring of Krull dimension 1) such that the kernel of the map is
a minimal prime of R. In particular, if R is a Noetherian domain, it suffices to consider
injective maps of R into a DVR.

If R is a Noetherian domain, yet another characterization of I is as follows: u ∈ I if
and only if there is an element c ∈ R − {0} such that cun ∈ In for all n ∈ N (it suffices if
cun ∈ In for infinitely many values of n ∈ N).

|

Here are some of the results that can be proved using tight closure theory, which we
shall present even though we have not yet discussed what tight closure is.

(1) If R ⊆ T are rings such that T is regular and R is a direct summand of T as an R-
module, then R is Cohen-Macaulay. (This is known in the equal characteristic case:
it is an open question in general.)

(2) If I = (f1, . . . , fn) is an ideal of a regular ring R, then In ⊆ I. (The case where R is
regular is known even in mixed characteristic. In the case whereR is equicharacteristic,
it is known that In is contained in the tight closure of I, with no restriction on the
Noetherian ring R.)
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(3) If I ⊆ R is an ideal and S is module-finite extension of R, then IS ∩ R is contained
in the tight closure of I in equal characteristic. (That is, tight closure “controls” how
large the contracted expansion of an ideal to a module-finite extension ring can be.)

(4) Tight closure can be used to prove that if R is regular, then R is a direct summand
of every module-finite extension ring. More generally, in equal characteristic, every
ring such that every ideal is tightly closed is a direct summand of every module-finite
extension ring. Whether the converse holds is an open question.

Whether every regular ring is a direct summand of every module-finite extension
remains an important open question in mixed characteristic, where it is known in
dimension at most 3. The proof in dimension 3, due to Ray Heitmann, is very difficult.
We shall discuss Heitmann’s work further.

(5) Tight closure can be used to prove theorems controlling the behavior of symbolic
powers of prime ideals in regular rings. (We shall give more details about this in the
next lecture.)

(6) Tight closure can be used in the proof of several subtle statements about homologi-
cal properties of local rings. These statements are known as “the local homological
conjectures.” Some are now theorems in equal characteristc but open in mixed charac-
teristic. Others are now known in general. Some remain open in every characteristic.
We shall discuss these in more detail later.

By a big Cohen-Macaulay module for a local ring (R, m, K) we mean a not necessarily
finitely generated R-module M such that every system of parameters of R is a regular
sequence on M . It is not sufficient for one system of parameters to be a regular sequence,
but if one system of parameters is a regular sequence then the m-adic completion of M has
the property that every system of parameters is a regular sequence. Some authors use the
term “big Cohen-Macaulay module” when one system of parameters is a regular sequence,
and call the big Cohen-Macaulay module “balanced” if every system of parameters is a
regular sequence.

An R-algebra S is called a big Cohen-Macaulay algebra over R if it is a big Cohen-
Macaulay module as well as an R-algebra.

The existence of big Cohen-Macaulay algebras is known if the local ring R contains a
field. The proof in equal characteristic 0 depends on reduction to characteristic p > 0. In
mixed characteristic, it is easy in dimension at most 2 and follows from difficult results of
Heitmann in dimension 3. We shall discuss all this at considerable length later.

Big Cohen-Macaulay algebras can be used to prove results like those mentioned in (1),
(4), and (6) for tight closure. I conjecture that the existence of a tight closure theory
with sufficiently good properties in mixed characteristic is equivalent to the existence of
sufficiently many big Cohen-Macaulay algebras in mixed characteristic. This is a somewhat
vague statement, in that I am not being precise about the meaning of the word “sufficiently”
in either half, but it is a point of view that forms one of the themes of these lectures, and
will be developed further.
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Math 711: Lecture of September 7, 2007

Symbolic powers

We want to make a number of comments about the behavior of symbolic powers of
prime ideals in Noetherian rings, and to give at least one example of the kind of theorem
one can prove about symbolic powers of primes in regular rings: there was a reference to
such theorems in (5) on p. 15 of the notes from the first lecture.

Let P be a prime ideal in any ring. We define the n th symbolic power P (n) of P as

{r ∈ R : for some s ∈ R− P, sr ∈ Pn}.

Alternatively, we may define P (n) as the contraction of PnRP to R. It is the smallest
P -primary ideal containing Pn. If R is Noetherian, it may be described as the P -primary
component of Pn in its primary decomposition.

While P (1) = P , and P (n) = Pn when P is a maximal ideal, in general P (n) is larger
than Pn, even when the ring is regular. Here is one example. Let x, y, z, and t denote
indeterminates over a field K. Grade R = K[x, y, z] so that x, y, and z have degrees 3, 4,
and 5, respectively. Then there is a degree preserving K-algebra surjection

R� K[t3, t4, t5] ⊆ K[t]

that sends x, y, and z to t3, t4, and t5, respectively. Note that the matrix

X =

(
x y z
y z x2

)
is sent to the matrix (

t3 t4 t5

t4 t5 t6

)
.

The second matrix has rank 1, and so the 2 × 2 minors of X are contained in the kernel
P of the surjection R � K[t3, t4, t5]. Call these minors f = xz − y2, g = x3 − yz,
and h = yx2 − z2. It is not difficult to prove that these three minors generate P , i.e.,
P = (f, g, h). We shall exhibit an element of P (2) − P . Note that f , g, and h are
homogeneous of degrees 8, 9, and 10, respectively.

Next observe that g2 − fh vanishes mod xR: it becomes (−yz)2 − (−y2)(−z2) = 0.
Therefore, g2 − fh = xu. g2 has an x6 term which is not canceled by any term in fh,
so that u 6= 0. (Of course, we could check this by writing out what u is in a completely
explicit calculation.) The element g2 − fh ∈ P 2 is homogeneous of degree 18 and x has
degree 3. Therefore, u has degree 15. Since x /∈ P and xu ∈ P 2, we have that u ∈ P (2).
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But since the generators of P all have degree at least 8, the generators of P 2 all have
degree at least 16. Since deg(u) = 15, we have that u /∈ P 2, as required.

Understanding symbolic powers is difficult. For example, it is true that if P ⊆ Q are
primes of a regular ring then P (n) ⊆ Q(n): but this is somewhat difficult to prove! See the
Lectures of October 20 and November 1, 6, and 8 of the Lecture Notes from Math 711,
Fall, 2006.

|
This statement about inclusions fails in simple examples where the ring is not regular.

For example, consider the ring

R = K[U, V, W, X, Y, Z]/(UX + V Y +WZ) = K[u, v, w, x, y, z]

where the numerator is a polynomial ring. Then R is a hypersurface: it is Cohen-Macaulay,
normal, with an isolated singularity. It can even be shown to be a UFD. Let Q be the
maximal ideal generated by the images of all of the variables, and let P be the prime ideal
(v, w, x, y, z)R. Here, R/P ∼= K[U ]. Then P ⊆ Q but it is not true that P (2) ⊆ Q(2). In
fact, since −ux = yy + wz ∈ P 2 and u /∈ P , we have that x ∈ P (2), while x /∈ Q(2), which
is simply Q2 since Q is maximal.

|

The following example, due to Rees, shows that behavior of symbolic powers can be
quite bad, even in low dimension.

Let P be a prime ideal in a Noetherian ring R. Let t be an indeterminate over R. When
I is an ideal of R, a very standard construction is to form the Rees ring

R[It] = R+ It+ · · ·+ Intn + · · · ⊆ R[t],

which is finitely generated over R: if f1, . . . , fh generate the ideal I, then

R[It] = R[f1t, . . . , fht].

An analogous construction when I = P is prime is the symbolic power algebra

R+ Pt+ P (2)t2 + · · ·+ P (n)tn + · · · ⊆ R[t].

We already know that this algebra is larger than R[Pt], but one might still hope that it is
finitely generated. Roughly speaking, this would say that the elements in P (n) − Pn for
sufficiently large n arise a consequence of elements in P (k) − P k for finitely many values
of k.

However, this is false. Let

R = C[X, Y, Z]/(X3 + Y 3 + Z3),
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where C is the field of complex numbers. This is a two-dimensional normal surface: it has
an isolated singularity. It is known that there are height one homogeneous primes P that
have infinite order in the divisor class group: this simply means that no symbolic power of
P is principal. David Rees proved that the symbolic power algebra of such a prime P is not
finitely generated over R. This was one of the early indications that Hilbert’s Fourteenth
Problem might have a negative solution, i.e., that the ring of invariants of a linear action
of a group of invertible matrices on a polynomial ring over a field K may have a ring of
invariants that is not finitely generated over K. M. Nagata gave examples to show that
this can happen in 1958.

|

Analytic spread

In order to give a proof of the result of Rees described above, we introduce the notion
of analytic spread. Let (R, m, K) be local and I ⊆ m an ideal. When K is infinite, the
following two integers coincide:

(1) The least integer n such that I is integral over an ideal J ⊆ I that is generated by n
elements.

(2) The Krull dimension of the ring K ⊗R R[It].

The integer defined in (2) is called the analytic spread of I, and we shall denote it an(I).
See the Lecture Notes of September 15 and 18 from Math 711, Fall 2006 for a more detailed
treatment.

The ring in (2) may be written as

S = K ⊕ I/mI ⊕ I2/mI2 ⊕ · · · ⊕ In/mIn ⊕ · · ·

Note that if we define the associated graded ring grI(R) of R with respect to I as

R⊕ I/I2 ⊕ I2/I3 ⊕ · · · ⊕ In/In+1 ⊕ · · · ,

which may also be thought of as R[It]/IR[It], then it is also true that S ∼= K ⊗R grI(R).

The idea underlying the proof that when K is infinite and h = an(I), one can find
f1, . . . , fh ∈ I such that I is integral over J = (f1, . . . , fh)R is as follows. The K-
algebras S is generated by its one-forms. If K is infinite, one can choose a homogeneous
system of parameters for S consisting of one-forms: these are elements of I/mI, and are
represented by elements f1, . . . , fh of I. Let J be the ideal generated by f1, . . . , fh in R.
The S is module-finite over the image of K ⊗ R[Jt], and using this fact and Nakayama’s
Lemma on each component, one can show that R[It] is integral over R[Jt], from which it
follows that I is integral over J .

|
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Proof that Rees’s symbolic power algebra is not finitely generated

Here is a sketch of Rees’s argument. Assume that the symbolic power algebra is finitely
generated. We now replace the graded ring R by its localization at the homogeneous
maximal ideal. By the local and homogeneous versions of Nakayama’s Lemma, the least
number of generators of an ideal generated by homogeneous elements of positive degree
does not change. It follows that P continues to have the property that no symbolic power
is principal. We shall prove that the symbolic power algebra cannot be finitely generated
even in this localized situation, which implies the result over the original ring R.

Henceforth, (R, m, K) is a normal local domain of dimension 2 and P is a height one
prime such that no symbolic power of P is prinicpal. We shall show that the symbolic power
algebra of P cannot be finitely generated over R. Assume that it is finitely generated.

This implies that for some integer k, P (nk) = (P (k))n for all positive integers n. Let
I = P (k). The ring S = R[It] has dimension 3, since the transcendence degree over R is
one. The elements x, y are a system of parameters for R. We claim that there is a regular
sequence of length two in m on each symbolic power J = P (h). To see this, we take x
to be the first term. Consider J/xJ . If there is no choice for the second term, then the
maximal ideal m of R must be an associated prime of J/xJ , and we can choose v ∈ J−xJ
such that mv ⊆ xJ . But then yv ∈ xR, and x, y is a regular sequence in R. It follows
that v = xu with u ∈ R − J . Then mxu ⊆ xJ shows mu ⊆ J . But elements of m − P
are not zerodivisors on J , so that u ∈ J , a contradiction. It follows that every system of
parameters in R is a regular sequence on J : J is a Cohen-Macaulay module.

Thus, if the symbolic power algebra is finitely generated, x, y is a regular sequence
on every P (n), and therefore x, y is a regular sequence in S. It follows that killing (x, y)
decreases the dimension of the ring S by two. Since the radical of (x, y) is the homogeneous
maximal ideal of R, we see that (R/m) ⊗R S has dimension one. This shows that the
analytic spread of I is one. But then I is integral over a principal ideal. In a normal ring,
principal ideals are integrally closed. Thus, I is principal. But this contradicts the fact
that no symbolic power of P is principal. �

|

The notion of tight closure for ideals

We next want to introduce tight closure for ideals in prime characteristic p > 0. We
need some notations. If R is a Noetherian ring, we use R◦ to denote the set of elements
in R that are not in any minimal prime of R. If R is a domain, R◦ = R− {0}. Of course,
R◦ is a multiplicative system.

We shall use e to denote an element of N, the nonnegative integers. For typographical
convenience, shall use q as a symbol interchangeable with pe, so that whenever one writes
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q it is understood that there is a corresponding value of e such that q = pe, even though
it may be that e is not shown explicitly.

When R is an arbitrary ring of characteristic p > 0, we write FR or simply F for the
Frobenius endomorphism of the ring R. Thus, F (r) = rp for all r ∈ R. F eR or F e indicates
the e th iteration of FR, so that F e(r) = rq for all r ∈ R.

If R has characteristic p, I [q] denotes the ideal generated by all q th powers of elements of
I. If one has generators for I, their q th powers generate I [q]. (More generally, if f : R→ S
is any ring homomorphism and I ⊆ R is an ideal with generators {rλ}λ∈Λ, the elements
{f(rλ)}λ∈Λ generate IS.)

Definition. Let R be a Noetherian ring of prime characteristic p > 0. Let I ⊆ R be an
ideal and let u ∈ R be an element. Then u is in the tight closure of I in R, denoted I∗, if
there exists c ∈ R◦ such that for all sufficiently large q, cuq ∈ I [q].

This may seem like a very strange definition at first, but it turns out to be astonishingly
useful. Of course, in presenting the definition, we might have written “for all sufficiently
large e, cup

e ∈ I [pe] ” instead.

The choice of c is allowed to depend on I and u, but not on q.

It is quite easy to see that I∗ is an ideal containing I. Of great importance is the
following fact, to be proved later:

Theorem. Let R be a Noetherian ring of prime characteristic p > 0. If R is regular, then
every ideal of R is tightly closed.

If one were to use tight closure only to study regular rings, then one might think of this
Theorem as asserting that the condition in the Definition above gives a criterion for when
an element is in an ideal that, on the face of it, is somewhat weaker than being in the
ideal. Even if the whole theory were limited in this fashion, it provides easy proofs of many
results that cannot be readily obtained in any other way. We want to give a somewhat
different way of thinking of the definition above. First note that it turns out that tight
closure over a Noetherian ring can be tested modulo every minimal prime. Therefore, for
many purposes, it suffices to consider the case of a domain.

Let R be any domain of prime characteristic p > 0. Within an algebraic closure L of
the fraction field of R, we can form the ring {r1/q : r ∈ R}. The Frobenius map F is an
automorphism of L: this is the image of R under the inverse of F e, and so is a subring of
L isomorphic to R. We denote this ring R1/q. This ring extension of R is unique up to
canonical isomorphism: it is independent of the choice of L, and its only R-automorphism
is the identity: r has a unique q th root in R1/q, since the difference of two distinct q th roots
would be nilpotent, and so every automorphism that fixes r fixes r1/q as well. Moreover,
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there is a commutative diagram:

(∗)

R ↪→ R1/q∥∥∥ xF−e
R

F e−→ R

where both vertical arrows are isomorphisms and F−e(r) = r1/q.

|

The reduced case

When R is reduced rather than a domain there is also a unique (up to unique isomor-
phism) reduced R-algebra extension ring R1/q whose elements are precisely all q th roots
of elements of R. One can construct such an extension ring by taking the map R

F e−→R to
give the algebra map, so that one has the same commutative diagram (∗) as in the domain
case. The proof of uniqueness is straightforward: if S1 and S2 are two such extensions, the
only possible isomorphism must let the unique q th root of r ∈ R in S1 correspond to the
unique q th root of R in S2 for all r ∈ R. It is easy to check that this gives a well-defined
map that is the identity on R, and that it is a bijection and a homomorphism.

|

In both the domain and the reduced case, we have canonical embeddings R1/q ↪→ R1/q′

when q ≤ q′, and we define

R∞ =
⋃
q

R1/q.

When one has that
cuq = r1f

q
1 + · · ·+ rhf

q
h

one can take q th roots to obtain

c1/qu = r
1/q
1 f1 + · · ·+ r

1/q
h fh.

Keep in mind that in a reduced ring, taking q th roots preserves the ring operations. We
can therefore rephrase the definition of tight closure of an ideal I in a Noetherian domain
R of characteristic p > 0 as follows:

(#) An element u ∈ R is in I∗ iff there is an element c ∈ R◦ such that for all sufficiently
large q, c1/qu ∈ IR1/q.

Heuristically, one should think of an element of R that is in IS, where S is a domain
that is an integral extension of R, as “almost” in I. Note that in this situation one will
have u = f1s1 + · · · + fhsh for f1, . . . , fh ∈ I and s1, . . . , sh ∈ S, and so one also has
u ∈ IS0, where S0 = R[s1, . . . , sh] is module-finite over R.
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The condition (#) is weaker in a way: R1/q ⊆ R∞ is an integral extension of R, but, u
is not necessarily in IR∞: instead, it is multiplied into IR∞ by infinitely many elements
c1/q. These elements may be thought of as approaching 1 in some vague sense: this is not
literally true for a topology, but the exponents 1/q → 0 as q →∞.

Some useful properties of tight closure

We state some properties of tight closure for ideals: proofs will be given later. Here, R
is a Noetherian ring of prime characteristic p > 0, and I, J are ideals of R. We shall write
Rred for the homomorphic image of R obtained by killing the ideal of nilpotent elements.
(R, m, K) is called equidimensional if for every minimal prime P of R, dim (R/P ) =
dim (R). An algebra over R is called essentially of finite type over R if it is a localization
at some multiplicative system of a finitely generated R-algebra. If I, J are ideals of R, we
define I :R J = {r ∈ R : rJ ⊆ I}, which is an ideal of R. If J = uR, we may write I :R u
for I :R uR.

|

Excellent rings

In some of the statements below, we have used the term “excellent ring.” The excellent
rings form a subclass of Noetherian rings with many of the good properties of finitely
generated algebras over fields and their localizations. We shall not give a full treatment in
these notes, but we do discuss certain basic facts that we need. For the moment, the reader
should know that the excellent rings include any ring that is a localization of a finitely
generated algebra over a complete local (or semilocal) ring. The class is closed under
localization at any multiplicative system, under taking homomorphic images, and under
formation of finitely generated algebras. We give more detail later. Typically, Noetherian
rings arising in algebraic geometry, number theory, and several complex variables are
excellent.

|

Here are nine properties of tight closure. Property (2) was already stated as a Theorem
earlier.

(1) I ⊆ I∗ = (I∗)∗. If I ⊆ J , then I∗ ⊆ J∗.

(2) If R is regular, every ideal of R is tightly closed.

(3) If R ⊆ S is a module-finite extension, IS ∩R ⊆ I∗.

(4) If P1, . . . , Ph are the minimal primes of R, then u ∈ R is in I∗ if and only if the
image of u in Dj = R/Pj is in the tight closure of IDj in Dj , working over Dj , for
1 ≤ j ≤ h.

(5) If u ∈ R then u ∈ I∗ if and only if its image in Rred is in the tight closure of IRred,
working over Rred.
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The statements in (4) and (5) show that the study of tight closure can often be reduced
to the case where R is reduced or even a domain.

The following is one of the most important properties of tight closure. It is what enables
one to use tight closure as a substitute for the Cohen-Macaulay property in many instances.
It is the key to proving that direct summands of regular rings are Cohen-Macaulay in
characteristic p > 0.

(6) (Colon-capturing) If (R, m, K) is a complete local domain (more generally, if
(R, m, K) is a reduced, excellent, and equidimensional), the elements x1, . . . , xk, xk+1

are part of a system of parameters for R, and Ik = (x1, . . . , xk)R, then Ik :R xk+1 ⊆
I∗k .

Of course, if R were Cohen-Macaulay then we would have Ik :R xk+1 = Ik.

(7) Under mild conditions on R, u ∈ R is in the tight closure of I ⊆ R if and only if
the image of u in RP is in the tight closure of IRP , working over RP , for all prime
(respectively, maximal) ideals P of R. (The result holds, in particular, for algebras
essentially of finite type over an excellent semilocal ring.)

Tight closure is not known to commute with localization, and this is now believed likely
to be false. But property (7) shows that it has an important form of compatibility with
localization.

(8) If (R, m, K) is excellent, I∗ =
⋂
n(I +mn)∗.

Property (8) shows that tight closure is determined by its behavior on m-primary ideals
in the excellent case.

(9) If (R, m, K) is reduced and excellent, u ∈ I∗ if and only if u is in the tight closure of

IR̂ in R̂ working over R̂.

These properties together show that for a large class of rings, tight closure is determined
by its behavior in complete local rings and, in fact, in complete local domains. Moreover,
in a complete local domain it is determined by its behavior on m-primary ideals.

We next want to give several further characterizations of tight closure, although these
require some additional condition on the ring. For the first of these, we need to discuss

the notion of R+ for a domain R first.

The absolute integral closure R+ of a domain R

Let R be any integral domain (there are no finiteness restrictions, and no restriction on
the characteristic). By an absolute integral closure of R, we mean the integral closure of

R in an algebraic closure of its fraction field. It is immediate that R+ is unique up to
non-unique isomorphism, just as the algebraic closure of a field is.

Consider any domain extension S of R that is integral over R. Then the fraction
field frac (R) is contained in the algebraic closure L of frac (S), and L is also an algebraic
closure for R, since the elements of S are integral over R and, hence, algebraic over frac (R).
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The algebraic closure of R in L is R+. Thus, we have an embedding S ↪→ R+ as R-

algebras. Therefore, R+ is a maximal domain extension of R that is integral over R: this

characterizes R+. It is also clear that (R+)+ = R+. When R = R+ we say that R
is absolutely integrally closed. The reader can easily verify that a domain S is absolutely
integrally closed if and only if every monic polynomial in one variable f ∈ S[x] factors into
monic linear factors over S. It is easy to check that a localization at any multiplicative
system of an absolutely integrally closed domain is absolutely integrally closed, and that a
domain that is a homomorphic image of an absolutely integrally closed domain is absolutely
integrally closed. (A monic polynomial over S/P lifts to a monic polynomial over S, whose
factorization into monic linear factors gives such a factorizaton of the original polynomial
over S/P .)

If S ↪→ T is an extension of domains, the algebraic closure of the fraction field of S
contains an algebraic closure of the fraction field of R. Thus, we have a commutative
diagram

S+ ↪→ T +x x
S ↪→ T

where the vertical maps are inclusions.

If R� S is a surjection of domains, so that S ∼= R/P , by the lying-over theorem there

is a prime ideal Q of R+ lying over P , since R ↪→ R+ is an integral extension. Then

R → R+/Q has kernel Q ∩ R = P , and so we have S ∼= R/P ↪→ R+/Q. Since R+ is

integral over R, R+/Q is integral over R/P ∼= S. But since R+ is absolutely integrally

closed, so is R+/Q. Thus, R+/Q is an integral extenson of S, and is an absolutely

integrally closed domain. It follows that we may identify this extension with S+, and so
we have a commutative diagram

R+ � S+x x
R � S

where both vertical maps are inclusions.

Any homomorphism of domains R→ T factors R� S ↪→ T where S is the image of R
in T . The two facts that we have proved yield a commutative diagram

R+ � S+ ↪→ T +x x x
R � S ↪→ T

where all of the vertical maps are inclusions. Hence:
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Proposition. For any homomorphism R→ T of integral domains there is a commutative
diagram

R+ −→ T +x x
R −→ T

where both vertical maps are inclusions. �

Other characterizations of tight closure

For many purposes it suffices to characterize tight closure in the case of a complete
local domain. Let (R, m, K) be a complete local domain of prime characteristic p > 0.
One can always choose a DVR (V, tV V, L) containing R such that R ⊆ V is local. This
gives a Z-valued valuation nonnegative on R and positive on m. This valuation extends

to a Q-valued valuation on R+. To see this, note that R+ ⊆ V +. V + is a directed
union of module-finite normal local extensions W of V , each of which is a DVR. Let tW
be the generator of the maximal ideal of W . Then tV = thWW α for some positive integer
hW and unit α of W , and we can extend the valuation to W by letting the order of tW be
1/hW . (To construct V in the first place, we may write R as a module-finite extension of a
complete regular local ring (A, mA, K). By the remarks above, it suffices to construct the
required DVR for A. There are many possibilities. One is to define the order of a nonzero
element a ∈ A to be the largest integer k such that u ∈ mk

A. This gives a valuation because
grmAA is a polynomial ring over K, and, in particular, a domain.)

Theorem. Let (R, m, K) be a complete local domain of prime characteristic p > 0, u ∈ R,
and I ⊆ R. Choose a complete DVR (V, mV , L) containing (R, m, K) such that R ⊆ V

is local. Extend the valuation on R given by V to a Q-valued valuation on R+: call this

ord. Then u ∈ I∗ if and only if there exists a sequence of nonzero elements cn ∈ R+ such

that for all n, cnu ∈ IR+ and ord(cn)→ 0 as n→∞.

See Theorem (3.1) of [M. Hochster and C. Huneke, Tight closure and elements of small
order in integral extensions, J. of Pure and Applied Alg. 71 (1991) 233–247].

This is clearly a necessary condition for u to be in the tight closure of I. We have

R1/q ⊆ R∞ ⊆ R+, and in so in the reformulation (#) of the definition of tight closure for

the domain case, one has c1/qu ∈ IR1/q ⊆ IR+ for all sufficiently large q. Since one has

ord (c1/q) =
1

q
ord (c),

we may use the elements c1/q to form the required sequence. What is surprising in the
theorem above is that one can use arbitrary, completely unrelated multipliers in testing
for tight closure, and u is still forced to be in I∗.
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Solid modules and algebras and solid closure

Ler R be any domain. An R-module M is called solid if it has a nonzero R-linear map
M → R. That is, HomR(M, R) 6= 0.

An R-algebra S is called solid if it is solid as an R-module. In this case, we can actually
find an R-linear map θ : S → R such that θ(1) 6= 0. For if θ0 is any nonzero map S →M ,
we can choose s ∈ S such that θ0(s) 6= 0, and then define θ by θ(u) = θ0(su) for all u ∈ S.

When R is a Noetherian domain and M is a finitely generated R-module, the property
of being solid is easy to understand. It simply means that M is not a torsion module over
R. In this case, we can kill the torsion submodule N of M , and the torsion-free module
M/N will embed a free module Rh. One of the coordinate projections πj will be nonzero
on M/N , and the composite

M �M/N ↪→ Rh
πj−→R

will give the required nonzero map.

However, if S is a finitely generated R-algebra it is oftem very difficult to determine
whether M is solid or not.

For those familiar with local cohomology, we note that if (R, m, K) is a complete local
domain of Krull dimension d, then M is solid over R if and only Hd

m(M) 6= 0. Local
cohomology theory will be developed in supplementary lectures, and we will eventually
prove this criterion. This criterion can be used to show the following.

Theorem. Let (R, m, K) be a complete local domain. Then a big Cohen-Macaulay algebra
for R is solid.

We will eventually prove the following characterization of tight closure for complete
local domains. This result begins to show the close connection between tight closure and
the existence of big Cohen-Macaulay algebras.

Theorem. Let (R, m, K) be a complete local domain of prime characteristic p > 0. Let
u ∈ R. Let I ⊆ R be an ideal. The following conditions are equivalent:

(1) u ∈ I∗.

(2) There exists a solid R-algebra S such that u ∈ IS.

(3) There exists a big Cohen-Macaulay algebra S over R such that u ∈ IS.

Of course, (3) ⇒ (2) is immediate from the preceding theorem. Conditions (2) and
(3) are of considerable interest because they characterize tight closure without referrring
to the Frobenius endomorphism, and thereby suggest closure operations not necessarily
in characteristic p > 0 that may be useful. The characterization (2) leads to a notion of
“solid closure” which has many properties of tight closure in dimension at most 2. In equal
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characteristic 0 in dimension 3 and higher it appears to be the wrong notion, in that ideals
of regular rings need not be closed. However, whether solid closure gives a really useful
theory in mixed characteristic in dimension 3 and higher remains mysterious.

The characterization in (3) suggests defining a “big Cohen-Macaulay algebra” closure.
This is promising idea in all characteristics and all dimensions, but the existence of big
Cohen-Macaulay algebras in mixed characteristic and dimension 4 and higher remains
unsettled. One of our goals is to explore what is understood about this problem.
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Math 711: Lecture of September 10, 2007

In order to give our next characterization of tight closure, we need to discuss a theory
of multiplicities suggested by work of Kunz and developed much further by P. Monsky.
We use `(M) for the length of a finite length module M .

Hilbert-Kunz multiplicities

Let (R, m, K) be a local ring, A an m-primary ideal and M a finitely generated nonzero
R-module. The standard theory of multiplicities studies `(M/AnM) as a function of n,
especially for large n. This function, the Hilbert function of M with respect to A, is known
to coincide, for all sufficiently large n, with a polynomial in n whose degree d is the Krull
dimension of M . This polynomial is called the Hilbert polynomial of M with respect to A.

The leading term of this polynomial has the form
e

d!
nd, where e is a positive integer.

In prime characteristic p > 0 one can define another sort of multiplicity by using Frobe-
nius powers instead of ordinary powers.

Theorem (P. Monsky). Let (R, m, K) be a local ring of prime characteristic p > 0 and
let M 6= 0 be a finitely generated R-module of Krull dimension d. Let A be an m-primary
ideal of R. Then there exist a positive real number γ and a positive real constant C such
that

|`(M/A[q]M)− γqd| ≤ Cqd−1

for all q = pe.

One may also paraphrase the conclusion by writing

`(M/A[q]M) = γqd +O(qd−1)

where the vague notation O(qd−1)) is used for a function of q bounded in absolute value by
some fixed positive real number times qd−1. The function e 7→ `(M/A[q]M) is called the
Hilbert-Kunz function of M with respect to A. The real number γ is called the Hilbert-Kunz
multiplicity of M with respect to A. In particular, one can conclude that

γ = lim
q→∞

`(M/A[q]M)

qd
.

Note that this is the behavior one would have if `(M/A[q]M) were eventually a polynomial
of degree d in q with leading term γqd: but this is not true. One often gets functions that
are not polynomial.

When M = R, we shall write γA for the Hilbert-Kunz multiplicity of R with respect to
A.
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Monsky’s proof (cf. [P. Monsky, The Hilbert-Kunz function, Math. Ann. 263 (1983)
43–49]) of the existence of the limit γ is, in a sense, not constructive. He achieves this by

proving that {`(M/A[q]M)

qd
}q is a Cauchy sequence. The limit is only known to be a real

number, not a rational number.

Example. Here is one instance of the non-polynomial behavior of Hilbert-Kunz functions.
Let

R = (Z/5Z)[[W, X, Y, Z]]/(W 4 +X4 + Y 4 + Z4),

with maximal ideal m. Then

`(R/m[5e]) =
168

61
(5e)3 − 107

61
(3e).

See [C. Han and P. Monsky, Some surprising Hilbert-Kunz functions, Math Z. 214 (1983)
119–135.]

Hilbert-Kunz multiplicities give a characterization of tight closure in certain complete
local rings:

Theorem. Let (R, m, K) be a complete local ring of prime characteristic p > 0 that is
reduced and equidimensional. Let A and B be m-primary ideals such that A ⊆ B. Then
B ⊆ A∗ if and only if γA = γB.

This has two immediate corollaries. Suppose that (R, m, K) and A are as in the state-
ment of the Theorem. Then, first, A∗ is the largest ideal B between A and m such that
γB = γA. Second, if u ∈ m, then u ∈ A∗ if and only if γA+Ru = γA. Therefore, the
behavior of Hilbert-Kunz multiplicities determines what tight closure is in the case of a
complete local ring, since one can first reduce to the case of a complete local domain, and
then to the case of an m-primary ideal. This in turn determines the behavior of tight
closure in all algebras essentially of finite type over an excellent local (or semilocal) ring.

We shall spend some effort in these lectures on understanding the behavior of the rings
R+. One of the early motivations for doing so is the following result from [M. Hochster
and C. Huneke, Infinite integral extensions and big Cohen-Macaulay algebras, Annals of
Math. bf 135 (1992) 53–89].

Theorem. Let (R, m, K) be a complete (excellent also suffices) local domain of prime

characteristic p > 0. Then R+ is a big Cohen-Macaulay algebra over R.

Although this result has been stated in terms of the very large ring R+, it can also
be thought of as a theorem entirely about Noetherian rings. Here is another statement,
which is readily seen to be equivalent.
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Theorem. Let (R, m, K) be a complete local domain of prime characteristic p > 0. Let
x1, . . . , xk+1 be part of a system of parameters for R. Suppose that we have a relation
rk+1xk+1 = r1x1 + · · ·+rkxk. Then there is a module-finite extension domain S of R such
that rk+1 ∈ (x1, . . . , xk)S.

The point here is that R+ is the directed union of all module-finite extension domains
S of R.

We should note that this Theorem is not at all true in equal characteristic 0. In fact, if
one has a relation

(∗) rk+1xk+1 = r1x1 + · · ·+ rkxk

on part of a system of parameters in a normal local ring (R, m, K) that contains the
rational numbers Q and rk+1 /∈ (x1, . . . , xk)R, then there does not exist any module-finite
extension S of R such that rk+1 ∈ (x1, . . . , xk)S. In dimension 3 or more there are always
complete normal local domains that are not Cohen-Macaulay. One such example is given
at the bottom of p. 12 and top of p. 13 of the Lecture Notes of September 5. In such a
ring one has relations such as (∗) on a system of parameters with rk+1 /∈ (x1, . . . , xk)R,
and one can never “get rid of” these relations in a module-finite extension domain. Thus,

these relations persist even in R+.

One key point is the following:

Theorem. Let R be a normal domain. Let S be a module-finite extension domain of R
such that the fraction field L of S has degree d over the fraction field K of R. Suppose that
1

d
∈ R, which is automatic if Q ⊆ R. Then

1

d
TraceL/K

gives an R-module retraction of S to R. In particular, for every ideal I of R, IS ∩R = I.

The last statement follows from part (a) of the Proposition on p. 11 of the Lecture
Notes of September 5.

|

Here is an explanation of why trace gives such a retraction. First off, recall that TraceL/K
is defined as follows: if λ ∈ L, multiplication by λ defines a K-linear map L → L. The
value of TraceL/K(λ) is simply the trace of this K-linear endomorphism of L to itself. It
may be computed by choosing any basis v1, . . . , vd for L as a vector space over K. If M is
the matrix of the K-linear map given by multiplication by λ, this trace is simply the sum
of the entries on the main diagonal of this matrix. Its value is independent of the choice
of basis, since a different basis will yield a similar matrix, and the similar matrix will have
the same trace. It is then easy to verify that this gives a K-linear map from L → K.
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Now suppose that s ∈ S. We want to verify that its trace is in R. There are several
ways to argue. We shall give an argument in which we descend to the case where R is
the integral closure of Noetherian domain, and we shall then be able to reduce to the case
where R is a DVR, i.e., a Noetherian valuation domain, which is very easy.

Note that K⊗RS is a localization of S, hence, a domain, and that it is module-finite over
K, so that it is zero-dimensional. Hence, it is a field, and it follows that K⊗RS = L. Hence,
every element of L has a multiple by a nonzero element of R that is in S. In particular, we
can choose a basis s1, . . . , sd for L over K consisting of elements of S. Extend it to a set
of generators s1, . . . , sn for S as an R-module. Without loss of generality we may assume
that s = sn is among them. We shall now construct a new counter-example in which R is
replaced by the integral closure R0 of a Noetherian subdomain and S by

R0s1 + · · ·+R0sn.

To construct R0, note that every sisj is an R-linear combination of s1, . . . , sn. Hence,
for all 1 ≤ i, j ≤ n we have equations

(∗) sisj =
n∑
k=1

rijksk

with all of the rijk in R. For j > d, each sj is a K-linear combination of s1, . . . , sd. By
clearing denominators we obtain equations

(∗∗) rjsj =
d∑
k=1

rjksj

for d < j ≤ n such that every rj ∈ R− {0} and every rjk ∈ R.

Let R1 denote the ring generated over the prime ring (either Z or some finite field Z/pZ)
by all the rijk, rjk, and rj . Of course, R1 is a Noetherian ring. Let R0 be the integral
closure of R1 in its fraction field. (It is possible to show that R0 is Noetherian, but we
don’t need this fact.) Now let S0 = R0s1 + · · ·+R0sn, which is evidently generated as an
R0-module by s1, . . . , sn. The equations (∗) hold over R0, and so S0 is a subring of S. It
is module-finite over R0. The equations (∗∗) hold over R0, and sd+1, . . . , sn are linearly
dependent on s1, . . . , sd over the fraction field K0 of R0. Finally, s1, . . . , sd are linearly
independent over K0, since this is true even over K. Hence, s1, . . . , sd is a vector space
basis for L0 over K0.

The matrix of multiplication by s = sn with respect to the basis s1, . . . , sd is the same
as in the calculation of the trace of s from L to K. This trace is not in R0, since it is not
in R. We therefore have a new counterexample in which R0 is the integral closure of the
Noetherian ring R1. By the Theorem near the bottom of the first page of the Lecture Notes
of September 13 from Math 711, Fall 2006, R0 is an intersection of Noetherian valuation
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domains that lie between R0 and K0. Hence, we can choose such a valuation domain V
that does not contain the trace of s. We replace R0 by V and S0 by

T = V s1 + · · ·+ V sn,

which gives a new counter-example in which the smaller ring is a DVR. The proof that T
is a ring module-finite over V with module generators s1, . . . , sn such that a basis for the
field extension is s1, . . . , sd is the same as in the earlier argument when we replaced R by
R0. Likewise, the trace of s with respect to the two new fraction fields is not affected. In
fact, we can use any integrally closed ring in between R0 and R.

Consequently, we may assume without loss of generality that R = V is a DVR. Since S
is a finitely generated torsion-free R-module and R is a principal ideal domain, S is free as
R-module. Therefore, we may choose s1, . . . , sd ∈ S to be a free basis for S over R, and
it will also be a basis for L over K. The matrix for multiplication by s then has entries in
R. It follows that its trace is in R, as required. �

Corollary. Let R be a normal domain containing the rational numbers Q. Let S be an
extension ring of R, not necessarily a domain.

(a) If S is module-finite over R, then R is a direct summand of S.

(b) If S is integral over R, then for every ideal I of R, IS ∩R = I.

Proof. For part (a), we may choose a minimal prime P of S disjoint from the multiplicative
system R−{0} ⊆ S. Then R→ S → S/P is module-finite over R, and since P ∩R = {0},
ι : R ↪→ S/P is injective. By the result just proved, R is a direct summand of S/P :
let θ : S/P → R be a splitting, so that θ ◦ ι is the identity on R. Then the composite
S → S/P

θ−→R splits the map R→ S.

For the second part, suppose that r ∈ R and r ∈ IS. Then there exist f1, . . . , fh ∈ I
and s1, . . . , sh ∈ S such that

r = f1s1 + · · ·+ fhsh.

Let S1 = R[s1, . . . , sh]. Then S1 is module-finite over R, and so by part (a), R is a direct
summand of S1. But we still have that r ∈ IS1 ∩R, and so by part (a) of the Proposition
on p. 11 of the Lecture Notes of September 5, we have that r ∈ I. �

|

The fact that ideals of normal rings containing Q are contracted from integral extensions
may seem to be an advantage. But the failure of this property in characteristic p > 0,
which, in fact, enables one to use module-finite extensions to get rid of relations on systems
of parameters, is perhaps an even bigger advantage of working in positive characteristic.

Note that the result on homomorphisms of plus closures of rings given in the Proposition
at the top of p. 10 of the Lecture Notes of September 7 then yields:
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Theorem. Let R → S be a local homomorphism of complete local domains of prime
characteristic p > 0. Then there is a commutative diagram:

B −−−−→ Cx x
R −−−−→ S

such that B is a big Cohen-Macaulay algebra over R and C is a big Cohen-Macaulay
algebra over S.

The point is that one can take B = R+ and C = S+, and then one has the required
map B → C by the Proposition cited just before the statement of the Theorem. The
same result can be proved in equal characteristic 0, but the proof depends on reduction
to characteristic p > 0. When we discussed the existence of “sufficiently many big Cohen-
Macaulay algebras” in mixed characteristic, it is this sort of result that we had in mind.

The following result of Karen Smith [K. E. Smith, Tight Closure of Parameter Ideals,
Inventiones Math. 115 (1994) 41–60] (which also contains a form of the result when the
ring is not necessarily local) may be viewed as providing another connection between big
Cohen-Macaulay algebras and tight closure.

Theorem. Let R be a complete (or excellent) local domain and let I be an ideal generated

by part of a system of parameters for R. Then I∗ = IR+ ∩R.

Property (3) stated on p. 7 of the Lecture Notes of September 7 implies that IR+∩R ⊆
I∗, since R+ is a directed union of module-finite extension domains S. The converse for
parameter ideals is a difficult theorem.

This result suggests defining a closure operation on ideals of any domain R as follows:

the plus closure of I is IR+ ∩ R. This plus closure is denoted I+. Thus, plus closure
coincides with tight closure for parameters ideals in excellent local domains of characteristic
p > 0. Note that plus closure is not very interesting in equal characteristic 0, for if I is an
ideal of a normal ring R that contains the rationals, I+ = I.

It is very easy to show that plus closure commutes with localization. Thus, if it were
true in general that plus closure agrees with tight closure, it would follow that tight closure
commutes with localization. However, recent work of H. Brenner and others suggests that
tight closure does not commute with localization in general, and that tight closure is not
the same as plus closure in general. This is not yet proved, however.

Recently, the Theorem that R+ is a big Cohen-Macaulay algebra when (R, m, K) is an
excellent local domain of prime characteristic p > 0 has been strengthened by C. Huneke
and G. Lyubeznik. See [C. Huneke and G. Lyubeznik, Absolute integral closure in positive
characteristic, Advances in Math. 210 (2007) 498–504]. Roughly speaking, the original
version provides a module-finite extension domain S of R that trivializes one given relation
on parameters. The Huneke-Lyubeznik result provides a module-finite extension S that
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simultaneously trivializes all relations on all systems of parameters in the original ring.
Their hypothesis is somewhat different. R need not be excellent: instead, it is assumed
that R is a homomorphic image of a Gorenstein ring. Note, however, that the new ring S
need not be Cohen-Macaulay: new relations on parameters may have been introduced.

The arguments of Huneke and Lyubeznik give a global result. The ring need not be
assumed local. Under mild hypotheses, in characteristic p, the Noetherian domain R has
a module finite extension S such that for every local ring RP of R, all of the relations on
all systems of parameters in RP become trivial in SP . In order to prove this result, we
need to develop some local cohomology theory.

Finally, we want to mention the following result of Ray Heitmann, referred to earlier.

Theorem (R. Heitmann). Let R be a complete local domain of mixed characteristic p.
Let x, y, z be a system of parameters for R. Suppose that rz ∈ (x, y)R. Then for every

N ∈ N, p1/Nr ∈ (x, y)R+.

See [R. C. Heitmann, The direct summand conjecture in dimension three, Annals of
Math. 156 (2002) 695–712].

The condition satisfied by r in this Theorem bears a striking resemblance to one of our
characterizations of tight closure: see condition (#) near the bottom of p. 6 of the Lecture
Notes of September 6. In a way, it is very different: in tight closure theory, the element c
is anything but p, which is 0. Heitmann later proved (cf. [R. C. Heitmann, Extended plus
closure and colon-capturing, J. Algebra 293 (2005) 407–426]) that in the Theorem above,

one can use any element of R+, not just p. The entire maximal ideal of R+ multiplies r

into (x, y)R+.

Heitmann’s result stated in the Theorem above already suffices to prove the existence
of big Cohen-Macaulay algebras in dimension 3 in mixed characteristic: see [M. Hochster,
Big Cohen-Macaulay algebras in dimension three via Heitmann’s theorem, J. Algebra 254
(2002) 395–408].

It is possible that, for a complete local domain R of dimension 3 and mixed character-

istic, R+ is a big Cohen-Macaulay algebra. This is an open question.

It is also an open question whether an analogue of Heitmann’s theorem holds in complete
local domains of mixed characteristic in higher dimension. We shall further discuss these
issues later.
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Math 711: Lecture of September 10, 2007

In order to give our next characterization of tight closure, we need to discuss a theory
of multiplicities suggested by work of Kunz and developed much further by P. Monsky.
We use `(M) for the length of a finite length module M .

Hilbert-Kunz multiplicities

Let (R, m, K) be a local ring, A an m-primary ideal and M a finitely generated nonzero
R-module. The standard theory of multiplicities studies `(M/AnM) as a function of n,
especially for large n. This function, the Hilbert function of M with respect to A, is known
to coincide, for all sufficiently large n, with a polynomial in n whose degree d is the Krull
dimension of M . This polynomial is called the Hilbert polynomial of M with respect to A.

The leading term of this polynomial has the form
e

d!
nd, where e is a positive integer.

In prime characteristic p > 0 one can define another sort of multiplicity by using Frobe-
nius powers instead of ordinary powers.

Theorem (P. Monsky). Let (R, m, K) be a local ring of prime characteristic p > 0 and
let M 6= 0 be a finitely generated R-module of Krull dimension d. Let A be an m-primary
ideal of R. Then there exist a positive real number γ and a positive real constant C such
that

|`(M/A[q]M)− γqd| ≤ Cqd−1

for all q = pe.

One may also paraphrase the conclusion by writing

`(M/A[q]M) = γqd +O(qd−1)

where the vague notation O(qd−1)) is used for a function of q bounded in absolute value by
some fixed positive real number times qd−1. The function e 7→ `(M/A[q]M) is called the
Hilbert-Kunz function of M with respect to A. The real number γ is called the Hilbert-Kunz
multiplicity of M with respect to A. In particular, one can conclude that

γ = lim
q→∞

`(M/A[q]M)

qd
.

Note that this is the behavior one would have if `(M/A[q]M) were eventually a polynomial
of degree d in q with leading term γqd: but this is not true. One often gets functions that
are not polynomial.

When M = R, we shall write γA for the Hilbert-Kunz multiplicity of R with respect to
A.
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Monsky’s proof (cf. [P. Monsky, The Hilbert-Kunz function, Math. Ann. 263 (1983)
43–49]) of the existence of the limit γ is, in a sense, not constructive. He achieves this by

proving that {`(M/A[q]M)

qd
}q is a Cauchy sequence. The limit is only known to be a real

number, not a rational number.

Example. Here is one instance of the non-polynomial behavior of Hilbert-Kunz functions.
Let

R = (Z/5Z)[[W, X, Y, Z]]/(W 4 +X4 + Y 4 + Z4),

with maximal ideal m. Then

`(R/m[5e]) =
168

61
(5e)3 − 107

61
(3e).

See [C. Han and P. Monsky, Some surprising Hilbert-Kunz functions, Math Z. 214 (1983)
119–135.]

Hilbert-Kunz multiplicities give a characterization of tight closure in certain complete
local rings:

Theorem. Let (R, m, K) be a complete local ring of prime characteristic p > 0 that is
reduced and equidimensional. Let A and B be m-primary ideals such that A ⊆ B. Then
B ⊆ A∗ if and only if γA = γB.

This has two immediate corollaries. Suppose that (R, m, K) and A are as in the state-
ment of the Theorem. Then, first, A∗ is the largest ideal B between A and m such that
γB = γA. Second, if u ∈ m, then u ∈ A∗ if and only if γA+Ru = γA. Therefore, the
behavior of Hilbert-Kunz multiplicities determines what tight closure is in the case of a
complete local ring, since one can first reduce to the case of a complete local domain, and
then to the case of an m-primary ideal. This in turn determines the behavior of tight
closure in all algebras essentially of finite type over an excellent local (or semilocal) ring.

We shall spend some effort in these lectures on understanding the behavior of the rings
R+. One of the early motivations for doing so is the following result from [M. Hochster
and C. Huneke, Infinite integral extensions and big Cohen-Macaulay algebras, Annals of
Math. bf 135 (1992) 53–89].

Theorem. Let (R, m, K) be a complete (excellent also suffices) local domain of prime

characteristic p > 0. Then R+ is a big Cohen-Macaulay algebra over R.

Although this result has been stated in terms of the very large ring R+, it can also
be thought of as a theorem entirely about Noetherian rings. Here is another statement,
which is readily seen to be equivalent.
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Theorem. Let (R, m, K) be a complete local domain of prime characteristic p > 0. Let
x1, . . . , xk+1 be part of a system of parameters for R. Suppose that we have a relation
rk+1xk+1 = r1x1 + · · ·+rkxk. Then there is a module-finite extension domain S of R such
that rk+1 ∈ (x1, . . . , xk)S.

The point here is that R+ is the directed union of all module-finite extension domains
S of R.

We should note that this Theorem is not at all true in equal characteristic 0. In fact, if
one has a relation

(∗) rk+1xk+1 = r1x1 + · · ·+ rkxk

on part of a system of parameters in a normal local ring (R, m, K) that contains the
rational numbers Q and rk+1 /∈ (x1, . . . , xk)R, then there does not exist any module-finite
extension S of R such that rk+1 ∈ (x1, . . . , xk)S. In dimension 3 or more there are always
complete normal local domains that are not Cohen-Macaulay. One such example is given
at the bottom of p. 12 and top of p. 13 of the Lecture Notes of September 5. In such a
ring one has relations such as (∗) on a system of parameters with rk+1 /∈ (x1, . . . , xk)R,
and one can never “get rid of” these relations in a module-finite extension domain. Thus,

these relations persist even in R+.

One key point is the following:

Theorem. Let R be a normal domain. Let S be a module-finite extension domain of R
such that the fraction field L of S has degree d over the fraction field K of R. Suppose that
1

d
∈ R, which is automatic if Q ⊆ R. Then

1

d
TraceL/K

gives an R-module retraction of S to R. In particular, for every ideal I of R, IS ∩R = I.

The last statement follows from part (a) of the Proposition on p. 11 of the Lecture
Notes of September 5.

|

Here is an explanation of why trace gives such a retraction. First off, recall that TraceL/K
is defined as follows: if λ ∈ L, multiplication by λ defines a K-linear map L → L. The
value of TraceL/K(λ) is simply the trace of this K-linear endomorphism of L to itself. It
may be computed by choosing any basis v1, . . . , vd for L as a vector space over K. If M is
the matrix of the K-linear map given by multiplication by λ, this trace is simply the sum
of the entries on the main diagonal of this matrix. Its value is independent of the choice
of basis, since a different basis will yield a similar matrix, and the similar matrix will have
the same trace. It is then easy to verify that this gives a K-linear map from L → K.
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Now suppose that s ∈ S. We want to verify that its trace is in R. There are several
ways to argue. We shall give an argument in which we descend to the case where R is
the integral closure of Noetherian domain, and we shall then be able to reduce to the case
where R is a DVR, i.e., a Noetherian valuation domain, which is very easy.

Note that K⊗RS is a localization of S, hence, a domain, and that it is module-finite over
K, so that it is zero-dimensional. Hence, it is a field, and it follows that K⊗RS = L. Hence,
every element of L has a multiple by a nonzero element of R that is in S. In particular, we
can choose a basis s1, . . . , sd for L over K consisting of elements of S. Extend it to a set
of generators s1, . . . , sn for S as an R-module. Without loss of generality we may assume
that s = sn is among them. We shall now construct a new counter-example in which R is
replaced by the integral closure R0 of a Noetherian subdomain and S by

R0s1 + · · ·+R0sn.

To construct R0, note that every sisj is an R-linear combination of s1, . . . , sn. Hence,
for all 1 ≤ i, j ≤ n we have equations

(∗) sisj =
n∑
k=1

rijksk

with all of the rijk in R. For j > d, each sj is a K-linear combination of s1, . . . , sd. By
clearing denominators we obtain equations

(∗∗) rjsj =
d∑
k=1

rjksj

for d < j ≤ n such that every rj ∈ R− {0} and every rjk ∈ R.

Let R1 denote the ring generated over the prime ring (either Z or some finite field Z/pZ)
by all the rijk, rjk, and rj . Of course, R1 is a Noetherian ring. Let R0 be the integral
closure of R1 in its fraction field. (It is possible to show that R0 is Noetherian, but we
don’t need this fact.) Now let S0 = R0s1 + · · ·+R0sn, which is evidently generated as an
R0-module by s1, . . . , sn. The equations (∗) hold over R0, and so S0 is a subring of S. It
is module-finite over R0. The equations (∗∗) hold over R0, and sd+1, . . . , sn are linearly
dependent on s1, . . . , sd over the fraction field K0 of R0. Finally, s1, . . . , sd are linearly
independent over K0, since this is true even over K. Hence, s1, . . . , sd is a vector space
basis for L0 over K0.

The matrix of multiplication by s = sn with respect to the basis s1, . . . , sd is the same
as in the calculation of the trace of s from L to K. This trace is not in R0, since it is not
in R. We therefore have a new counterexample in which R0 is the integral closure of the
Noetherian ring R1. By the Theorem near the bottom of the first page of the Lecture Notes
of September 13 from Math 711, Fall 2006, R0 is an intersection of Noetherian valuation
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domains that lie between R0 and K0. Hence, we can choose such a valuation domain V
that does not contain the trace of s. We replace R0 by V and S0 by

T = V s1 + · · ·+ V sn,

which gives a new counter-example in which the smaller ring is a DVR. The proof that T
is a ring module-finite over V with module generators s1, . . . , sn such that a basis for the
field extension is s1, . . . , sd is the same as in the earlier argument when we replaced R by
R0. Likewise, the trace of s with respect to the two new fraction fields is not affected. In
fact, we can use any integrally closed ring in between R0 and R.

Consequently, we may assume without loss of generality that R = V is a DVR. Since S
is a finitely generated torsion-free R-module and R is a principal ideal domain, S is free as
R-module. Therefore, we may choose s1, . . . , sd ∈ S to be a free basis for S over R, and
it will also be a basis for L over K. The matrix for multiplication by s then has entries in
R. It follows that its trace is in R, as required. �

Corollary. Let R be a normal domain containing the rational numbers Q. Let S be an
extension ring of R, not necessarily a domain.

(a) If S is module-finite over R, then R is a direct summand of S.

(b) If S is integral over R, then for every ideal I of R, IS ∩R = I.

Proof. For part (a), we may choose a minimal prime P of S disjoint from the multiplicative
system R−{0} ⊆ S. Then R→ S → S/P is module-finite over R, and since P ∩R = {0},
ι : R ↪→ S/P is injective. By the result just proved, R is a direct summand of S/P :
let θ : S/P → R be a splitting, so that θ ◦ ι is the identity on R. Then the composite
S → S/P

θ−→R splits the map R→ S.

For the second part, suppose that r ∈ R and r ∈ IS. Then there exist f1, . . . , fh ∈ I
and s1, . . . , sh ∈ S such that

r = f1s1 + · · ·+ fhsh.

Let S1 = R[s1, . . . , sh]. Then S1 is module-finite over R, and so by part (a), R is a direct
summand of S1. But we still have that r ∈ IS1 ∩R, and so by part (a) of the Proposition
on p. 11 of the Lecture Notes of September 5, we have that r ∈ I. �

|

The fact that ideals of normal rings containing Q are contracted from integral extensions
may seem to be an advantage. But the failure of this property in characteristic p > 0,
which, in fact, enables one to use module-finite extensions to get rid of relations on systems
of parameters, is perhaps an even bigger advantage of working in positive characteristic.

Note that the result on homomorphisms of plus closures of rings given in the Proposition
at the top of p. 10 of the Lecture Notes of September 7 then yields:
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Theorem. Let R → S be a local homomorphism of complete local domains of prime
characteristic p > 0. Then there is a commutative diagram:

B −−−−→ Cx x
R −−−−→ S

such that B is a big Cohen-Macaulay algebra over R and C is a big Cohen-Macaulay
algebra over S.

The point is that one can take B = R+ and C = S+, and then one has the required
map B → C by the Proposition cited just before the statement of the Theorem. The
same result can be proved in equal characteristic 0, but the proof depends on reduction
to characteristic p > 0. When we discussed the existence of “sufficiently many big Cohen-
Macaulay algebras” in mixed characteristic, it is this sort of result that we had in mind.

The following result of Karen Smith [K. E. Smith, Tight Closure of Parameter Ideals,
Inventiones Math. 115 (1994) 41–60] (which also contains a form of the result when the
ring is not necessarily local) may be viewed as providing another connection between big
Cohen-Macaulay algebras and tight closure.

Theorem. Let R be a complete (or excellent) local domain and let I be an ideal generated

by part of a system of parameters for R. Then I∗ = IR+ ∩R.

Property (3) stated on p. 7 of the Lecture Notes of September 7 implies that IR+∩R ⊆
I∗, since R+ is a directed union of module-finite extension domains S. The converse for
parameter ideals is a difficult theorem.

This result suggests defining a closure operation on ideals of any domain R as follows:

the plus closure of I is IR+ ∩ R. This plus closure is denoted I+. Thus, plus closure
coincides with tight closure for parameters ideals in excellent local domains of characteristic
p > 0. Note that plus closure is not very interesting in equal characteristic 0, for if I is an
ideal of a normal ring R that contains the rationals, I+ = I.

It is very easy to show that plus closure commutes with localization. Thus, if it were
true in general that plus closure agrees with tight closure, it would follow that tight closure
commutes with localization. However, recent work of H. Brenner and others suggests that
tight closure does not commute with localization in general, and that tight closure is not
the same as plus closure in general. This is not yet proved, however.

Recently, the Theorem that R+ is a big Cohen-Macaulay algebra when (R, m, K) is an
excellent local domain of prime characteristic p > 0 has been strengthened by C. Huneke
and G. Lyubeznik. See [C. Huneke and G. Lyubeznik, Absolute integral closure in positive
characteristic, Advances in Math. 210 (2007) 498–504]. Roughly speaking, the original
version provides a module-finite extension domain S of R that trivializes one given relation
on parameters. The Huneke-Lyubeznik result provides a module-finite extension S that
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simultaneously trivializes all relations on all systems of parameters in the original ring.
Their hypothesis is somewhat different. R need not be excellent: instead, it is assumed
that R is a homomorphic image of a Gorenstein ring. Note, however, that the new ring S
need not be Cohen-Macaulay: new relations on parameters may have been introduced.

The arguments of Huneke and Lyubeznik give a global result. The ring need not be
assumed local. Under mild hypotheses, in characteristic p, the Noetherian domain R has
a module finite extension S such that for every local ring RP of R, all of the relations on
all systems of parameters in RP become trivial in SP . In order to prove this result, we
need to develop some local cohomology theory.

Finally, we want to mention the following result of Ray Heitmann, referred to earlier.

Theorem (R. Heitmann). Let R be a complete local domain of mixed characteristic p.
Let x, y, z be a system of parameters for R. Suppose that rz ∈ (x, y)R. Then for every

N ∈ N, p1/Nr ∈ (x, y)R+.

See [R. C. Heitmann, The direct summand conjecture in dimension three, Annals of
Math. 156 (2002) 695–712].

The condition satisfied by r in this Theorem bears a striking resemblance to one of our
characterizations of tight closure: see condition (#) near the bottom of p. 6 of the Lecture
Notes of September 6. In a way, it is very different: in tight closure theory, the element c
is anything but p, which is 0. Heitmann later proved (cf. [R. C. Heitmann, Extended plus
closure and colon-capturing, J. Algebra 293 (2005) 407–426]) that in the Theorem above,

one can use any element of R+, not just p. The entire maximal ideal of R+ multiplies r

into (x, y)R+.

Heitmann’s result stated in the Theorem above already suffices to prove the existence
of big Cohen-Macaulay algebras in dimension 3 in mixed characteristic: see [M. Hochster,
Big Cohen-Macaulay algebras in dimension three via Heitmann’s theorem, J. Algebra 254
(2002) 395–408].

It is possible that, for a complete local domain R of dimension 3 and mixed character-

istic, R+ is a big Cohen-Macaulay algebra. This is an open question.

It is also an open question whether an analogue of Heitmann’s theorem holds in complete
local domains of mixed characteristic in higher dimension. We shall further discuss these
issues later.
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Math 711: Lecture of September 12, 2007

In our treatment of tight closure for modules it will be convenient to use the Frobenius
functors, which we view as special cases of base change. We first review some basic facts
about base change.

Base change

If f : R → S is an ring homomorphism, there is a base change functor S ⊗R from
R-modules to S-modules. It takes the R-module M to the R-module S⊗RM and the map
h : M → N to the unique S-linear map S ⊗RM → S ⊗R N that sends s⊗ u 7→ s⊗ h(u)
for all s ∈ S and u ∈ M . This map may be denoted 1S ⊗R h or S ⊗R h. Evidently, base
change from R to S is a covariant functor. We shall temporarily denote this functor as
BR→S . It also has the following properties.

(1) Base change takes R to S.

(2) Base change commutes with arbitrary direct sums and with arbitrary direct limits.

(3) Base change takes Rn to Sn and free modules to free modules.

(4) Base change takes projective R-modules to projective S-modules.

(5) Base change takes flat R-modules to flat S-modules.

(6) Base change is right exact: if

M ′ →M →M ′′ → 0

is exact, then so is

S ⊗RM ′ → S ⊗RM → S ⊗RM ′′ → 0.

(7) Base change takes finitely generated modules to finitely generated modules: the num-
ber of generators does not increase.

(8) Base change takes the cokernel of the matrix
(
rij
)

to the cokernel of the matrix(
f(rij)

)
.

(9) Base change takes R/I to S/IS.

(10) For every R-module M there is a natural R-lineaar map M → S ⊗M that sends
u 7→ 1⊗ u. More precisely, R-linearity means that ru 7→ g(r)(1⊗ u) = g(r)⊗ u for all
r ∈ R and u ∈M .

(11) Given homomorphisms R → S and S → T , the base change functor BR→T for the
composite homomorphism R→ T is the composition BS→T ◦ BR→S .
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Part (1) is immediate from the definition. Part (2) holds because tensor product com-
mutes with arbitrary direct sums and arbitrary direct limits. Part (3) is immediate from
parts (1) and (2). If P is a projective R-module, one can choose Q such that P ⊕Q is free.
Then (S⊗RP )⊕(S⊗RQ) is free over S, and it follows that both direct summands are pro-
jective over S. Part (5) follows because if M is an R-module, the functor (S ⊗RM)⊗S
on S-modules may be identified with the functor M ⊗R on S-modules. We have

(S ⊗RM)⊗S U ∼= (M ⊗R S)⊗S U ∼= M ⊗RM,

by the associativity of tensor. Part (6) follows from the corresponding general fact for
tensor products. Part (7) is immediate, for if M is finitely generated by n elements, we
have a surjection Rn � M , and this yields Sn � S ⊗R M . Part (8) is immediate from
part (6), and part (9) is a consequence of (6) as well. (10) is completely straightforward,
and (11) follows at once from the associativity of tensor products.

The Frobenius functors

Let R be a ring of prime characteristic p > 0. The Frobenius or Peskine-Szpiro functor
FR from R-modules to R-modules is simply the base change functor for f : R → S when
S = R and the homomorphism f : R → S is the Frobenius endomorphism F : R → R,
i.e, F (r) = rp for all r ∈ R. We may take the e-fold iterated composition of this functor
with itself, which we denote FeR. This is the same as the base change functor for the

homomorphism F e : R → R, where F e(r) = rp
e

for all r ∈ R, by the iterated application
of (11) above. When the ring is clear from context, the subscript R is omitted, and we
simply write F or Fe.

We then have, from the corresponding facts above:

(1) Fe(R) = R.

(2) Fe commutes with arbitrary direct sums and with arbitrary direct limits.

(3) Fe(Rn) = Rn and Fe takes free modules to free modules.

(4) Fe takes projective R-modules to projective R-modules.

(5) Fe takes flat R-modules to flat R-modules.

(6) Fe is right exact: if

M ′ →M →M ′′ → 0

is exact, then so is

Fe(M ′)→ Fe(M)→ Fe(M ′′)→ 0.

(7) Fe takes finitely generated modules to finitely generated modules: the number of
generators does not increase.

(8) Fe takes the cokernel of the matrix
(
rij
)

to the cokernel of the matrix
(
rp
e

ij

)
.
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(9) Fe takes R/I to R/I [q]R.

By part (10) in the list of properties of base change, for every R-module M there is a
natural map M → Fe(M). We shall use uq to denote the image of u under this map, which
agrees with usual the usual notation when M = R. R-linearity then takes the following
form:

(10) For every R-module M the natural map M → Fe(M) is such that for all r ∈ R and
all u ∈M , (ru)q = rquq.

We also note the following: given a homomorphism g : R → S of rings of prime
characteristic p > 0, we always have that g ◦ F eR = F eS ◦ g. In fact, all this says is that
g(rq) = g(r)q for all r ∈ R. This yields a corresponding isomorphism of compositions of
base change functors:

(11) Let R→ S be a homomorphism of rings of prime characteristic p > 0. Then for every
R-module M , there is an identification S ⊗R FeR(M) ∼= FeS(S ⊗R M) that is natural
in the R-module M .

When N ⊆M the map Fe(N)→ Fe(M) need not be injective. We denote that image

of this map by N [q] or, more precisely, by N
[q]
M . However, one should keep in mind that

N [q] is a submodule of Fe(M), not of M itself. It is very easy to see that N [q] is the
R-span of the elements of Fe(M) of the form uq for u ∈ N . The module N [q] is also the
R-span of the elements uqλ as uλ runs through any set of generators for N .

A very important special case is when M = R and N = I, an ideal of R. In this

situation, I
[q]
R is the same as I [q] as defined earlier. What happens here is atypical, because

F e(R) = R for all e.

Tight closure for modules

Let R be a Noetherian ring of prime characteristic p > 0. If N ⊆M , we define the tight
closure N∗M of N in M to consist of all elements u ∈M such that for some c ∈ R◦,

cuq ∈ N [q]
M ⊆ F

e(M)

for all q � 0. Evidently, this agrees with our definition of tight closure for an ideal I,
which is the case where M = R and N = I. If M is clear from context, the subscript M

is omitted, and we write N∗ for N∗M . Notice that we have not assumed that M or N is
finitely generated. The theory of tight closure in Artinian modules is of very great interest.
Note that c may depend on M , N , and even u. However, c is not permitted to depend on
q. Here are some properties of tight closure:

Proposition. Let R be a Noetherian ring of prime characteristic p > 0, and let N, M ,
and Q be R-modules.

(a) N∗M is an R-module.
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(b) If N ⊆M ⊆ Q are R-modules, then N∗Q ⊆M∗Q and N∗M ⊆ N∗Q.

(c) If Nλ ⊆ Mλ is any family of inclusions, and N =
⊕

λNλ ⊆
⊕

λMλ = M , then
N∗M =

⊕
λ(N∗λ)Mλ

.

(d) If R is a finite product of rings R1 × · · · × Rn, Ni ⊆ Mi are Ri-modules, 1 ≤ i ≤ n,
M is the R-module M1 × · · · ×Mn, and N ⊆ M is N1 × · · · ×Nn, then N∗M may be
identify with (N1)∗M1

× · · · × (Nn)∗Mn
.

(e) If I is an ideal of R, I∗N∗M ⊆ (IN)∗M .

(f) If N ⊆ M and V ⊆ W are R-modules and h : M → W is an R-linear map such that
h(N) ⊆ V , then h(N∗M ) ⊆ V ∗W .

Proof. (a) Let c, c′ ∈ R◦. If cuq ∈ N [q] for q ≥ q0, then c(ru)q ∈ N [q] for q ≥ q0. If
c′vq ∈ Nq for q ≥ q1 then (cc′)(u+ v)q ∈ N [q] for q ≥ max{q0, q1}.

(b) The first statment holds because we have that N
[q]
Q ⊆M

[q]
Q for all q, and the second

because the map F e(M)→ F e(Q) carries N
[q]
M into N

[q]
Q .

(c) is a straightforward application of the fact that tensor product commutes with direct
sum and the definition of tight closure. Keep in mind that every element of the direct sum
has nonzero components from only finitely many of the modules.

(d) is clear: note that (R1 × · · · ×Rn)◦ = R◦1 × · · · ×R◦n.

(e) If c, c′ ∈ R◦, cfq ∈ I [q] for q � 0, and c′u[q] ∈ N [q] for q � 0, then (cc′)(fu)q =
(cfq)(c′uq) ∈ I [q]N [q] for q � 0, and I [q]N [q] = (IN)[q] for every q.

(f) This argument is left as an exercise. �

Let R and S be Noetherian rings of prime characteristic p > 0. We will frequently be in
the situation where we want to study the effect of base change on tight closure. For this
purpose, when N ⊆M are R-modules, it will be convenient to use the notation 〈S ⊗R N〉
for the image of S ⊗RN in S ⊗RM . Of course, one must know what the map N ↪→M is,
not just what N is, to be able to interpret this notation. Therefore, we may also use the
more informative notation 〈S ⊗R N〉M in cases where it is not clear what M is. Note that
in the case where M = R and N = I ⊆ R, 〈S ⊗R I〉 = IS, the expansion of I to S. More
generally, if N ⊆ G, where G is free, we may write NS for 〈S ⊗R N〉G ⊆ S ⊗G, and refer
to NS as the expansion of N , by analogy with the ideal case.

Proposition. Let R→ S be a homomorphism of Noetherian rings of prime characteristic
p > 0 such that R◦ maps into S◦. In particular, this hypothesis holds (1) if R ⊆ S are
domains, (2) if R→ S is flat, or if (3) S = R/P where P is a minimal prime of S. Then
for all modules N ⊆M , 〈S ⊗R N∗M 〉M ⊆ (〈S ⊗R N〉M )∗S⊗RM .

Proof. It suffices to show that if u ∈ N∗ then 1⊗ u ∈ 〈S ⊗R N〉∗. Since the image of c is

in S◦, this follows because c(1⊗ uq) = 1⊗ cuq ∈ 〈S ⊗R N [q]〉 = 〈S ⊗R N〉[q].
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The statement about when the hypothesis holds is easily checked: the only case that is
not immediate from the definition is when R→ S is flat. This can be checked by proving
that every minimal prime Q of S lies over a minimal prime P of R. But the induced map
of localizations RP → SQ is faithfully flat, and so injective, and QSQ is nilpotent, which
shows that PRP is nilpotent. �

Tight closure, like integral closure, can be checked modulo every minimal prime of R.

Theorem. Let R be a Noetherian ring of prime characteristic p > 0. Let P1, . . . , Pn be
the minimal primes of R. Let Di = R/Pi. Let N ⊆M be R-modules, and let u ∈M . Let
Mi = Di ⊗R M = M/PiM , and let Ni = 〈Di ⊗R N〉. Let ui be the image of u in Mi.
Then u ∈ N∗M over R if and only if for all i, 1 ≤ i ≤ n, ui ∈ (Ni)

∗
Mi

over Di.

If M = R and N = I, we have that u ∈ I∗ if and only if the image of u in Di is in
(IDi)

∗ in Di, working over Di, for all i, 1 ≤ i ≤ n.

Proof. The final statement is just a special case of the Theorem. The “only if” part follows
from the preceding Proposition. It remains to prove that if u is in the tight closure modulo
every Pi, then it is in the tight closure. This means that for every i there exists ci ∈ R−Pi
such that for all q � 0, ciu

q ∈ N [q] + PiF
e(M), since Fe(M/PiM) working over Di may

be identified with Fe(M)/PiFe(M). Choose di so that it is in all the Pj except Pi. Let
J be the intersection of the Pi, which is the ideal of all nilpotents. Then for all i and all
q � 0,

(∗i) diciu
q ∈ N [q] + JF e(M),

since every diPi ⊆ J .

Then c =
∑n
i=1 dici cannot be contained in the union of Pi, since for all i the i th term

in the sum is contained in all of the Pj except Pi. Adding the equations (∗i) yields

cuq ∈ N [q] + JF e(M)

for all q � 0, say for all q ≥ q0. Choose q1 such that J [q1] = 0. Then cq1uqq1 ∈ N [qq1] for
all q ≥ q0, which implies that cquq ∈ N [q] for all q ≥ q1q0. �

Let R have minimal primes P1, . . . , Pn, and let J = P! ∩ · · · ∩Pn, the ideal of nilpotent
elements of R, so that Rred = R/J . The minimal primes of R/J are the ideals Pi/J , and
for every i, Rred/(Pi/J) ∼= R/Pi. Hence:

Corollary. Let R be a Noetherian ring of prime characteristic p > 0, and let J be the ideal
of all nilpotent elements of R. Let N ⊆ M be R-modules, and let u ∈ M . Then u ∈ N∗M
if and only if the image of u in M/JM is in 〈N/J〉∗M/JM working over Rred = R/J .

We should point out that it is easy to prove the result of the Corollary directly without
using the preceding Theorem.

We also note the following easy fact:
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Proposition. Let R be a Noetherian ring of prime characteristic p > 0. Let N ⊆ M be
R-modules. If u ∈ N∗M , then for all q0 = pe0 , uq0 ∈ (N [q0])∗Fe0 (M).

Proof. This is immediate from the fact that (N [q0])[q] ⊆ Fe
(
Fe0(M)

)
, if we identify the

latter with Fe0+e(M), is the same as N [q0q]. �

We next want to consider what happens when we iterate the tight closure operation.
When M is finitely generated, and quite a bit more generally, we do not get anything new.
Later we shall develop a theory of test elements for tight closure that will enable us to
prove corresponding results for a large class of rings without any finiteness conditions on
the modules.

Theorem. Let R be a Noetherian ring of prime characteristic p > 0, and let N ⊆ M be
R-modules. Consider the condtion :

(#) there exist an element c ∈ R◦ and q0 = pe0 such that for all u ∈ N∗, cuq ∈ N [q] for
all q ≥ q0,

which holds whenever N∗/N is a finitely generated R-module. If (#) holds, then (N∗M )∗M =
N∗M .

Proof. We first check that (#) holds when N∗/N is finitely generated. Let u1, . . . , un be
elements of N∗ whose images generate N∗/N . Then for every i we can choose ci ∈ R◦ and
qi such that for all q ≥ qi, we have that ciu

q ∈ N [q] for all q ≥ qi. Let c = c1 · · · cn and let
q0 = max{q1, . . . , qn}. Then for all q ≥ q0, cuqi ∈ N [q], and if u ∈ N , the same condition
obviously holds. Since every element of N∗ has the form r1u1 + · · ·+ rnun + u where the
ri ∈ R and u ∈ N , it follows that (#) holds.

Now assume # and let v ∈ (N∗)∗. Then there exists d ∈ R◦ and q′ such that for all
q ≥ q′, dvq ∈ (N∗)[q], and so dvq is in the span of elements wq for w ∈ N∗. If q ≥ q0, we
know that every cwq ∈ N [q]. Hence, for all q ≥ max{q′, q0}, we have that (cd)vq ∈ N [q],
and it follows that v ∈ N∗. �

Of course, if M is Noetherian, then so is N∗, and condition (#) holds. Thus:

Corollary. Let R be a Noetherian ring of prime characteristic p > 0, and let N ⊆ M be
finitely generated R-modules. Then (N∗M )∗M = N∗M . �
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The following result is very useful in thinking about tight closure.

Proposition. Let R be a Noetherian ring of prime characteristic p > 0, let N ⊆ M be
R-modules, and let u ∈ M . Then u ∈ N∗M if and only if the image u of u in the quotient
M/N is in 0∗M/N .

Hence, if we map a free module G onto M , say h : G�M , let H = h−1(N) ⊆ G, and
let v ∈ G be such that h(v) = u, then u ∈ N∗M if and only if v ∈ H∗G.

Proof. For the first part, let c ∈ R0. Note that, by the right exactness of tensor products,
Fe(M/N) ∼= Fe(M)/N [q]. Consequently, cuq ∈ N [q] for all q ≥ q0 if and only if cuq = 0 in
Fe(M/N) for q ≥ q0.

For the second part, simply note that the image of v in G/H ∼= M/N corresponds to u
in M/N . �

It follows many questions about tight closure can be formulated in terms of the behavior
of tight closures of submodules of free modules. Of course, when M is finitely generated,
the free moduleG can be taken to be finitely generated with the same number of generators.

Given a free module G of rank n, we can choose an ordered free basis for G. This is
equivalent to choosng an isomorphism G ∼= Rn = R ⊕ · · · ⊕ R. In the case of Rn, one
may understand the action of Frobenius in a very down-to-earth way. We may identify
Fe(Rn) ∼= Rn, since we have this identification when n = 1. Keep in mind, however, that
the identification of Fe(G) with G depends on the choice of an ordered free basis for G.
If u = r1 ⊕ · · · ⊕ rn ∈ Rn, then uq = rq1 ⊕ · · · ⊕ rqn. With H ∈ Rn, H [q] is the R-span
of the elements uq for u ∈ H (or for u running through generators of H). Very similar
remarks apply to the case of an infinitely generated free module G with a specified basis
bλ. The elements bqλ give a free basis for Fe(G), and if u = r1bλ1

+ · · · + rsbλs , then
uq = rq1b

q
λ1

+ · · ·+ rqsb
q
λs

gives the representation of uq as a linear combination of elements

of the free basis {bqλ}λ.

We could have defined tight closure for submodules of free modules using this very
concrete description of uq and H [q]. The similarity to the case of ideals in the ring is
visibly very great. But we are then saddled with the problem of proving that the notion
is independent of the choice of free basis. Moreover, if we take this approach, we need to
define N∗M by mapping a free module G onto M and replacing N by its inverse image in G.
We then have the problem of proving that the notion we get is independent of the choices
we make.

Our next objective is to prove that in a regular ring, every ideal is tightly closed. This
depends on knowing that F : R→ R is flat for regular rings of prime characteristic p > 0.
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Eventually we sketch below a proof of the flatness of F that depends on the structure
theory for complete local rings of prime characteristic p > 0. Later, we shall give a different
proof, based on the following result, which is valid without restriction on the characteristic:

Theorem. Let (R, m, K) be a regular local ring and M and R-module. Then M is a big
Cohen-Macaulay module for R if and only if M is faithfully flat over R.

We postpone the proof of this result for a while: it makes considerable use of the
properties of the functor Tor. However, we do want to make several comments.

First note that it immediately implies that when R is regular, F : R → R is flat. In
general, R→ S is flat if and only if for every prime ideal Q of S with contraction P to R,
the map RP → SQ is flat.

|
To see this, note that for RP -modules M , the natural map SQ ⊗RM → SQ ⊗RP M

is an isomorphism, because M → RP ⊗RP M is an isomorphism, and we have

SQ ⊗RP M ∼= SQ ⊗RP (RP ⊗RM) ∼= SQ ⊗RM.

The latter is also SQ ⊗S (S ⊗R M). If S is flat over R, since SP is flat over S we have
that SP is flat over R. On the other hand, if N ↪→ M is an injection of R-modules and
S⊗RN → S⊗RM is not injective, we can localize at a prime Q of S in the support of the
kernel. This yields a map SQ ⊗R N → SQ ⊗RM that is not injective. But if Q contracts
to P , we do have that NP →MP is injective. This shows that SQ is not flat over RP . �

|

Note that when S = R and the map is F , the contraction of P ∈ Spec (R) is P . Thus,
it suffices to show that F is flat on RP for all primes P . This is now obvious given
the Theorem above: any regular sequence (equivalently, system of parameters) in R, say
x1, . . . , xn, maps to xp1, . . . , x

p
n in R, which is again a regular sequence. Hence, R is a

big Cohen-Macaulay algebra for R under the map F : R → R, and this proves that R is
faithfully flat over R.

We have the following additional comments on the Theorem. Suppose that M is a
module over a local ring (R, m, K) and suppose that we know that x1, . . . , xn is a system
of parameters that is a regular sequence on M . Let A = (x1, . . . , xn)R. By the definition
of a regular sequence, we have that AM 6= M . We want to point out that this condition
implies the a priori stronger condition that mM 6= M . The reason is that m is nilpotent
modulo A. Thus, we can choose s such that ms ⊆ A. If M = mM , we can multiply by mt

to conclude that mtM = mt(mM) = mt+1M . Thus

M = mM = m2M = · · · = mtM = · · · .

Then
M = msM ⊆ AM ⊆M,
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and we find that AM = M , a contradiction.

If M is faithfully flat over R, we have that (R/m)⊗M = M/mM 6= 0, so that mM 6= M .
Moreover, whenever x1, . . . , xn is a system of parameters for R, it is a regular sequence on
R, and the fact that M is faithfully flat over R implies that x1, . . . , xn is a regular sequence
on M . This shows that a faithfully flat R-module is a big Cohen-Macaulay module over
R. The converse remains to be proved.

We next sketch a completely different proof that F is flat for a regular ring R. As noted
above, this comes down to the local case. We use the fact that a local map R→ S of local

rings is flat if and only if the induced map R̂→ Ŝ is flat. Hence, by the structure theory of
complete local rings, we may assume that R = K[[x1, . . . , xn]] is a formal power series ring
over a field. Since this ring is the completion of K[x1, . . . , xn]P where P = (x1, . . . , xn), it
suffices to prove the result for the localized polynomial ring R = K[x1, . . . , xn] itself. But
F (R) = Kp[xp1, . . . , x

p
n]. Thus, all we need to show is thatKp[x1, . . . , xn] ⊆ K[x1, . . . , xn]

is flat. We prove a stronger result: R is free over F (R) in this case. Since K is free over
Kp, K[xp1, . . . , x

p
n] is free on the same basis over Kp[xp1, . . . , x

p
n]. Thus, we need only

see that K[x1, . . . , xn] is free over K[xp1, . . . , x
p
n]. It is easy to check that the monomials

xa1
1 · · ·xann such that 0 ≤ ai ≤ p− 1 are free basis. �

|

We now fill in the missing details of the argument sketched above.

Proposition. Let θ : (R, m, K) → (S, n, L) be a homomorphism of local rings that is
local, i.e., θ(m) ⊆ n. Let Q be a finitely generated S-module. Then Q is flat over R if and
only if for every injective map N ↪→M of finite length R-modules, Q⊗R N → Q⊗RM is
injective.

Proof. The condition is obviously necessary. We shall show that it is sufficient. Since tensor
commutes with direct limits and every injection N ↪→ M is a direct limit of injections of
finitely generated R-modules, it suffices to consider the case where N ⊆ M are finitely
generated. Suppose that some u ∈ S ⊗R N is such that u 7→ 0 in S ⊗RM . It will suffice
to show that there is also such an example in which M and N have finite length. Fix any
integer t > 0. Then we have an injection

N/(mtM ∩N) ↪→M/mtM

and there is a commutative diagram

Q⊗R N
ι−−−−→ Q⊗RM

f

y g

y
Q⊗R

(
N/(mtM ∩N)

) ι′−−−−→ Q⊗R
(
M/mtM

).
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The image f(u) of u in Q⊗R
(
N/(mtM ∩N)

)
maps to 0 under ι′, by the commutativity of

the diagram. Therefore, we have the required example provided that f(u) 6= 0. However,
for all h > 0, we have from the Artin-Rees Lemma that for every sufficiently large integer
t, mtM ∩N ⊆ mhN . Hence, the proof will be complete provided that we can show that
the image of u is nonzero in

Q⊗R (N/mhN) ∼= Q⊗R
(
(R/mh)⊗RN

) ∼= (R/mh)⊗R (Q⊗RN) ∼= (Q⊗RN)/mh(Q⊗RN)

for h� 0. But
mh(Q⊗R N) ⊆ nh(Q⊗R N),

and the result follows from the fact that the finitely generated S-module Q ⊗R N is n-
adically separated. �

We can now prove the following result, which is the only missing ingredient needed to
fill in the details of our proof that F is flat.

Lemma. Let (R, m, K) → (S, n, L) be a local homomorphism of local rings. Then S is

flat over R if and only if Ŝ is flat over R̂, and this holds iff Ŝ is flat over R.

Proof. If S is flat over R then, since Ŝ is flat over S, we have that Ŝ is flat over R.

Conversely, if Ŝ is flat over R, then S is flat over R because Ŝ is faithfully flat over S:
if N ↪→ M is injective but S ⊗R N → S ⊗R M has a nonzero kernel, the kernel remains

nonzero when we apply Ŝ ⊗S , and this has the same effect as applying Ŝ ⊗R to
N ↪→M , a contradiction.

We have shown that R→ S is flat if and only R→ Ŝ is flat. If R̂→ Ŝ is flat then since

R→ R̂ is flat, we have that R→ Ŝ is flat, and we are done. It remains only to show that

if R→ S is flat, then R̂→ Ŝ is flat. By the Proposition, it suffices to show that if N ⊆M
have finite length, then Ŝ⊗N → Ŝ⊗M is injective. Suppose that both modules are killed
by mt. Since S/mtS is flat over R/mt, if Q is either M or N we have that

Ŝ ⊗
R̂
Q ∼= Ŝ/mtŜ ⊗

R̂/mtR̂
Q ∼= Ŝ/mtŜ ⊗R/mt Q ∼= Ŝ ⊗R Q,

and the result now follow because Ŝ is flat over R. �

|

The following result on behavior of the colon operation on ideals under flat base change,
while quite easy and elementary, plays a very important role in tight closure theory. Recall
that when I ⊆ R and R → S is a flat homomorphism, the map I ⊗R S → R ⊗R S = S is
injective. Its image is clearly IS, the expansion of I to S. Thus, I ⊗R S may be naturally
identified with IS when S is flat over R. Recall that if I and J are ideals of R, then

I :R J = {r ∈ R : rJ ⊆ I},

which is an ideal of R. If J = fR is principal, we may write I :R f for IR : fR.
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Proposition. Let R → S be flat and let I and J be ideals of R such that J is finitely
generated. Then IS :R JS = (I :R J)S.

Proof. Let J = (f1, . . . , fn)R. We have an exact sequence

0→ I :R J ↪→ R→ (R/I)⊕n

where the rightmost map sends r 7→ (rf1, . . . , rfn); here, g denotes the image of g modulo
I. The exactness is preserved when we apply S ⊗R , which yields an exact sequence

(∗) 0→ (I :R J)S ↪→ S → (S/IS)⊕n

where the rightmost map sends s 7→ (s̃f1, . . . , s̃fn) and g̃ denotes the image of g modulo
IS. From the definition of this map, the kernel is IS :S JS, while from the exact sequence
(∗) just above, the kernel is (I :R J)S. �

|

The result is false without the hypothesis that J be finitely generated. Let K be a field,
and let R = K[y, x1, x2, x3, . . . ] be a polynomial ring in infinitely many variables over K.
Let I = (x1y, x2y

2, . . . , xny
n, . . . ) and let J = (x1, x2, . . . , xn, . . . ). Then I :R J = I,

but if S = Ry, IS = JS and IS :S JS = S.

|

The proposition above has the following very important consequence:

Corollary. Let R be a regular Noetherian ring of prime characteristic p > 0. Let I and
J be any two ideals of R. Then for every q = pe, we have that I [q] :R J

[q] = (I :R J)[q].

Proof. Take R→ S to be the map F e : R→ R, which is flat. Then

I [q] :R J
[q] = IS :S JS = (I :R J)S = (I :R J)[q]. �

We can now prove that every ideal of a regular ring is tightly closed.

Theorem. Let R be a regular Noetherian ring of prime characteristic p > 0. Let I ⊆ R
be any ideal. Then I = I∗.

Proof. Suppose that we have a counterexample with u ∈ I∗ − I. Choose a prime P in the
support of (I + Ru)/I. In RP , the image of u is still in (IRP )∗ working over RP , while
it is not in IRP by our choice of P . Therefore, it suffices to prove the result for a regular
local ring (R, m, K). Since u ∈ I∗ − I, we have that I :R u is a proper ideal of R. Hence,
I :R u ⊆ m. We know that there exists c ∈ R◦ such that for all q � 0, cuq ∈ I [q]. Hence,
for all q ≥ q0 we have

c ∈ I [q] :R u
q = (I :R u)[q] ⊆ m[q] ⊆ mq,

i.e., c ∈
⋂
q≥q0 m

q = (0), contradicting that c ∈ R◦. �
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Definition. Let R be a Noetherian ring of prime characteristic p > 0. R is called weakly
F-regular if every ideal is tightly closed. R is called F-regular if all of its localizations are
weakly F-regular.

It is an open question whether, under mild conditions, e.g., excellence, weakly F-regular
implies F-regular.

We shall show eventually that over a weakly F-regular ring, every submodule of every
finitely generated module is tightly closed.

Since we have already proved that every regular ring of prime characteristic p > 0 is
weakly F-regular and since the class of regular rings is closed under localization, it follows
that every regular ring is F-regular.

|
We note the following fact.

Lemma. Let R be any Noetherian ring, let M be a finitely generated module, and let
u ∈ M . Suppose that N ⊆ M is maximal with respect to the condition that u /∈ N . Then
M/N has finite length, and it has a unique associated prime, which is a maximal ideal m
with a power that kills M . In this case u spans the socle AnnMNm of M/N .

Proof. The maximality of N implies that the image of u is in every nonzero submodule
of M/N . We change notation: we may replace M by M/N , u by its image in M/N , and
N by 0. Thus, we may assume that u is in every nonzero submodule of M , and we want
to show that M has a unique associated prime. We also want to show that this prime is
maximal. If v ∈ M and w ∈ M have distinct prime annihilators P and Q, we have that
Rv ∼= R/P and Rw ∼= R/Q. Any nonzero element of Rv ∩Rw has annihilator P (thinking
in R/P ) and also has annihilator Q. It follows that P = Q after all.

Thus, Ass (M) consists of a single prime ideal P . If P is not maximal, we have an
embedding R/P ↪→ M . Then u is in the image of R/P , and is in every nonzero ideal of
R/P . If R/P = D has dimension one or more, then it has a prime ideal P ′ other than 0.
Then u must be in every power of P ′, and so u is in every power of the maximal ideal of the
local ring DP ′ , a contradiction. It follows that Ass (M) consists of a single maximal ideal
m. This implies that M has a finite filtration by copies of R/m, and is therefore killed by
a power of m. Then u must be in the socle AnnMm, which must be a one-dimensional
vector space over K = R/m, or else it will have a subspace that does not contain u. �

Proposition (prime avoidance for cosets). Let S be any commutative ring, x ∈ S,
I ⊆ S an ideal and P1, . . . , Pk prime ideals of S. Suppose that the coset x+ I is contained

in
⋃k
i=1 Pi. Then there exists j such that Sx+ I ⊆ Pj.
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Proof. If k = 1 the result is clear. Choose k ≥ 2 minimum giving a counterexample. Then
no two Pi are comparable, and x+ I is not contained in the union of any k − 1 of the Pi.
Now x = x+ 0 ∈ x+ I, and so x is in at least one of the Pj : say x ∈ Pk. If I ⊆ Pk, then
Sx + I ⊆ Pk and we are done. If not, choose i0 ∈ I − Pk. We can also choose i ∈ I such

that x+ i /∈
⋃k−1
j=1 Pi. Choose uj ∈ Pj − Pk for j < k, and let u be the product of the uj .

Then ui0 ∈ I − Pk, but is in Pj for j < k. It follows that x+ (i+ ui0) ∈ x+ I, but is not
in any Pj , 1 ≤ j ≤ k, a contradiction. �

Proposition. Let R be a Noetherian ring and let W be a multiplicative system. Then
every element of (W−1R)◦ has the form c/w where c ∈ R◦ and w ∈W .

Proof. Suppose that c/w ∈ (W−1R)◦ where c ∈ R and w ∈ W . Let p1, . . . , pk be the
minimal primes of R that do not meet W , so that the ideals pjW

−1R for 1 ≤ j ≤ k are all
of the minimal primes of W−1R. It follows that the image of p1 ∩ · · · ∩ pk is nilpotent in
W−1R, and so we can choose an integer N > 0 such that I = (p1 ∩ · · · ∩ pk)N has image
0 in W−1R. If c + I is contained in the union of the minimal primes of R, then by the
coset form of prime avoidance above, it follows that cR + I ⊆ p for some minimal prime
p of R. Since I ⊆ p, we have that p1 ∩ · · · ∩ pk ⊆ p, and it follows that pj = p for some
j, where 1 ≤ j ≤ k. But then c ∈ pj , a contradiction, since c/w and, hence, c/1, is not
in any minimal prime of R◦. Thus, we can choose g ∈ I such that c+ g is in R◦, and we
have that c/w = (c+ g)/w since g ∈ I. �

Lemma. Let R be a Noetherian ring of prime characteristic p > 0. Let A be an ideal of
R primary to a maximal ideal m of R. Then A is tightly closed in R if and only if ARm
is tightly closed in Rm.

Proof. Note that R/A is already a local ring whose only maximal ideal is m/A. It follows
that (∗) R/A ∼= (R/A)m = Rm/ARm. If u ∈ R − A but u ∈ A∗, this is evidently
preserved when we localize at m. Hence, if ARm is tightly closed in Rm, then A is tightly
closed in R. Now suppose (ARm)∗ in Rm contains an element not in ARm. Without loss
of generality, we may assume that this element has the form f/1 where f ∈ R. Suppose
that c1 ∈ R◦m has the property that c1f

q ∈ A[q]Rm = (ARm)[q] for all q � 0. By the
preceding Proposition, c1 has the form c/w where c ∈ R◦ and w ∈ R−m. We may replace
c1 by wc1, since w is a unit, and therefore assume that c1 = c/1 is the image of c ∈ R◦.
Then cfq/1 ∈ A[q]Rm for all q � 0. It follows from (∗) above that cfq ∈ A[q] for all q � 0,
and so f ∈ A∗R, as required. �

We have the following consequence:

Theorem. Let R be a Noetherian ring of prime characteristic p > 0. Then the following
conditions are equivalent:

(a) R is weakly F-regular.

(b) Rm is weakly F-regular for every maximal ideal m of R.

(c) Every ideal of R primary to a maximal ideal of R is tightly closed.
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Proof. It is clear that (a) ⇒ (c). To see that (c) ⇒ (a), assume (c) and suppose, to the
contrary, that u ∈ I∗ − I in R. Let A be maximal in R with respect to the property of
containing I but not u. By the Lemma on p. 1, R/A is killed by a power of a maximal
ideal m, so that A is m-primary. We still have u ∈ A∗ − A, a contradiction. Then (b)
holds if and only if all ideals primary to the maximal ideal of some Rm are tightly closed,
and the equivalence with (c) follows from the preceding Lemma. �

|

We next make the following elementary observations about tight closure.

Proposition. Let R be a Noetherian ring of prime characteristic p > 0.

(a) The tight closure of 0 in R is the ideal J of all nilpotent elements of R.

(b) For every ideal I ⊆ R, I∗ ⊆ I ⊆ Rad (I).

(c) Prime ideals, radical ideals, and integrally closed ideals are tightly closed in R.

Proof. (a) If cuq = 0 and c is not in any minimal prime, then uq is in every minimal prime,
and, hence, so is u. This shows that 0∗ ⊆ J . On the other hand, if u is nilpotent, uq0 = 0
for sufficiently large q0, and then 1 · uq = 0 for all q ≥ q0.

(b) Suppose u ∈ I∗. To show that u ∈ I, it suffices to verify this modulo every minimal
prime P of R. When we pass to R/P , we still have that the image of u is in the tight
closure of I(R/P ). Hence, we may assume that R is a domain. We then have c 6= 0 such
that cuq ∈ I [q] ⊆ Iq for all sufficiently large q, and, in particular, for infinitely many q.
This is sufficient for u ∈ I. If u ∈ I, u satisfies a monic polynomial

un + f1u
n−1 + · · ·+ fn = 0

with fj ∈ IJ for j ≥ 1. Thus, all terms but the first are in I, and so un ∈ I, which implies
that u ∈ Rad (I).

(c) It is immediate from part (b) that integrally closed ideals are tightly closed in R,
and that radical ideals are integrally closed. Of course, prime ideals are radical. �

We next give a tight closure version of the Briançon-Skoda theorem. This result was
proved by Briançon and Skoda [J. Briançon and H. Skoda, Sur la clôture intégrale d’un
idéal de germes de fonctions holomorphes en un point de Cn, C.R. Acad. Sci. Paris Sér. A
278 (1974) 949–951] for finitely generated C-algebras and analytic regular local rings using
a criterion of Skoda [H. Skoda, Applications des techniques L2 a la théorie des idéaux d’une
algébre de fonctions holomorphes avec poids, Ann. Scient. Ec. Norm. Sup. 4éme série, t.
5 (1972) 545–579] for when an analytic function is in an ideal in terms of the finiteness
of a certain integral. Lipman and Teissier [J. Lipman and B. Teissier, Pseudo-rational
local rings and a theorem of Briançon-Skoda about integral closures of ideals, Michigan
Math. J. 28 (1981) 97–116] gave an algebraic proof for certain cases, and Lipman and
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Sathaye [J. Lipman and A. Sathaye, Jacobian ideals and a theorem of Briançon-Skoda,
Michigan Math. J. 28 (1981) 199–222] proved the result in general for regular rings. A
detailed treatment of the Lipman-Sathaye argument is given in the Lecture Notes from
Math 711, Fall 2006: see particularly the Lectures of September 25, 27, and 29, as well as
the Lectures of October 2, 4, 6, 9, 11, and 13.

Tight closure gives an unbelievably simple proof of the theorem that is more general
than these results in the equicharacteristic case, but the Lipman-Sathaye argument is the
only one that is valid in mixed characteristic. Notice that in the tight closure version
of the Theorem just below, the first statement is valid for any Noetherian ring of prime
characteristic p > 0.

Theorem (Briançon-Skoda). Let R be a Noetherian ring of prime characteristic p > 0.
Let I be an ideal of R that is generated by n elements. Then In ⊆ I∗. Hence, if R is regular
(or weakly F-regular) then In ⊆ I.

Proof. We may work modulo each minimal prime in turn, and so assume that R is a
domain. If u ∈ In there exists c 6= 0 such that for all k � 0, cuk ∈ (In)k = Ink. In
particular, this is true when k = q = pe. The ideal Inq = (f1, . . . , fn)nq is generated by
the monomials fa1

1 · · · fann of degree nq in the fj . But when a1 + · · · + aq = nq, at least

one of the ai is ≥ q: if all are ≤ q− 1, their sum is ≤ n(q− 1) < nq. Thus, Inq ⊆ I [q], and
we have that cuq ∈ I [q] for all q � 0. This shows that u ∈ I∗. The final statement holds
because all ideals of a regular ring are tightly closed, �

|
The Briançon-Skoda Theorem is often stated in a stronger but more technical form.

The hypothesis is the same: I is an ideal generated by n elements. The conclusion is
that In+m−1 ⊆ (Im)∗ for all integers m ≥ 1. The version we stated first is the case
where m = 1. The argument for the strengthened version is very similar, but slightly
more technical. Again, we may assume that R is a domain and that cuq ⊆ (In+m−1)q

for all q � 0. Consider a monomial fa1
1 · · · fann where the sum of the ai is (n + m − 1)q.

We can write each ai = biq + ri, where 0 ≤ ri ≤ q − 1. It will suffice to show that
the sum of the bi is at least m, for then the monomial is in (Im)[q], and we have that
u ∈ (Im)∗. But if the sum of the bi is at most m − 1, then the sum of the ai is bounded
by (m− 1)q + n(q − 1) = (n+m− 1)q − n < (n+m− 1)q, a contradiction. �

|

The equal characteristic 0 form of the Theorem can be deduced from the characteristic
p form by standard methods of reduction to characteristic p.

The basic tight closure form of the Briançon-Skoda theorem is of interest even in the
case where n = 1, which has the following consequence.

Proposition. Let R be a Noetherian ring of prime characteristic p > 0. The tight closure
of the principal ideal I = fR is the same as its integral closure.
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Proof. By the Briançon-Skoda theorem when n = 1, we have that I ⊆ I∗, while the other
inclusion always holds. �

We next observe:

Theorem. Let R be a Noetherian ring of prime characteristic p > 0. If the ideal (0)
and the principal ideals generated by nonzerodivisors are tightly closed, then R is normal.
Thus, if every principal ideal of R is tightly closed, then R is normal. Consequently, weakly
F-regular rings are normal.

Proof. The hypothesis that (0) is tightly closed is equivalent to the assumption that R is
reduced. Henceforth, we assume that R is reduced.

If R is a product S × T then the hypothesis on R holds in both factors. E.g., if s is a
nonzerodivisor in s, then (s, 1) is a nonzerodivisor in T : it generates the ideal sS×T , and
its tight closure in S × T is (sS)∗S × T . But this is the same as sS × T if and only if sS is
tightly closed in S.

Therefore, we may assume that R is not a product, i.e., that Spec (R) is connected.
We first want to show that R is a domain in this case. If not, there are minimal primes
P1, . . . , Pn, n ≥ 2, and we can choose an element ui in Pi−

⋃
j 6=i Pj for every i. Let u = u1,

which is in P1 and no other minimal prime, and v = u2 · · ·un, which is in P2∩· · ·∩Pn and
not in P1. Then uv is in every minimal prime, and so is 0, while f = u+ v is a not in any
minimal prime, and so is not a zerodivisor. We claim that u ∈ (fR)∗. It suffices to check
this modulo every Pi. But mod P1, u ≡ 0 = 0 · f , and mod Pj for j > 1, u ≡ f = 1 · f .
Since (fR)∗ = fR, we can write u = e(u + v) for some element e ∈ R. This means that
(1− e)u = ev. Mod P1, u ≡ 0 while v 6≡ 0, and so e ≡ 0 mod P1. Mod Pj for j > 1, u 6≡ 0
while v ≡ 0, and so e ≡ 1 mod Pj . It follows that e2− e is in every minimal prime, and so
is 0. Since whether its value mod Pi is 0 or 1 depends on i, e is a non-trivial idempotent
in R, a contradiction.

Thus, we may assume that R is a domain. Now suppose that f, g ∈ R with g 6= 0 and
that f/g is integral over R. Then we have an equation of integral dependence

(f/g)s + r1(f/g)s−1 + · · ·+ rj(f/g)s−j + · · ·+ rs = 0

with the rj ∈ R. Multiplying by gs we obtain

fs + (r1g)fs−1 + · · · (rjgj)fs−j + · · ·+ rsg
s = 0,

which shows that f is in the integral closure of gR. Thus, f ∈ (gR)∗, and this is gR
by hypothesis. Consequently, f = gr with r ∈ R, which shows that f/g = r ∈ R, as
required. �

We next want to discuss the use of tight closure to prove Theorems about the behavior
of symbolic powers in regular rings of prime characteristic p > 0. The characteristic p
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results imply corresponding results in equal characteristic 0. The following result was first
proved in equal characteristic 0 by Ein, Lazarsfeld, and Smith [L. Ein, R. Lazarsfeld, and
K. E. Smith, Uniform bounds and symbolic powers on smooth varieties, Inventiones Math.
144 (2001) 241–252], using the theory of multiplier ideals. The proof we give here may
be found in [M. Hochster and C. Huneke, Comparison of symbolic and ordinary powers of
ideals, Inventiones Math. 147 (2002) 349–369].

Theorem. Let P be a prime ideal of height h in a regular ring R of prime characteristic
p > 0. Then for every integer n ≥ 1, P (hn) ⊆ Pn.

There are sharper results if one places additional hypotheses on R/P . An extreme
example is to assume that R/P is regular so that, locally, P is generated by a regular
sequence. In this case, the symbolic and ordinary powers of P are equal. Doubtless the
best results of this sort remain to be discovered. It is not known whether the conclusion of
the Theorem above holds in regular rings of mixed characteristic. The version stated above
remains true with the hypotheses weakened in various ways. There are further comments
about what can be proved in the sequel: see the last paragraph on p. 7. We have attempted
to give a result that is of substantial interest but that has relatively few technicalities in its
proof. The methods used here also yield the result that, without any regularity hypothesis
on R, if R/P has finite projective dimension over R then

P (hn) ⊆ (Pn)∗.

Of course, if R is regular the hypothesis of finite projective dimension is automatic, while
one does not need to take the tight closure on the right because, in a regular ring, every
ideal is tightly closed.

We postpone the proof of the Theorem to give a preliminary result that we will need.

Lemma. Let P be a prime ideal of height h in a regular ring R of prime characteristic
p > 0.

(a) P [q] is primary to P .

(b) P (qh) ⊆ P [q].

Proof. For part (a), we have that Rad (P [q]) = P , clearly. Let f ∈ R − P . It suffices to
show that f is not a zerodivisor on R/P [q]. Since

0→ R/P
f ·−→ R/P

is exact, it remains exact when we tensor with R viewed as an R-algebra via F e, since this
is a flat base change. Thus,

0→ Fe(R/P )
fq·−−→ Fe(R/P )
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is exact, and this is

0→ R/P [q] fq·−−→ R/P [q].

Since fq is not a zerodivisor on R/P [q], neither is f .

Suppose u ∈ P (qh)−P [q]. Make a base change to RP . Then the image of u is in P qhRP ,
but not in P [q]RP = (PRP )[q]: if u were in the expansion of P [q]RP , it would be multiplied
into P [q] by some element of R − P . Since such an element is not in P [q] by part (a), we
have u /∈ (PRP )[q]. But PRP is generated by h elements, and so

(PRP )qh ⊆ (PRP )[q]

exactly as in the proof of the Briançon-Skoda Theorem: if a monomial in h elements has
degree qh, at least one of the exponents occurring on one of the elements must be at least
q. �

Proof of the symbolic power theorem. If u ∈ P (hn) − Pn, then this continues to be the
case after localizing at a maximal ideal in the support of (Pn + Ru)/Pn. Hence, we may
assume that R is regular local. We may also assume that P 6= 0. Given q = pe we can
write q = an+ r where a ≥ 0 and 0 ≤ r ≤ n− 1 are integers. Then ua ∈ P (han) and

Phnua ⊆ Phrua ⊆ P (han+hr) = P (hq) ⊆ P [q].

Taking n th powers gives that

Phn
2

uan ⊆ (P [q])n = (Pn)[q],

and since q ≥ an, we have that

Phn
2

uq ⊆ (Pn)[q]

for fixed h and n and for all q. Let d be any nonzero element of Phn
2

. The condition that
duq ∈ (Pn)[q] for all q says precisely that u is in the tight closure of Pn in R. But in a
regular ring, every ideal is tightly closed, and so u ∈ Pn, as required. �

|
One can prove a similar result for ideals I without assuming that I is prime and

without assuming that the ring is regular. We can define symbolic powers of ideals that
are not necessarily prime as follows. If W is the multiplicative system of nonzerodivisors on
I, define I(t) as the contraction of ItW−1R to R. Suppose that R/I has finite projective
dimension over R and that the localization of I at any associated prime of I can be
generated by at most h elements (or even that its analytic spread is at most h). Then one
can show I(nh) ⊆ (In)∗ for all n ≥ 1. See Theorem (1.1) of [M. Hochster and C. Huneke,
Comparison of symbolic and ordinary powers of ideals, Inventiones Math. 147 (2002) 349–
369].

|
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Test elements

The definition of tight closure allows the element c ∈ R◦ to vary with N , M , and the
element u ∈ M being “tested” for membership in N∗M . But under mild conditions on
a reduced ring R, there exist elements, called test elements, that can be used in every
tight closure test. It is somewhat difficult to prove their existence, but they play a very
important role in the theory of tight closure.

Definition. Let R be a Noetherian ring of prime characteristic p > 0. An element c ∈ R◦
is called a test element (respectively, big test element) for R if for every inclusion of finitely
generated modules N ⊆ M (respectively, arbitrary modules N ⊆ M) and every u ∈ M ,

u ∈ N∗M if and only if cuq ∈ N [q]
M for every q = pe ≥ 1. A (big) test element is called locally

stable if it is a (big) test element in every localization of R. A (big) test element is called
completely stable if it is a (big) test element in the completion of every local ring of R.

It will be a while before we can prove that test elements exist. But we shall eventually
prove the following:

Theorem. Let R be a Noetherian ring of prime characteristic p > 0 that is reduced and
essentially of finite type over an excellent semilocal ring R. Let c ∈ R◦ be such that Rc is
regular (such elements always exist). Then c has a power that is a completely stable big
test element for R.

We want to record some easy facts related to test elements. We first note:

Lemma. If N ⊆M are R-modules, S is faithfully flat over R, and v ∈M −N , then 1⊗v
is not in 〈S ⊗R N〉 in S ⊗RM .

Proof. We may replace M by M/N , N by 0, and v by its image in M/N . The result
then asserts that the map M → S ⊗R M is injective. Let v ∈ M be in the kernel. Then
S ⊗R Rv ↪→ S ⊗R M , and it suffices to see that (∗) Rv → S ⊗R Rv is injective. Let
I = AnnRv. Then (∗) is equivalent to the assertion that R/I → S/IS is injective. Since
S/IS is faithfully flat over R/I, we need only show that if R → S is faithfully flat, it is
injective. Let J ⊆ R be the kernel. Then J ⊗ S ∼= JS = 0, which implies that J = 0. �

Proposition. Let R be a Noetherian ring of prime characteristic p > 0, and let c ∈ R.

(a) If for every pair of modules (respectively, finitely generated modules) N ⊆ M one

has cN∗M ⊆ N , then one also has that whenever u ∈ N∗M , then cuq ∈ N [q]
M for all q.

Thus, c is a big test element (respectively, test element) for R if and only if c ∈ R◦
and cN∗M ⊆ N for all inclusions of modules (respectively, finitely generated modules)
N ⊆M .

(b) If c ∈ R0, S is faithfully flat over R, and c is (big) test element for S, then it is a
(big) test element for R. If c is a completely stable (big) test element for S, then c is
a completely stable (big) test element for S.
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(c) If the image of c ∈ R◦ is a (big) test element in Rm for every maximal ideal m of R,
then c is a test element for R.

(d) If c ∈ R◦ and c is a (big) test element for RP for every prime ideal P of R, then c
is a (big) test element for W−1R for every multiplicative system W of R, i.e., c is a
locally stable (big) test element for R.

(e) If c is a completely stable (big) test element for R then it is a locally stable (big) test
element for R.

Proof. In each part, if we are proving a statement about test elements we assume that
N ⊆M are finitely generated, while if we are proving a statement about big test elements,
we allow them to be arbitrary.

(a) If u ∈ N∗M we also have that uq ∈ (N [q])∗Fe(M) for all q, and hence that cuq ∈ N [q],

as required.

(b) Suppose that u ∈ N∗M . Then 1⊗ u is in 〈S ⊗R N〉∗ in S ⊗RM , and it follows that
c(1⊗ u) = 1⊗ cu is in 〈S ⊗R N〉 in S ⊗RM . Because S is faithfully flat over R, it follows
from the preceding Lemma that cu ∈ N . The second statement follows from the first,
because of P is prime in R and Q is a minimal prime of PS, then RP → SQ is faithfully

flat, and hence so is the induced map of completions R̂P → ŜQ. Since c is a (big) test

element for ŜQ, it is a (big) test element for R̂P .

(c) Suppose that u ∈ N∗M in R. If cu /∈ N , then there exists a maximal ideal m in the
support of (N + Rcu)/N . When we pass to Rm, Nm ⊆ Mm, and u/1, the image of u in
M , we still have that u/1 is in (Nm)∗Mm

working over Rm. If follows that cu/1 ∈ Nm, a
contradiction.

(d) follows from (c), because every localization of W−1R at a maximal ideal is a local-
ization of R at some prime ideal P .

(e) follows from (d) and (b), because for every prime ideal P of R, the completion of
RP is faithfully flat over RP . �

Definition: test ideals. Let R be a Noetherian ring of prime characteristic p > 0, and
assume that R is reduced. We define τ(R) to be the set of elements c ∈ R such that
cN∗M ⊆ N for all inclusion maps N ⊆ M of finitely generated R-modules. Alternatively,
we may write:

τ(R) =
⋂

N⊆M finitely generated

N :R N
∗
M ,

and we also have that

N :R N
∗
M = AnnR(N∗M/N).

We refer τ(R) as the test ideal of R.

We define τ b(R) to be the set of elements c ∈ R such that cN∗M ⊆ N for all inclusion
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maps N ⊆M of arbitrary R-modules. Alternatively, we may write:

τ b(R) =
⋂

N⊆M

N :R N
∗
M ,

and refer to τ b(R) as the big test ideal of R, although it is obviously contained in τ(R).
We shall see below that if R has a (big) test element, then τ(R) (respectively, τ b(R)) is
generated by all the (big) test elements of R. We first note:

Lemma. Let R be any ring and P1, . . . , Pk any finite set of primes of R. Let

W = R−
k⋃
i=1

Pi.

If an ideal I of R is not contained in any of the Pj, then I is generated by its intersection
with W . In particular, if R is Noetherian and I is not contained in any minimal prime of
R, then I is generated by its intersection with R◦.

Proof. Let J be the ideal generated by all elements of I ∩W . Then

I ⊆ J ∪ P1 ∪ · · · ∪ Pk,

since every element of I not in any of the Pi is in J . Since all but one of the ideals on
the right is prime, we have that I ⊆ J or I ⊆ Pi for some i. Since I contains at least
one element of W , it is not contained in any of the Pi. Thus, J ⊆ I ⊆ J , and so J = I,
as required. The final statement now follows because a Noetherian ring has only finitely
many minimal primes. �

Proposition. Let R be a Noetherian ring of prime characteristic p > 0, and assume that
R is reduced.

(a) τ b(R) ⊆ τ(R).

(b) τ(R) ∩R◦ (respectively, τ b(R) ∩ R◦) is the set of test elements (respectively, big test
elements) of R.

(c) If R has at least one test element (respectively, one big test element), then τ(R)
(respectively, τ b(R)) is the ideal of R generated by all test elements (respectively, all
big test elements) of R.

Proof. (a) is clear from the definition, and so is (b). Part (c) then follows from the
preceding Lemma. �
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Math 711: Lecture of September 19, 2007

Earlier (see the Lecture of September 7, p. 7) we discussed very briefly the class of
excellent Noetherian rings. The condition that a ring be excellent or, at least, locally ex-
cellent, is the right hypothesis for many theorems on tight closure. The theory of excellent
rings is substantial enough to occupy an entire course, and we do not want to spend an
inordinate amount of time on it here. We shall summarize what we need to know about
excellent rings in this lecture. In the sequel, the reader who prefers may restrict attention
to rings essentially of finite type over a field or over a complete local ring, which is the most
important family of rings for applications. The definition of an excellent Noetherian ring
was given by Grothendieck. A readable treatment of the subject, which is a reference for
all of the facts about excellent rings stated without proof in this lecture, is [H. Matsumura,
Commutative Algebra, W.A. Benjamin, New York, 1970], Chapter 13.

Before discussing excellence, we want to review the notion of fibers of ring homomor-
phisms.

Fibers

Let f : R→ S be a ring homomorphism and let P be a prime ideal of R. We write κP
for the canonically isomorphic R-algrebras

frac (R/P ) ∼= RP /PRP .

By the fiber of f over P we mean the κP -algebra

κP ⊗R S ∼= (R− P )−1S/PS

which is also an R-algebra (since we have R → κP ) and an S-algebra. One of the key
points about this terminology is that the map

Spec (κP ⊗R S)→ Spec (S)

gives a bijection between the prime ideals of κP ⊗R S and the prime ideals of S that lie
over P ⊆ R. In fact, it is straightforward to check that Spec (κP ⊗R S) is homeomorphic
with its image in Spec (S).

It is also said that Spec (κP ⊗R S) is the scheme-theoretic fiber of the map

Spec (S)→ Spec (R).

This is entirely consistent with thinking of the fiber of a map of sets g : Y → X over a
point P ∈ X as

g−1(P ) = {Q ∈ Y : g(Q) = P}.
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In our case, we may take g = Spec (f), Y = Spec (S), and X = Spec (R), and then
Spec (κP ⊗R S) may be naturally identified with the set-theoretic fiber of

Spec (S)→ Spec (R).

If R is a domain, the fiber over the prime ideal (0) of R, namely frac (R)⊗R S, is called
the generic fiber of R→ S.

If (R, m, K) is quasilocal, the fiber K ⊗R S = S/mS over the unique closed point m of
Spec (R) is called the closed fiber of R→ S.

Geometric regularity

Let κ be a field. A Noetherian κ-algebra R, is called geometrically regular over κ if the
following two equivalent conditions hold:

(1) For every finite algebraic field extension κ′ of κ, κ′ ⊗κ R is regular.

(2) For every finite purely inseparable field extension κ′ of κ, κ′ ⊗κ R is regular.

Of course, since we may take κ′ = κ, if R is geometrically regular over κ then it is
regular. In equal characteristic 0, geometric regularity is equivalent to regularity, using
characterization (2).

When R is essentially of finite type over κ, these conditions are also equivalent to

(3) K ⊗κ R is regular for every field K

(4) K ⊗κ R is regular for one perfect field extension K of κ.

(5) K ⊗κ R is regular when K = κ is the algebraic closure of κ.

These conditions are not equivalent to (1) and (2) in general, because K ⊗κR need not
be Noetherian.

|
We indicate how the equivalences are proved. This will require a very considerable

effort.

Theorem. Let R → S be a faithfully flat homomorphism of Noetherian rings. If S is
regular, then R is regular.

Proof. We use the fact that a local ring A is regular if and only its residue class field has
finite projective dimension over A, in which case every finitely generated module has finite
projective dimension over A. Given a prime P of R, there is a prime Q of S lying over
it. It suffices to show that RP is regular, and we have a faithfully flat map RP → SQ.
Therefore we may assume that (R, P, K)→ (S, Q, L) is a flat, local homomorphism and
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that S is regular. Consider a minimal free resolution of R/P over R, which, a priori, may
be infinite:

· · · → Rbn
αn−−→ Rbn−1 −→ · · · α1−→ Rb0 −→ R/P −→ 0.

By the minimality of the resolution, the matrices αj all have entries in P . Now apply
S ⊗R . We obtain a free resolution

· · · → Sbn
αn−−→ Sbn−1 −→ · · · α1−→ Sb0 −→ S ⊗R S/PS −→ 0,

where we have identified R with its image in S under the injection R ↪→ S. This resolution
of S/PS is minimal: the matrices have entries in Q because R ↪→ S is local. Since S is
regular, S/PS has finite projective dimension over S, and so the matrices αj must be 0
for all j � 0. But this implies that the projective dimension of R/P over R is finite. �

Corollary. If R is a Noetherian K-algebra and L is an extension field of K such that
L ⊗K R is regular (in general, this ring may not be Noetherian, although it is if R is
essentially of finite type over K, because in that case L ⊗K R is essentially of finite type
over L, and therefore Noetherian), then R is regular.

Proof. Since L is free over K, it is faithfully flat over K, and so L⊗K R is faithfully flat
over R and we may apply the preceding result. �

Proposition. Let (R, m, K) → (S, Q, L) be a flat local homomorphism of local rings.
Then

(a) dim (S) = dim (R) + dim (S/mS), the sum of the dimensions of the base and of the
closed fiber.

(b) If R is regular and S/mS is regular, then S is regular.

Proof. (a) We use induction on dim (R). If dim (R) = 0, m and mS are nilpotent. Then
dim (S) = dim (S/mS) = dim (R) + dim (S/mS), as required. If dim (R) > 0, let J be the
ideal of nilpotent elements in R. Then dim (R/J) = dim (R), dim (S/JS) = dim (S), and
the closed fiber of R/J → S/JS, which is still a flat and local homomorphism, is S/mS.
Therefore, we may consider the map R/J → S/JS instead, and so we may assume that R
is reduced. Since dim (R) > 0, there is an element f ∈ m not in any minimal prime of R,
and, since R is reduced, f is not in any associated prime of R, i.e., f is a nonzerodivisor
in R. Then the fact that S is flat over R implies that f is not a zerodivisor in S. We may
apply the induction hypothesis to R/fR→ S/fS, and so

dim (S)− 1 = dim (S/fS) = dim (R/f) + dim (S/mS) = dim (R)− 1 + dim (S/mS),

and the result follows.

(b) The least number of generators of Q is at most the sum of the number of generators
of m and the number of generators of Q/mS, i.e., it is bounded by dim (R)+dim (S/mS) =
dim (S) by part (a). The other inequality always holds, and so S is regular. �
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Corollary. Let R → S be a flat homomorphism of Noetherian rings. If R is regular and
the fibers of R→ S are regular, then S is regular.

Proof. If Q is any prime of S we may apply part (b) of the preceding Theorem, since
SQ/PSQ is a localization of the fiber κP ⊗R S, and therefore regular. �

Corollary. Let R be a regular Noetherian K-algebra, where K is a field, and let L be a
separable extension field of K such that L⊗K R is Noetherian. Then L⊗K R is regular.

Proof. The extension is flat, and so it suffices to show that every κP⊗R(L⊗KR) ∼= κP⊗KL
is regular. Since L is algebraic over K, this ring is integral over κP and so zero-dimensional.
Since L⊗KR is Noetherian by hypothesis, κP ⊗KL is Noetherian, and so has finitely many
minimal primes. Hence, it is Artinian, and if it is reduced, it is a product of fields and,
therefore, regular as required. Thus, it suffices to show that κP ⊗K L is reduced. Since
L is a direct limit of finite separable algebraic extension, it suffices to prove the result
when L is a finite separable extension of K. In this case, L has a primitive element θ, and
L ∼= K[x]/g where g ∈ K[x] is a monic irreducible separable polynomial over K ⊆ κP . Let
Ω denote the algebraic closure of κP . Then κP ⊗K L ⊆ Ω⊗K L, and so it suffices to show
that

Ω⊗K L ∼= Ω⊗K (K[x]/gK[x]) ∼= Ω[x]/gΩ[x]

is reduced. This follows because g is separable, and so has distinct roots in Ω. �

Theorem. Let K be an algebraically closed field and let L be any finitely generated field
extension of K. Then L has a separating transcendence basis B, i.e., a transcendence basis
B such that L is separable over the pure transcendental extension K(B).

Proof. If F is a subfield of L, let F sep denote the separable closure of F in L. Choose a
transcendence basis x1, . . . , xn so as to minimize [L : L′] where L′ = K(x1, . . . , xn)sep.
Suppose that y ∈ L is not separable over K(x1, . . . , xn). Choose a minimal polynomial
F (z) for y over K(x1, . . . , xn). Then every exponent on z is divisible by p. Put each
coefficient in lowest terms, and multiply F (z) by a least common multiple of the denom-
inators of the coefficients. This yields a polynomial H(x1, . . . , xn, z) ∈ K[x1, . . . , xn][z]
such that the coefficients in K[x1, . . . , xn] are relatively prime, and such that the poly-
nomial is irreducible over K(x1, . . . , xn)[z]. By Gauss’s Lemma, this polynomial is ir-
reducible in K[x1, . . . , xn, z]. It cannot be the case that every exponent on every xj
is divisible by p, for if that were true, since the field is perfect, H would be a p th
power, and not irreducible. By renumbering the xi we may assume that xn occurs with
an exponent not divisible by p. Then the element xn is separable algebraic over the
field K(x1, . . . , xn−1, y), and we may use the transcendence basis x1, . . . , xn−1, y for L.
Note that xn, y ∈ K(x1, . . . , xn−1, y)sep = L′′, which is therefore strictly larger than
L′ = K(x1, . . . , xn)sep. Hence, [L : L′′] < [L : L′], a contradiction. �

We can now prove:
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Theorem. Let R be a Noetherian κ-algebra, where κ is a field. Then the following two
conditions are equivalent:

(1) For every finite algebraic field extension κ′ of κ, κ′ ⊗κ R is regular.

(2) For every finite purely inseparable field extension κ′ of κ, κ′ ⊗κ R is regular.

Moreover, if R is essentially of finite type over κ then the following three conditions are
equivalent to (1) and (2) as well:

(3) K ⊗κ R is regular for every field K

(4) K ⊗κ R is regular for one perfect field extension K of κ.

(5) K ⊗κ R is regular when K = κ is the algebraic closure of κ.

Proof. We shall repeatedly use that if we have regularity for a larger field extension, then
we also have it for a smaller one: this follows from the Corollary on p. 3.

Evidently, (1)⇒ (2). But (2)⇒ (1) as well, because given any finite algebraic extension
κ′ of κ, there is a larger finite field extension obtained by first making a finite purely insep-
arable extension and then a finite separable extension. The purely inseparable extension
yields a regular ring by hypothesis, and the separable field extension yields a regular ring
by the second Corollary on p. 4.

Now consider the case where R is essentially of finite type over κ. Evidently, (3) ⇒
(5) ⇒ (4) ⇒ (2) (the last holds because any perfect field extension contains the perfect
closure, and this contains every finite purely inseparable algebraic extension), and it will
suffice to prove that (2) ⇒ (3).

Let κ∞ denote the perfect closure
⋃
q

κ1/q of κ. We first show that κ∞ ⊗κ R is regular.

Replace R by Rm. Then B = κ∞ ⊗R Rm is purely inseparable over Rm: consequently, it
is a local ring of the same dimension as Rm, and it is the directed union of the local rings
κ′⊗κRm as κ′ runs through finite purely inseparable extensions of κ contained in κ∞. All
of these local rings have the same dimension: call it d. Let u1, . . . , un be a minimal set
of generators of the maximal ideal of B = κ∞⊗κ Rm, and choose κ′ sufficiently large that
u1, . . . , un are elements of A = κ′ ⊗R Rm. Let J = (u1, . . . , un)A. Since B is faithfully
flat over A, we have that JB ∩ A = J . But JB is the maximal ideal of B, which lies
over the maximal ideal of A, and so J generates the maximal ideal of A. None of the
generators is an A-linear combination of the others, or else this would also be true in B.
Hence, u1, . . . , un is a minimal set of generators of the maximal ideal of A. Since A is
regular, n = d, and so B is regular.

Since the algebraic closure of κ is separable over κ∞, it follows from the second Corollary
on p. 4 that (2) ⇒ (5). To complete the proof, it suffices to show that if κ is algebraically
closed, R is regular, and L is any field extension of κ, then L ⊗κ R is regular. Since
R → L ⊗κ R is flat, it suffices to show the fibers L ⊗κ κP are regular, and κP is finitely
generated as a field over κ. Hence, κP has a separating transcendence basis x1, . . . , xn
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over κ. Let K = κ(x1, . . . , xn). Then

L⊗κ κP = (L⊗κ κ(x1, . . . , xn))⊗K κP .

Since κP is a finite separable algebraic extension of K, it suffices prove that L ⊗κ K is
regular. But this ring is a localization of L[x1, . . . , xn], and so the proof is complete. �

|

We say that a homomorphism R → S of Noetherian rings is geometrically regular if it
is flat and all the fibers κP → κP ⊗R S are geometrically regular. (Some authors use the
term “regular” for this property.)

For those readers familiar with smooth homomorphisms, we mention that if S is essen-
tially of finite type over R, then S is geometrically regular if and only if it is smooth.

By a very deep result of Popescu (cf. [D. Popescu, General Néron desingularization,
Nagoya Math. J. 100 (1985) 97–126], every geometrically regular map is a direct limit
of smooth maps. Whether Popescu’s argument was correct was controversial for a while.
Richard Swan showed that Popescu’s argument was essentially correct in [R. G Swan,
Néron-Popescu desingularization, Algebra and geometry (Taipei, 1995), 135–192, Lect.
Algebra Geom. 2 Int. Press, Cambridge, MA, 1998].

Catenary and universally catenary rings

A Noetherian ring is called catenary if for any two prime ideals P ⊆ Q, any two saturated
chains of primes joining P to Q have the same length. In this case, the common length
will be the same as the dimension of the local domain RQ/PRQ.

Nagata was the first to give examples of Notherian rings that are not catenary. E.g.,
in [M. Nagata, Local Rings, Interscience, New York, 1962] Appendix, pp. 204–5, Nagata
gives an example of a local domain (D, m) of dimension 3 containing a height one prime
P such that dim (D/P ) = 1, so that (0) ⊂ Q ⊂ m is a saturated chain, while the longest
saturated chains joining (0) to m have the form (0) ⊂ P1 ⊂ P2 ⊂ m. One has to work
hard to construct Noetherian rings that are not catenary. Nagata also gives an example
of a ring R that is catenary, but such that R[x] is not catenary.

Notice that a localization or homomorphic image of a catenary ring is automatically
catenary.

R is called universally catenary if every polynomial ring over R is catenary. This implies
that every ring essentially of finite type over R is catenary.

A very important fact about Cohen-Macaulay rings is that they are catenary. Moreover,
a polynomial ring over a Cohen-Macaulay ring is again a Cohen-Macaulay ring, which then
implies that every Cohen-Macaulay ring is universally catenary. In particular, regular rings
are universally catenary. Cohen-Macaulay local rings have a stronger property: they are
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equidimensional, and all saturated chains from a minimal prime to the maximal ideal have
length equal to the dimension of the local ring.

|
We shall prove the statements in the paragraph above. We first note:

Theorem. If R is Cohen-Macaulay, so is the polynomial ring in n variables over R.

Proof. By induction, we may assume that n = 1. Let M be a maximal ideal of R[X]
lying over m in R. We may replace R by Rm and so we may assume that (R, m, K) is
local. Then M, which is a maximal ideal of R[x] lying over m, corresponds to a maximal
ideal of K[x]: each of these is generated by a monic irreducible polynomial f , which lifts
to a monic polynomial F in R[x]. Thus, we may assume that M = mR[x] + FR[X]. Let
x1, . . . , xd be a system of parameters in R, which is also a regular sequence. We may kill
the ideal generated by these elements, which also form a regular sequence in R[X]M. We
are now in the case where R is an Artin local ring. It is clear that the height of M is
one. Because F is monic, it is not a zerodivisor: a monic polynomial over any ring is not
a zerodivisor. This shows that the depth of M is one, as needed. �

Theorem. Let (R, m, K) be a local ring and M 6= 0 a finitely generated Cohen-Macaulay
R-module of Krull dimension d. Then every nonzero submodule N of M has Krull dimen-
sion d.

Proof. We replace R by R/AnnRM . Then every system of parameters for R is a regular
sequence on M . We use induction on d. If d = 0 there is nothing to prove. Assume
d > 0 and that the result holds for smaller d. If M has a submodule N 6= 0 of dimension
≤ d − 1, we may choose N maximal with respect to this property. If N ′ is any nonzero
submodule of M of dimension < d, then N ′ ⊆ N . To see this, note that N ⊕ N ′ has
dimension < d, and maps onto N +N ′ ⊆M , which therefore also has dimension < d. By
the maximality of N , we must have N +N ′ = N . Since M is Cohen-Macaulay and d ≥ 1,
we can choose x ∈ m not a zerodivisor on M , and, hence, also not a zerodivisor on N .
We claim that x is not a zerodivisor on M = M/N , for if u ∈ M −N and xu ∈ N , then
Rxu ⊆ N has dimension < d. But this module is isomorphic with Ru ⊆ M , since x is
not a zerodivisor, and so dim (Ru) < d. But then Ru ⊆ N . Consequently, multiplication
by x induces an isomorphism of the exact sequence 0 → N → M → M → 0 with the
sequence 0 → xN → xM → xM → 0, and so this sequence is also exact. But we have a
commutative diagram

0 −−−−→ N −−−−→ M −−−−→ M −−−−→ 0x x x
0 −−−−→ xN −−−−→ xM −−−−→ xM −−−−→ 0

where the vertical arrows are inclusions. By the nine lemma, or by an elementary diagram
chase, the sequence of cokernels 0→ N/xN →M/xM →M/xM → 0 is exact. Because x
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is not a zerodivisor on M , it is part of a system of parameters for R, and can be extended
to a system of parameters of length d, which is a regular sequence on M . Since x is
a nonzerodivisor on N and M , dim (N/xN) = dim (N) − 1 < d − 1, while M/xM is
Cohen-Macaulay of dimension d− 1. This contradicts the induction hypothesis. �

Corollary. If (R, m, K) is Cohen-Macaulay, R is equidimensional: every minimal prime
p is such that dim (R/p) = dim (R).

Proof. If p is minimal, it is an associated prime of R, and we have R/p ↪→ R. Since all
nonzero submodules of R have dimension dim (R), the result follows. �

Thus, a Cohen-Macaulay local ring cannot exhibit the kind of behavior one observes
in R = K[[x, y, z]]/

(
(x, y) ∩ (z)

)
: this ring has two minimal primes. One of them, p1,

generated by the images of x and y, is such that R/p1 has dimension 1. The other, p2,
generated by the image of z, is such that R/p2 has dimension 2. Note that while R is not
equidimensional, it is still catenary.

We next observe:

Theorem. In a Cohen-Macaulay ring R, if P ⊆ Q are prime ideals of R then every
saturated chain of prime ideals from P to Q has length height (Q) − height (P ). Thus, R
is catenary.

It follows that every ring essentially of finite type over a Cohen-Macaulay ring is uni-
versally catenary.

Proof. The issues are unaffected by localizing at Q. Thus, we may assume that R is
local and that Q is the maximal ideal. There is part of a system of parameters of length
h = height (P ) contained in P , call it x1, . . . , xh, by the Corollary near the bottom of p. 7
of the Lecture Notes of Septermber 5. This sequence is a regular sequence on R and so
on RP , which implies that its image in RP is system of parameters. We now replace R by
R/(x1, . . . , xh): when we kill part of a system of parameters in a Cohen-Macaulay ring, the
image of the rest of that system of parameters is both a system of parameters and a regular
sequence in the quotient. Thus, R remains Cohen-Macaulay. Q and P are replaced by their
images, which have heights dim (R)− h and 0, and dim (R)− h = dim

(
R/(x1, . . . , xh)

)
.

We have therefore reduced to the case where (R, Q) is local and P is a minimal prime.

We know that dim (R) = dim (R/P ), and so at least one saturated chain from P to Q
has length height (Q) − height (P ) = height (Q) − 0 = dim (R). To complete the proof, it
will suffice to show that all saturated chains from P to Q have the same length, and we
may use induction on dim (R). Consider two such chains, and let their smallest elements
other than P be P1 and P ′1. We claim that both of these are height one primes: if, say, P1

is not height one we can localize at it and obtain a Cohen-Macaulay local ring (S, m) of
dimension at least two and a saturated chain p ⊆ m with p = PS minimal in S. Choose
an element y ∈ m that is not in any minimal primes of S: its image will be a system of
parameters for S/p, so that Ry+p is m-primary. Extend y to a regular sequence of length
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two in S: the second element has a power of the form ry+u, so that y, ry+u is a regular
sequence, and, hence, so is y, u. But then u, y is a regular sequence, a contradiction, since
u ∈ p. Thus, P1 (and, similarly, P ′1), have height one.

Choose an element f in P1 not in any minimal prime of R, and an element g of P ′1
not in any minimal prime of R. Then fg is a nonzerodivisor in R, and P1, P ′1 are both
minimal primes of xy. The ring R/(xy) is Cohen-Macaulay of dimension dim (R) − 1.
The result now follows from the induction hypothesis applied to R/(xy): the images of
the two saturated chains (omitting P from each) give saturated chains joining P1/(xy)
(respectively, P ′1/(xy)) to Q/(xy) in R/(xy). These have the same length, and, hence, so
did the original two chains.

The final statement now follows because a polynomial ring over a Cohen-Macaulay ring
is again Cohen-Macaulay. �

|

Excellent rings

A Noetherian ring R is called a G-ring (“G” as in “Grothendieck”) if for every local

ring A of R, the map A→ Â is geometrically regular.

An excellent ring is a universally catenary Noetherian G-ring R such that in every
finitely generated R-algebra S, the regular locus {P ∈ Spec (S) : SP is regular} is Zariski
open.

Excellent rings include the integers, fields, and complete local rings, as well as convergent
power series rings over C and R. Every discrete valuation ring of equal characteristic 0
or of mixed characteristic is excellent. The following two results contain most of what we
need to know about excellent rings.

Theorem. Let R be an excellent ring. Then every localization of R, every homomor-
phic image of R, and every finitely generated R-algebra is excellent. Hence, every algebra
essentially of finite type over R is excellent.

Theorem. Let R be an excellent ring.

(a) If R is reduced, the normalization of R is module-finite over R.

(b) If R is local and reduced, then R̂ is reduced.

(c) If R is local and equidimensional, then R̂ is equidimensional.

(d) If R is local and normal, then R̂ is normal.

For proofs of these results, we refer the reader to [H. Matsumura, Commutative Algebra,
W.A. Benjamin, New York, 1970], as mentioned earlier.
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Note that one does not expect the completion of an excellent local doman to be a
domain. For example, consider the one-dimensional domain S = C[x, y]/(y2 − x2 − x3).
This is a domain because x2 + x3 is not a perfect square in C[x, y] (and, hence, not in its
fraction field either, since C[x, y] is normal). If m = (x, y)S, then Sm is a local domain
of dimension one. The completion of this ring is ∼= C[[x, y]]/(y2 − x2 − x3). This ring
is not a domain: the point is that x2 + x3 = x2(1 + x) is a perfect square in the formal
power series ring. Its square root may be written down explicitly using Newton’s binomial
theorem. Alternatively, one may see this using Hensel’s Lemma: see p. 2 of the lecture
notes of March 21 from Math 615, Winter 2007.

One does have from parts (b) and (c) of the Theorem above that the completion of an
excellent local domain is reduced and equidimensional.

|

Example: a DVR that is not excellent. LetK be a perfect field of prime characteristic
p > 0, and let

t1, t2, t3, . . . , tn, . . .

be countably many indeterminates over K. Let

L = K(t1, . . . , tn, . . . ),

and let Ln = Lp(t1, . . . , tn), which contains the p th power of every tj and the first powers
of t1, . . . , tn. Let x be a formal indeterminate, and let Vn = Ln[[x]], a DVR in which every
nonzero element is a unit times a power of x. Let

V =
∞⋃
n=1

Vn,

which is also a DVR in which every element is unit times a power of x. V has residue field

L, and V̂ ∼= L[[x]], but V only contains those power series such that all coefficients lie in
a fixed choice of Ln. For example,

f = t1x+ t2x
2 + · · ·+ tnx

n + · · · ∈ V̂ − V.

Note that the p th power of every element of V̂ is in V . Thus, the generic fiber

K = frac (V )→ frac (V̂ ) = L

is a purely inseparable field extension, and is not geometrically regular. The ring

K[f ]⊗K L

is not even reduced: f ⊗ 1− 1⊗ f is a nonzero nilpotent. Thus, V is not a G-ring.

|
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Math 711: Lecture of September 21, 2007

F-finite rings

Let R be a Noetherian ring of prime characteristic p > 0. R is called F-finite if the
Frobenius endomorphism F : R → R makes R into a module-finite R-algebra. This is
equivalent to the assertion that R is module-finite over the subring F (R) = {rp : r ∈ R},
which may also be denoted Rp. When R is reduced, this is equivalent to the condition
that R1/p is module-finite over R, since in the reduced case the inclusion R ⊆ R1/p is
isomorphic to the homomorphism F : R→ R.

Proposition. Let R be a Noetherian ring of prime characteristic p > 0.

(a) R is F-finite if and only if Rred is F-finite.

(b) R is F-finite if and only and only if F e : R→ R is module-finite for all e if and only
if F e : R→ R is module-finite for some e ≥ 1.

(c) If R is F-finite, so is every homomorphic image of R.

(d) If R is F-finite so is every localization of R.

(e) If R is F-finite, so is every algebra finitely generated over R.

(f) If R is F-finite, so is the formal power series ring R[[x1, . . . , xn]].

(g) If (R, m, K) is a complete local ring, R is F -finite if and only if the field K is F-finite.

(h) If R is F-finite, so is every ring essentially of finite type over R.

(i) If K is a field that is finitely generated as a field over a perfect field, then every ring
essentially of finite type over K is F-finite.

Proof. Parts (c) and (d) both follow from the fact that if B is a finite set of generators for
R as F (R)-module, the image of B in S will generate S over F (S) if S = R/J and also if
S = W−1R. In the second case, it should be noted that F (W−1R) may be identified with
W−1F (R) because localizing at w and a wp have the same effect.

For part (a), note that if R is F -finite, so is Rred by part (c), since Rred = R/J , where
J is the ideal of all nilpotent elements. Now suppose that I is any ideal of R such that
R/I is F-finite. Let the images of u1, . . . , un span R/I over the image of (R/I)p, and let
v1, . . . , vh generate I over R. Let A = Rpu1 + · · ·+Rpun. Then R = A+Rv1 + · · ·+Rvh.
If we substitute the same formula for each copy of R occuring in an Rvj term on the right,
we find thtat

R = A+
∑
i,j

Rpuivj +
∑
j,j′

Rv′jvj .
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It follows that the n + nh elements ui and uivj span R/I2 over the image of (R/I2)p.

Thus, (R/I2) is F-finite. By a straightforward induction, R/I2k is F -finite for all k. Hence
if I = J is the ideal of nilpotents, we see that R itself is F-finite.

For part (b), note that if F : R → R is F-finite, so is the e-fold composition. On the
other hand, if F e : R → R is finite, so is F e : S → S, where S = Rred. Then we have
S ⊆ S1/p ⊆ S1/q, and since S1/q is a Noetherian S-module, so is S1/p. Thus, S is F-finite,
and so is R by part (a).

To prove (e), it suffices to consider the case of a polynomial ring in a finite number
of variables over R, and, by induction it suffices to consider the case where S = R[x].
Likewise, for part (f) we need only show that R[[x]] is F-finite. Let u1, . . . , un span R
over Rp. Then, in both cases, the elements uix

j , 1 ≤ i ≤ n, 1 ≤ j ≤ p − 1, span S over
Sp = Rp[xp] (respectively, Rp[[xp]]).

For (g), note that K = R/m, so that if (R, m, K) is F-finite, so is K. If R is complete
it is a homomorphic image of a formal power series ring K[[x1, . . . , xn]], where K is the
residue class field of R. By part (f), if K is F-finite, so is R.

Part (h) is immediate from parts (e) and (d). For part (i) first note that K itself is
essentially of finite type over a perfect field, and a perfect field is obviously F -finite. The
final statement is then immediate from part (h). �

A proof of the following result of Ernst Kunz would take us far afield. We refer the
reader to [E. Kunz, On Noetherian rings of characteristic p, Amer. J. Math. 98 (1976)
999–1013].

Theorem (Kunz). Every F-finite ring is excellent.

We are aiming to prove the following result about F-finite rings:

Theorem (existence of test elements). Let R be a reduced F-finite ring, and let c ∈ R◦
be such that Rc is regular. Then c has a power cN that is a completely stable big test
element.

This is terrifically useful. Elements c ∈ R◦ such that Rc is regular always exist. In any
excellent ring,

{P ∈ Spec (R) : RP is regular}
is open. Since the complement is closed, there is an ideal I such that

V(I) = {P ∈ Spec (R) : RP is not regular}.
We refer to this set of primes as the singular locus of Spec (R) or of R. Note that if R is
reduced, we cannot have I ⊆ p for any minimal prime p of R, because that would mean
the Rp is not regular, and Rp is a field. Hence, I is not contained in the union of the
minimal primes of R, which means that I meets R◦. If c ∈ I ∩ R◦, then Rc is regular:
primes that do not contain c cannot contain I. Hence, in a reduced F-finite (or any reduced
excellent) ring, there is always an element r ∈ R◦ such that Rc is regular, and this means
that Theorem above can be applied. Hence:
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Corollary. Every reduced F-finite ring has a completely stable big test element.

It will take some time before we can prove the Theorem on existence of test elements.
Our approach requires studying the notion of a strongly F-regular ring. We give the
definition below. However, we first want to comment on the notion of an F-split ring.

Definition: F-split rings. Let R be a ring of prime characteristic p > 0. We shall say
that R is F-split if, under the map F : R→ R, the left hand copy of R is a direct summand
of the right hand copy of R.

If R is F-split, F : R→ R must be injective. This is equivalent to the condition that R
be reduced. An equivalent condition is therefore that R be reduced and that R be a direct
summand of R1/p as an R-module, i.e., there exists an R-linear map θ : R1/p → 1 such
that θ(1) = 1.

Proposition. Let R be a reduced ring of prime characteristic p > 0. The following
conditions are equivalent:

(1) R is F-split.

(2) R→ R1/q splits as a map of R-modules for all q.

(3) R→ R1/q splits as a map of R-modules for at least one value of q > 1.

Proof. (1) ⇒ (2). Let θ : R1/p → R be a splitting. Then for all q = pe > 1, if q′ = pe−1,

we may define a splitting θe : R1/q → R1/q′ by

θe(r
1/q) =

(
θ(r1/p)

)1/q′
.

Thus, the diagram:

R1/q θe−−−−→ R1/q′

∼=
x ∼=

x
R1/p θ−−−−→ R

commutes, where the vertical arrows are the isomorphisms r1/p 7→ r1/q and r 7→ r1/q′ ,
respectively. Of course, θ1 = θ. Then θe is R1/q′ -linear and, in particular, R-linear.
Hence, the composite map

θ1 ◦ θ2 ◦ · · · ◦ θe : R1/q → R

gives the required splitting.

(2) ⇒ (3) is clear. Finally, assume (3). Then R ⊆ R1/p ⊆ R1/q, so that a splitting
R1/q → R may simply be restricted to R1/p, and (1) follows. �



79

Strongly F-regular rings

We have defined a ring to be weakly F-regular if every ideal is tightly closed, and to be
F-regular if all of its localizations have this property as well. We next want to introduce
the notion of a strongly F-regular ring R: for the moment, we make this definition only
when R is F -finite.

The definition is rather technical, but this condition turns out to be easier to work with
than the other notions. It implies that every submodule of every module is tightly closed,
it passes to localizations automatically, and it leads to a proof of the Theorem on existence
of test elements stated on p. 2.

Of course, the value of this notion rests on whether there are examples of strongly F-
regular rings. We shall soon see that every regular F-finite ring is strongly F-regular. Let
1 ≤ t ≤ r ≤ s be integers. If K is an algebraically closed field (or an F-finite field), and X
is an r × s matrix of indeterminates over K, then the ring obtained from the polynomial
ring K[X] in the entries of X by killing the ideal It(X) generated by the t× t minors of X
is strongly F-regular, and so is the ring generated over K by the r × r minors of X (this
is the homogeneous coordinate ring of a Grassman variety). The normal rings generated
by finitely many monomials in indeterminates are also strongly F-regular. Thus, there are
many important examples.

In fact, in the F-finite case, every ring that is known to be weakly F-regular is known
to be strongly F-regular.

Conjecture. Every weakly F-regular F-finite ring is strongly F-regular.

This is a very important open question. It is known to be true in many cases: we shall
discuss what is known at a later point.

Definition: strong F-regularity. Let R be a Noetherian ring of prime characteristic
p > 0, and suppose that R is reduced and F-finite. We define R to be strongly F-regular if
for every c ∈ R◦ there exists qc such that the map R → R1/qc that sends 1 7→ c1/qc splits
over R. That is, for all c ∈ R◦ there exist qc and an R-linear map θ : R1/qc → R such that
θ(c1/qc) = 1.

The element qc will usually depend on c. For example, one will typically need to make
a larger choice for cp than for c.

Remark. The following elementary fact is very useful. Let h : R→ S be a ring homomor-
phism and let M be any S-module. Let u be any element of M . Suppose that the unique
R-linear map R → M such that 1 7→ u (and r 7→ ru) splits over R. Then R is a direct
summand of S, i.e., there is an R-module splitting for h : R→ S. In fact, if θ : M → R is
R-linear and θ(u) = 1, we get the required splitting by defining φ(s) = θ(su) for all s ∈ S.
Note also that the fact that R → M splits is equivalent to the assertion that R → Ru
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such that 1 7→ u is an isomorphism of R-modules, together with the assertion that Ru is
a direct summand of M as an R-module.

We may apply this remark to the case where S = R1/qc in the above definition. Thus:

Proposition. A strongly F-regular ring R is F-split.

We also note:

Proposition. Suppose that R is a reduced Noetherian ring of prime characteristic p > 0,
that c ∈ R◦, and that R→ R1/qc sending 1 7→ c1/qc splits over R. Then for all q ≥ qc, the
map R→ R1/q sending 1 7→ c1/q splits over R.

Proof. It suffices to show that if we have a splitting for a certain q, we also get a splitting
for the next higher value of q, which is qp. Suppose that θ : R1/q → R is R-linear and
θ(c1/q) = 1. We define θ′ : R1/pq → R1/p by the rule

θ′(r1/pq) =
(
θ(r1/q)

)1/p
.

That is, the diagram

R1/pq θ′−−−−→ R1/p

∼=
x ∼=

x
R1/q θ−−−−→ R

commutes. Then θ′ is R1/p-linear and θ′(c1/pq) = 1 ∈ R1/p. By the Remark beginning on
the bottom of p. 4, R → R1/q splits, and so R is F-split, i.e., we have an R-linear map
β : R1/p → R such that β(1) = 1. Then β ◦ θ′ is the required splitting. �

The following fact is now remarkably easy to prove.

Theorem. Let R be a strongly F-regular ring. Then for every inclusion of N ⊆ M of
modules (these are not required to be finitely generated), N is tightly closed in M .

Proof. We may map a free module G onto M and replace N by its inverse image H ⊆ G.
Thus, it suffices to show that H = H∗G when G is free. Suppose that u ∈ H∗G. We want to

prove that u ∈ H. Since u ∈ H∗G, for all q � 0, cuq ∈ H [q]. Choose qc such that R→ R1/qc

with 1 7→ c1/qc splits. Then fix q ≥ qc such that cuq ∈ H [q]. Then the map R → R1/q

sending 1→ c1/q also splits, and we can choose θ : R1/q → R such that θ(c1/q) = 1.

The fact that cuq ∈ H [q] gives an equation

cuq =

n∑
i=1

rih
q
i
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with the ri ∈ R and the hi ∈ H. We work in R1/q ⊗R G and take q th roots to obtain

(∗) c1/qu =

n∑
i=1

r
1/q
i hi.

We have adopted the notation r1/qg for r1/q ⊗ g. By tensoring with G, from the R-linear
map θ : R1/q → R we get an R-linear map θ′ : R1/q⊗G→ G such that θ′(r1/qg) = θ(r1/q)g
for all g ∈ G. We may now apply θ′ to (∗) to obtain

u = 1 · u = θ(c1/q)u =
n∑
i=1

θ(r
1/q
i )hi.

Since every θ(r
1/q
i ) ∈ R, the right hand side is in H, i.e., u ∈ H. �

Corollary. A strongly F-regular ring is weakly F-regular and, in particular, normal. �
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Math 711: Lecture of September 24, 2007

Flat base change and Hom

We want to discuss in some detail when a short exact sequence splits. The following
result is very useful.

Theorem (Hom commutes with flat base change). If S is a flat R-algebra and M , N
are R-modules such that M is finitely presented over R, then the canonical homomorphism

θM :S ⊗R HomR(M,N)→ HomS(S ⊗RM,S ⊗R N)

sending s⊗ f to s(1S ⊗ f) is an isomorphism.

|
Proof. It is easy to see that θR is an isomorphism and that θM1⊕M2 may be identified

with θM1 ⊕ θM2 , so that θG is an isomorphism whenever G is a finitely generated free
R-module.

Since M is finitely presented, we have an exact sequence H → G�M → 0 where G, H
are finitely generated free R-modules. In the diagram below the right column is obtained
by first applying S⊗R (exactness is preserved since ⊗ is right exact), and then applying
HomS( , S⊗RN), so that the right column is exact. The left column is obtained by first
applying HomR( , N), and then S⊗R (exactness is preserved because of the hypothesis
that S is R-flat). The squares are easily seen to commute.

S ⊗R HomR(H,N)
θH−−−−→ HomS(S ⊗R H,S ⊗R N)x x

S ⊗R HomR(G,N)
θG−−−−→ HomS(S ⊗R G,S ⊗R N)x x

S ⊗R HomR(M,N)
θM−−−−→ HomS(S ⊗RM,S ⊗R N)x x

0 −−−−→ 0

From the fact, established in the first paragraph, that θG and θH are isomorphisms and
the exactness of the two columns, it follows that θM is an isomorphism as well (kernels of
isomorphic maps are isomorphic). �

|
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Corollary. If W is a multiplicative system in R and M is finitely presented, we have that
W−1HomR(M,N) ∼= HomW−1R(W−1M,W−1N).

Moreover, if (R,m) is a local ring and both M , N are finitely generated, we may identify

Hom
R̂

(M̂, N̂) with the m-adic completion of HomR(M,N) (since m-adic completion is

the same as tensoring over R with R̂ (as covariant functors) on finitely generated R-
modules). �

When does a short exact sequence split?

Throughout this section, 0 −→ N
α−→M

β−→ Q→ 0 is a short exact sequence of modules
over a ring R. There is no restriction on the characteristic of R. We want to discuss the
problem of when this sequence splits. One condition is that there exist a map η : M → N
such that ηα = 1N . Let Q′ = Ker (η). Then Q′ is disjoint from the image α(N) = N ′ of
N in M , and N ′+Q′ = M . It follows that M is the internal direct sum of N ′ and Q′ and
that β maps Q′ isomorphically onto Q.

Similarly, the sequence splits if there is a map θ : Q → M such that βθ = 1Q. In this
case let N ′ = α(N) and Q′ = θ(Q). Again, N ′ and Q′ are disjoint, and N ′ +Q′ = M , so
that M is again the internal direct sum of N ′ and Q′.

Proposition. Let R be an arbitrary ring and let

(#) 0 −→ N
α−→M

β−→ Q→ 0

be a short exact sequence of R-modules. Consider the sequence

(∗) 0 −→ HomR(Q, N)
α∗−→ HomR(Q, M)

β∗−→ HomR(Q, Q)→ 0

which is exact except possibly at HomR(Q, Q), and let C = Coker (β∗). The following
conditions are equivalent:

(1) The sequence (#) is split.

(2) The sequence (∗) is exact.

(3) The map β∗ is surjective.

(4) C = 0.

(5) The element 1Q is in the image of β∗.

Proof. Because Hom commutes with finite direct sum, we have that (1)⇒ (2), while (2)⇒
(3) ⇔ (4) ⇒ (5) is clear. It remains to show that (5) ⇒ (1). Suppose θ : Q → M is such
that β∗(θ) = 1Q. Since β∗ is induced by composition with β, we have that βθ = 1Q. �

A split exact sequence remains split after any base change. In particular, it remains
split after localization. There are partial converses. Recall that if I ⊆ R,

V(I) = {P ∈ Spec (R) : I ⊆ P},
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and that
D(I) = Spec (R)− V(I).

In particular,
D(fR) = {P ∈ Spec (R) : f /∈ P},

and we also write D(f) or Df for D(fR).

Theorem. Let R be an arbitrary ring and let

(#) 0 −→ N
α−→M

β−→ Q→ 0

be a short exact sequence of R-modules such that Q is finitely presented.

(a) (#) is split if and only if for every maximal ideal m of R, the sequence

0→ Nm →Mm → Qm → 0

is split.

(b) Let S be a faithfully flat R-algebra. The sequence (#) is split if and only if the sequence

0→ S ⊗R N → S ⊗RM → S ⊗R Q→ 0

is split.

(c) Let W be a multiplicative system in R. If the sequence

0→W−1N →W−1M →W−1Q→ 0

is split over W−1R, then there exists a single element c ∈W such that

0→ Nc →Mc → Qc → 0

is split over Rc.

(d) If P is a prime ideal of R such that

0→ NP →MP → QP → 0

is split, there exists an element c ∈ R− P such that

0→ Nc →Mc → Qc → 0

is split over Rc. Hence, (#) becomes split after localization at any prime P ′ that does
not contain c, i.e., any prime P ′ such that c /∈ P ′.

(e) The split locus for (#), by which we mean the set of primes P ∈ Spec (R) such that

0→ NP →MP → QP → 0
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is split over RP , is a Zariski open set in Spec (R).

Proof. Let C = Coker
(
Hom(Q, M) → HomR(Q, Q)

)
, as in the preceding Proposition,

and let γ denote the image of 1Q in C. By part (4) of the preceding Propostion, (#) is
split if and only if γ = 0.

(a) The “only if” part is clear, since splitting is preserved by any base change. For the
“if” part, suppose that γ 6= 0. The we can choose a maximal ideal m in the support of
Rγ ⊆ C, i.e., such that AnnRγ ⊆ m. The fact that Q is finitely presented implies that
localization commutes with Hom. Thus, localizing at m yields

0→ HomRm(Qm, Nm)→ HomRm(Qm, Mm)→ HomRm(Qm, Qm)→ Cm → 0,

and since the image of γ is not 0, the sequence 0→ Nm →Mm → Qm → 0 does not split.

(b) Again, the “only if” part is clear, and since Q is finitely presented and S is flat,
Hom commutes with base change to S. After base change, the new cokernel is S ⊗R C.
But C = 0 if and only if S ⊗R C = 0, since S is faithfully flat, and the result follows.

(c) Similarly, the sequence is split after localization at W if and only if the image of γ
is 0 after localization at W , and this happens if and only if cγ = 0 for some c ∈ W . But
then localiziing at the element c kills γ.

(d) This is simply part (c) applied with W = R− P

(e) If P is in the split locus and c /∈ P is chosen as in part (d), D(c) is a Zariski open
neighborhood of P in the split locus. �

Behavior of strongly F-regular rings

Theorem. Let R be an F-finite reduced ring. Then the following conditions are equivalent:

(1) R is strongly F-regular.

(2) Rm is strongly F-regular for every maximal ideal m of R.

(3) W−1R is strongly F -regular for every multiplicative system W in R.

Proof. We shall show that (1)⇒ (3)⇒ (2)⇒ (1).

To show that (1) ⇒ (3), suppose that R is strongly F -regular and let W be a multi-
plicative system. By the Proposition on p. 2 of the Lecture Notes of September 17, every
element of (W−1R)◦ has the form c/w where w ∈ W and c ∈ R◦. Given such an element
c/w, we can choose qc and an R-linear map θ : R1/qc → R such that θ(c1/q) = 1. After
localization at c, θ induces a map θc : (Rc)

1/qc → Rc sending (c/1)1/qc to 1/1. Define
η : (Rc)

1/qc → Rc by η(u) = θc(w
1/qcu). Then η : (Rc)

1/qc → Rc is an Rc-linear map such
that η

(
(c/w)1/qc

)
= 1, as required. (3)⇒ (2) is obvious.

It remains to show that (2) ⇒ (1). Fix c ∈ R◦. Then for every maximal ideal m of
R, the image of c is in (Rm)◦, and so there exist qm and a splitting of the map Rm →
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(R1/qm)m ∼= (Rm)1/qm that sends 1 7→ c1/qm . Then there is also such a splitting of the map
R→ R1/qm after localizing at any prime in a Zariski neighborhood Um of m. Since the Um
cover MaxSpec (R), they cover Spec (R), and by the quasicompactness of Spec (R) there
are finitely many maximal ideals m1, . . . ,mn such that the open sets Um1

, . . . , Umn cover
Spec (R). Let qc = max {qm1 , . . . , qmn}. Then the map R → R1/qc that sends 1 7→ c1/qc

splits after localizing at any maximal ideal in any of the Umi , i.e., after localizing at any
maximal ideal. By part (a) of the preceding Proposition, the map R → R1/qc sending
1 7→ c1/qc splits, as required. �

Corollary. A strongly F-regular ring is F-regular.

Proof. This is immediate from the fact that strongly F-regular rings are weakly F-regular
and the fact that a localization of a strongly F-regular ring is strongly F-regular. �

Corollary. R is strongly F-regular if and only if it is a finite product of strongly F-regular
domains.

Proof. If R is strongly F-regular it is normal, and, therefore, a product of domains. Since
the issue of whether R is strongly F-regular is local on the maximal ideals of R, when R
is a product of domains it is strongly F-regular if and only if each of the factor domains is
strongly F-regular. �

Proposition. If S is strongly F-regular and R is a direct summand of S, then R is strongly
F-regular.

Proof. If R and S are domains, we may proceed as follows. Let c ∈ R◦ = R−{0} be given.
Since S is strongly F-regular we may choose q and an S-linear map θ : S1/q → S such that
θ(c1/q) = 1. Let α : S → R be R-linear such that α(1) = 1. Then α ◦ θ : S1/q → R is
R-linear and sends c1/q 7→ 1. We may restrict this map to R1/q.

In the general case, we may first localize at a prime of R: it suffices to see that every
such localization is strongly F -regular. S is a product of F -regular domains S1 × · · · × Sn
each of which is an R-algebra. Let α : S → R be such that α(1) = 1. The element 1 ∈ S is
the sum of n idempotents ei, where ei has component 0 in Sj for j 6= i while the component
in Si is 1. Then 1 = α(1) =

∑n
i=1 α(ei), and since R is local, at least one α(ei) is not in

the maximal ideal m of the local ring R, i.e., we can fix i such that α(ei) is a unit a of R.
We have an R-linear injection ι : Si → S by identifying Si with 0 × 0 × Si × 0 × 0, i.e.,
with the set of elements of S all of whose coordinates except the i th are 0. Then a−1α ◦ ι
is a splitting of R → Si over R, and so we have reduced to the domain case, which was
handled in the first paragraph. �

We also have:

Proposition. If R → S is faithfully flat and S is strongly F-regular then R is strongly
F-regular.
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Proof. Let c ∈ R◦. Then c ∈ S◦, and so there exists q and an S-linear map S1/q → S such
that c1/q 7→ 1. There is an obvious map S⊗RR1/q → S1/q, since both factors in the tensor
product have maps to S1/q as R-algebras. This yields a map S ⊗R R1/q → S = S ⊗R R
that sends 1⊗ c1/q 7→ 1⊗ 1 that is S-linear. This implies that the map R→ R1/q sending
1 7→ c1/q splits after a faithfully flat base change to S. By part (b) of the Theorem at the
top of p. 3, the map R→ R1/q such that 1 7→ c1/q spits over R, as required. �

Theorem. An F-finite regular ring is strongly F-regular.

Proof. We may assume that (R, m, K) is local: it is therefore a domain. Let c 6= 0 be
given. Choose q so large that c /∈ m[q]: this is possible because

⋂
qm

[q] ⊆
⋂
qm

q = (0).

The flatness of Frobenius implies that R1/q is flat and, therefore, free over R since R1/q is
module-finite over R. (Alternatively, R1/q is free because a regular system of parameters
x1, . . . , xn in R is a regular sequence on R1/q: one may apply the Lemma in the middle of
p. 8 of the Lecture Notes of September 5. Or one may further reduce to the case where R
is complete, using the preceding Proposition, and even pass from the complete regular ring
K[[x1, . . . , xn] to K[[x1, . . . , xn]], where K is an algebraic closure of K. This is simply a
further faithfully flat extension. Now the fact that R1/q is R-free is easy.) Since c /∈ m[q],
we have that c1/q /∈ mR1/q. By Nakayama’s Lemma, c1/q is part of a minimal basis for
the R-free module R1/q, and a minimal basis is a free basis. It follows that there is an
R-linear map R1/q → R such that c1/q 7→ 1: the values can be specified arbitrarily on a
free basis containing c1/q. �

Remark: q th roots of maps. The following situation arises frequently in studying
strongly F-regular rings. One has q, q0, q1, q2, where these are all powers of p, the prime
characteristic, such that q0 ≤ q1 and q0 ≤ q2, and we have an R1/q0 -linear map α : R1/q1 →
R1/q2 . This map might have certain specified values, e.g., α(u) = v. Here, one or more of
the integers q, qi may be 1. Then one has a map which we denote α1/q : R1/q1q → R1/q2q

which is R1/q0q-linear, that is simply defined by the rule α1/q(s1/q) = α(s)1/q. Then
α1/q(u1/q) = v1/q.

The following result makes the property of being a strongly F-regular ring much easier
to test: instead of needing to worry about constructing a splitting for every element of R◦,
one only needs to construct a splitting for one element of R◦.

Theorem. Let R be a reduced F-finite ring of prime characteristic p > 0, and let c ∈ R◦
be such that Rc is strongly F-regular. Then R is strongly F-regular if and only if

(∗) there exists qc such that the map R→ R1/qc sending 1 7→ c1/qc splits.

Proof. The condition (∗) is obviously necessary for R to be strongly F-regular: we need to
show that it is sufficient. Therefore, assume that we have an R-linear splitting

θ : R1/qc → R,

with θ(c1/qc) = 1. By the Remark beginning near the bottom of p. 4 of the Lecture Notes
of September 21, we know that R is F-split. Suppose that d ∈ R◦ is given.
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Since Rc is strongly F-regular we can choose qd and an Rc-linear map β : R
1/qd
c → Rc

such that β(d1/qd) = 1. Since HomRc(R
1/qd
c , Rc) is the localization of HomR(R1/qd , R)

at c, we have that β =
1

cq
α for some sufficiently large choice of q: since we are free to

make the power of c in the denominator larger if we choose, there is no loss of generality
in assuming that the exponent is a power of p. Then α : R1/qd → R is an R-linear map
such that

α(d1/qd) = cqβ(d1/qd) = cq.

By taking qqc roots we obtain a map

α1/qqc : R1/qqcqd → R1/qqc

that is R1/qqc-linear and sends d1/qqcqd 7→ c1/qc . Because R is F-split, the inclusion R ↪→
R1/q splits: let γ : R1/q → R be R linear such that γ(1) = 1. Then γ1/qc : R1/qqc → R1/qc

is an R1/qc-linear retraction and sends c1/qc 7→ c1/qc . Then θ◦γ1/qc ◦α1/qqc : R1/qqcqd → R
and sends d1/qqcqd 7→ 1, as required. �
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Math 711, Fall 2007 Problem Set #1
Due: Monday, October 8

1. Let R be a Noetherian domain of characteristic p. Let S be a solid R-algebra: this
means that there is an R-linear map θ : S → R such that θ(1) 6= 0. Show that IS∩R ⊆ I∗.
Note that there is no finiteness condition on S.

2. Let S be weakly F-regular, and let R ⊆ S be such that for every ideal of R, IS ∩R = I.
Show that R is weakly F-regular.

3. Let M be a finitely generated module over a regular ring R of prime characteristic
p > 0. Show that that for all e ≥ 1, the set of associated primes of Fe(M) is equal to the
set of associated primes of M .

4. Let (R, m, K) be a local ring of prime characteristic p > 0 with dim (R) = d > 0. Let
I ⊆ J be two m-primary ideals of R such that J ⊆ I∗. Prove that there is a positive
constant C such that `(R/J [q])− `(R/I [q])| ≤ Cqd−1. (This implies that the Hilbert-Kunz
multiplicities of I and J are the same.) [Here is one approach. Let h, k be the numbers
of generators of I, J , respectively. Show that there exists c ∈ R◦ such that cJ [q] ⊆ I [q] for
q � 0, so that J [q]/I [q] is a module with at most k generators over R/(I [q] + cR) = R/A[q]

where R = R/cR and A = IR. Moreover, dim (R) = d− 1 and Aqh ⊆ A[q].]

5. Let R be a reduced Noetherian ring of prime characteristic p > 0. Show that if R/pi
has a test element for every minimal prime pi of R, then R has a test element.

6. Let (R, m, K) be a Cohen-Macaulay local ring, and let x1, . . . , xn be a system of
parameters. Let It = (xt1, . . . , x

t
n)R for t ≥ n and let I = I1.

(a) Prove that there is an isomorphism between the socle (annihilator of the maximal ideal)
in R/I and the socle in R/It induced by multiplication by xt−1

1 · · ·xt−1
n .

(b) Prove that an m-primary ideal J is tightly closed iff no element of (J :R m)− J is in
J∗. Note that (J :R m)/J is the socle in R/J . (That R is Cohen-Macaulay is not needed
here.)

(c) Prove that I is tightly closed in R if and only if It is tightly closed in R for every t ≥ 1.
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Math 711: Lecture of September 26, 2007

We want to use the theory of strongly F-regular F-finite rings to prove the existence of
test elements.

We first prove two preliminary results:

Lemma. Let R be an F-finite reduced ring and c ∈ R◦ be such that Rc is F-split (which
is automatic if Rc is strongly F-regular). Then there exists an R-linear map θ : R1/p → R
such that the value on 1 is a power of c.

Proof. We can choose an Rc-linear map (Rc)
1/p → Rc such that 1 7→ 1, and

(Rc)
1/p ∼= (R1/p)c.

Then HomRc(R
1/p
c , Rc) is the localization of HomR(R1/p, R) at c, and so we can write

θ =
1

cN
α, where N ∈ N and α : R1/p → R is R-linear. But then α = cNβ and so

α(1) = cNβ(1) = cN , as required. �

Lemma. Let R be a reduced F-finite ring and suppose that there exists an R-linear map
θ : R1/p → R such that θ(1) = c ∈ R◦. Then for every q = pe, there exists an R-linear
map ηq : R1/q → R such that ηq(1) = c2.

Proof. We use induction on q. If q = 1 we may take η1 = c21R, and if q = p we may take

ηp = c θ. Now suppose that ηq has been constructed for q ≥ p. Then η
1/p
q : R1/pq → R1/p,

it is R1/p-linear, hence, R-linear, and its value on 1 is c2/p. Define

ηpq(u) = θ
(
c(p−2)/pηq(u)

)
.

Consequently, we have, as required, that

ηpq(1) = θ
(
c(p−2)/pηq(1)

)
= θ(c(p−2)/pc2/p) = θ(c) = cθ(1) = c2. �

We can now prove the following:

Theorem (existence of big test elements). Let R be F-finite and reduced. If c ∈ R◦
and Rc is strongly F-regular, then c has a power that is a big test element. If Rc is strongly
F-regular and there exists an R-linear map θ : R1/p → R such that θ(1) = c, then c3 is a
big test element.

Proof. Since Rc is strongly F -regular it is F-split. By the first Lemma on p. 1 there exist
an integer N and an R-linear map θ : R1/p → R such that θ(1) = cN . By the second
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statement of the Theorem, c3N is then a big test element, and so it suffices to prove the
second statement.

Suppose that c satsifies the hypothesis of the second statement. By part (a) of the
Proposition at the bottom of p. 8 of the Lecture Notes of September 17, it suffices to show
that if N ⊆ M are arbitrary modules and u ∈ N∗M , then c3u ∈ N . We may map a free
module G onto M , let H be the inverse image of N in G, and let v ∈ G be an element that
maps to u ∈ N . Then we have v ∈ H∗G, and it suffices to prove that c3v ∈ H. Since v ∈ H∗G
there exists d ∈ R◦ such that dvq ∈ H [q] for all q ≥ q1. Since Rc is strongly F-regular,
there exist qd and an Rc-linear map β : (Rc)

1/qd → Rc that sends d1/qd → 1: we may take
qd larger, if necessary, and so we may assume that qd ≥ q1. As usual, we may assume that

β =
1

cq
α where α : R1/qd → R is R-linear. Hence, α = cqβ, and α(d1/qd) = cq. It follows

that α1/q : R1/qdq → R1/q is R1/q-linear, hence, R-linear, and its value on 1 is c. By the
preceding Lemma we have an R-linear map ηq : R1/q → R whose value on 1 is c2, so that

ηq(c) = cηq(1) = c3. Let γ = ηq ◦ α1/q, which is an R-linear map R1/qdq → R sending

d1/qdq to ηq(c) = c3. Since qdq ≥ q1, we have dvqdq ∈ H [qdq], i.e.,

(#) dvqdq =
n∑
i=1

rih
q
i

for some integer n > 0 and elements r1, . . . , rn ∈ R and h1, . . . , hn ∈ H.

Consider G′ = R1/qqd ⊗G. We identify G with its image under the map G → G′ that
sends g 7→ 1 ⊗ g. Thus, if s ∈ R1/qdq, we may write sg instead of s ⊗ g. Note that G′ is
free over R1/qqd, and the R-linear map γ : R1/qqd → R induces an R-linear map

γ′ : G′ = Rqqd ⊗R G→ R⊗R G ∼= G

that sends sg 7→ γ(s)g for all s ∈ R1/qqd and all g ∈ G. Note that by taking qdq th roots
in the displayed equation (#) above, we obtain

(†) d1/qdqv =
n∑
i=1

r
1/qdq
i hi.

We may now apply γ′ to both sides of (†): we have

c3v =
n∑
i=1

γ(r
1/qdq
i )hi ∈ H,

exactly as required. �

Disccussion. As noted on the bottom of p. 2 and top of p. 3 of the Lecture Notes of
September 21, it follows that every F-finite reduced ring has a big test element: one can
choose c ∈ R◦ such that Rc is regular. This is a consequence of the fact that F-finite
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rings are excellent. But one can give a proof of the existence of such elements c in F -finite
rings of characteristic p very easily if one assumes that a Noetherian ring is regular if and
only if the Frobenius endomorphism is flat (we proved the “only if” direction earlier). See
[E. Kunz, Characterizations of regular local rings of characteristic p, Amer. J. Math. 91
(1969) 772–784]. Assuming the “if” direction, we may argue as follows. First note that one
can localize at one such element c so that the idempotent elements of the total quotient
ring of R are in the localization. Therefore, there is no loss of generality in assuming that
R is a domain. Then R1/p is a finitely generated torsion-free R-module. Choose a maximal
set s1, . . . , sn of R-linearly independent elements in R1/p. This gives an inclusion

Rn ∼= Rs1 + · · ·+Rsn ⊆ R1/p.

Call the cokernel C. Then C is finitely generated, and C must be a torsion module over R:
if sn+1 ∈ R1/p represents an element of C that is not a torsion element, then s1, . . . , sn+1

are linearly independent over R, a contradiction. Hence, there exists c ∈ R◦ that kills C,
and so cR1/p ⊆ Rn. It follows that (R1/p)c ∼= Rnc , and so (Rc)

1p is free over Rc. But this
implies that FRc is flat, and so Rc is regular, as required. �

In any case, we have proved:

Corollary. If R is reduced and F-finite, then R has a big test element. Hence, τ b(R)
is generated by the big test elements of R, and τ(R) is generated by the test elements of
R. �

Our next objective is to show that the big test elements produced by the Theorem on
p. 1 are actually completely stable. In fact, we shall prove something more: they remain
test elements after any geometrically regular base change, i.e., their images under a flat
map R→ S with geometrically regular fibers are again test elements.
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Math 711: Lecture of September 28, 2007

We next want to note some elementary connections between properties of regular se-
quences and the vanishing of Tor.

Proposition. Let x1, . . . , xn ∈ R and let M be an R-module. Suppose that x1, . . . , xn is
a possibly improper regular sequence in R, and is also a possibly improper regular sequence
on M . Let Ik = (x1, . . . , xk)R, 0 ≤ k ≤ n, so that I0 = 0. Then

TorRi (R/Ik,M) = 0

for i ≥ 1 and 0 ≤ k ≤ n.

Proof. If k = 0 this is clear, since R is free and has a projective resolution in which the
terms with a positive index all vanish. We use induction on k. We assume the result for
some k < n, and we prove it for k + 1. From the short exact sequence

0 −→ R/Ik
xk+1·−−−→ R/Ik −→ R/Ik+1 −→ 0

we have a long exact sequence for Tor, part of which is

TorRi (R/Ik, M) −→ TorRi (R/Ik+1, M) −→ TorRi−1(R/Ik, M)
xk+1·−−−→ TorRi−1(R/Ik, M)

If i ≥ 2, the result is immediate from the induction hypothesis, because the terms sur-
rounding TorRi (R/Ik+1, M) are 0. If i = 1, this becomes:

0 −→ TorR1 (Ik+1, M) −→M/IkM
xk+1·−−−→M/IkM

which shows that TorR1 (Ik+1, M) is isomorphic with the kernel of the map given by mul-
tiplication by xk+1 on M/IkM , and this is 0 because x1, . . . , xn is a possibly improper
regular sequence on M . �

The following result was stated earlier, in the Lecture Notes of September 14, p. 2.
where it was used to give one of the proofs of the flatness of the Frobenius endomorphism
for a regular ring R. We now give a proof, but in the course of the proof, we assume
the theorem that (∗) over a regular local ring, every module has a finite free resolution
of length at most the dimension of the ring. The condition (∗) actually characterizes
regularity. Later, we shall develop results on Koszul complexes that permit a very easy
proof that the condition (∗) holds over every regular local ring.
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Theorem. Let (R, m, K) be a regular local ring and let M be an R-module. Them M is
a big Cohen-Macaulay module over R if and only if M is faithfully flat over R.

Proof. By the comments at the bottom of p. 2 and top of p. 3 of the Lecture Notes of
September 14, we already know that both conditions in the Theorem imply that mM 6= M ,
and that a faithfully flat module is a big Cohen-Macaulay module. It remains only to prove
that if M is a big Cohen-Macaulay module over R, then M is flat.

It suffices to show that for every R-module N and every i ≥ 1, TorRi (N, M) = 0. In
fact, it suffices to show this when i = 1, for then if 0 → N0 → N1 → N → 0 is exact, we
have

0 = TorR1 (M, N)→M ⊗R N0 →M ⊗R N1

is exact, which yields the needed injectivity. However, we carry through the proof by
reverse induction on i, so that we need to consider all i ≥ 1.

Because Tor commutes with direct limits, we may reduce to the case where N is finitely
generated. We then know that TorRi (N, M) = 0 for i > n, because N has a free resolution
of length at most n by the condition (∗) satisfied by regular local rings that was discussed
in the paragraph just before the statement of the Theorem. Hence, it suffices to prove
that if i ≥ 1 and for all finitely generated R-modules N we have that TorRj (N, M) = 0 for
j ≥ i+ 1, then Tori(N, M) = 0 for all finitely generated R-modules N as well.

We first consider the case where N = R/P is prime cyclic. By the Corollary near the
bottom of p. 7 of the Lecture Notes of September 5, there is a regular sequence whose
length is the height of P contained in P , say x1, . . . , xh, and then P is a minimal prime
of R/(x1, . . . , xh). This implies that P is also an assoicated prime of R/(x1, . . . , xh)R,
so that we have a short exact sequence

0→ R/P → R/(x1, . . . , xh)R→ C → 0

for some R-module C. The long exact sequence for Tor then yields, in part:

TorRi+1(C, M)→ TorRi (R/P, M)→ TorRi (R/(x1, . . . , xh)R, M)

The leftmost term is 0 by the induction hypothesis, and the rightmost term is 0 by the
first Proposition on p. 1. Hence, TorRi (R/P, M) = 0.

We can now proceed by induction on the least number of factors in a finite filtration of
N by prime cyclic modules. The case where there is just one factor was handled in the
preceding paragraph. Suppose that R/P = N1 ⊆ N begins such a filtration. Then N/N1

has a shorter filtration. The long exact sequence for Tor yields

TorRi (R/P, M)→ TorRi (N, M)→ TorRi (N/N1, M).

The first term vanishes by the result of the preceding paragraph, and the third term by
the induction hypothesis. �

We are aiming to prove that if R→ S is geometrically regular (i.e., flat, with geometri-
cally regular fibers) and R is strongly F-regular, then S is strongly F-regular. In order to
prove this, we will make use of the following result:
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Theorem (Radu-André). Let R → S be a geometrically regular map of F-finite rings
of prime characteristic p > 0. Then for all q, the map R1/q ⊗R S → S1/q is faithfully flat.

The Radu-André theorem asserts the same conclusion even when R and S are not
assumed to be F -finite. In fact, R → S is geometrically regular if and only if the homo-
morphisms R1/q⊗R S → S1/q are flat. However, we do not need the converse, and we only
need the theorem in the F-finite case, where the argument is easier.

The proof of this Theorem will require some effort. We first want to note that it has
the following consequence:

Corollary. Let R → S be a geometrically regular map of F-finite rings of prime char-
acteristic p > 0. Then for all q, the map R1/q ⊗R S → S1/q makes R1/q ⊗R S a direct
summand of S1/q.

Note that since S → S1/q is module-finite, we have that R1/q ⊗R S → S1/q is module-
finite as well. The Corollary above then follows from the Radu-André Theorem and the
following fact.

Proposition. Let A → B be a faithfully flat map of Noetherian rings such that B is
module-finite over A. Then A is a direct summand of B as an A-module.

Proof. The issue is local on A. But when (A, m, K) is local, a finitely generated module
is flat if and only if it is free, and so B is a nonzero free A-algebra. The element 1 ∈ B
is not in mB, and so is part of a minimal basis, which will be a free basis, for B over A.
Hence, there is an A-linear map B → A whose value on 1 ∈ B is 1 ∈ A. �



96

Math 711: Lecture of October 1, 2007

In the proof of the Radu-André Theorem we will need the result just below. A more
general theorem may be found in [H. Matsumura, Commutative Algebra, W. A. Benjamin,
New York, 1 970], Ch. 8 (20.C) Theorem 49, p. 146, but the version we give here will suffice
for our purposes.

First note the following fact: if I ⊆ A is an ideal and M is an A-module, then
TorA1 (A/I, M) = 0 if and only if the map I ⊗A M → IM , which is alway surjective,
is an isomorphism. This map sends i ⊗ u 7→ iu. The reason is that we may start with
the short exact sequence 0 → I → A → A/I → 0 and apply ⊗A M . The long exact
sequence then gives, in part:

0 = TorA1 (A, M)→ TorA1 (A/I, M)→ I ⊗AM →M

The image of the rightmost map is IM , and so we have

0→ TorA1 (A/I, M)→ I ⊗AM → IM → 0

is exact, from which the statement we want is clear.

Theorem (local criterion for flatness). Let A→ B be a local homomorphism of local
rings, let M be a finitely generated B-module and let I be a proper ideal of A. Then the
following three conditions are equivalent:

(1) M is flat over A.

(2) M/IM is flat over A/I and I ⊗AM → IM is an isomorphism.

(3) M/IM is flat over A/I and TorA1 (A/I, M) = 0.

Proof. The discussion of the preceding paragraph shows that (2) ⇔ (3), and (1) ⇒ (3)
is clear. It remains to prove (3) ⇒ (1), and so we assume (3). To show that M is
flat, it suffices to show that if N0 ⊆ N is an injection of finitely generated R-modules
then N0 ⊗A M → N ⊗A M is injective. Moreover, by the Proposition at the bottom
of p. 3 of the Lecture Notes of September 14, we need only prove this when N has finite
length. Consequently, we may assume that N is killed by a power of I, and so we have that
IkN ⊆ N0 for some k. Let Ni = N0 +Ik−iN for 0 ≤ i ≤ k. The N0 ⊆ N1 ⊆ · · · ⊆ Nk = N ,
and it suffices to show that Nj ⊗AM → Nj+1 ⊗AM is injective for each j. We have now
reduced to the case where Q = Nj+1/Nj is killed by I. From the long exact sequence for
Tor arising from applying ⊗AM to the short exact sequence

0→ Nj → Nj+1 → Q→ 0,

we have
TorA1 (Q, M)→ Nj ⊗AM → Nj+1 ⊗AM
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is exact, and so it suffices to show that if Q is a finitely generated A-module killed by I,
then TorA1 (Q, M) = 0.

Since Q is killed by I, we may think of it as a finitely generated module over A/I.
Hence, there is a short exact sequence

0→ Z → (A/I)⊕h → Q→ 0.

Applying ⊗AM , from the long exact sequence for Tor we have that

TorA1
(
(A/I)⊕h, M

)
−→ TorA1 (Q, M) −→ Z ⊗AM

α−→ (A/I)⊕h ⊗AM

is exact. By hypothesis, TorA1 (A/I, M) = 0, and so the leftmost term is 0. It follows that

TorA1 (Q, M) ∼= Ker (α). To conclude the proof, it will suffice to show that α is injective.

Hence, it is enough to show that ⊗AM is an exact functor on A-modules Y that are
killed by I. For such an A-module Y we have that

Y ⊗AM ∼= (Y ⊗A/I A/I)⊗AM ∼= Y ⊗A/I
(
(A/I)⊗AM) ∼= Y ⊗A/I M/IM,

and this is an isomorphism as functors of Y . Since M/IM is flat over A/I, the injectivity
of α follows. �

We want to record the following observation.

Proposition. Let f : A→ B be a homorphism of Noetherian rings of prime characteristic
p > 0 such that the kernel of f consists of nilpotent elements of A and for every element
b ∈ B there exists q such that bq ∈ f(A). Then Spec (f) : Spec (B) → Spec (A) is a
homeomorphism (recall that this map sends the prime ideal Q ∈ Spec (B) to the contraction
f−1(Q) of Q to A). The inverse maps P ∈ Spec (A) to the radical of PB, which is the
unique prime ideal of B lying over P .

Proof. Since the induced map Spec (A)→ Spec (A/J) is a homeomorphism whenever J is
an ideal whose elements are nilpotent, and the unique prime of A/J lying over P ∈ Spec (A)
is P/J , the image of P in A/J , there is no loss of generality in considering instead the
induced map Ared → Bred, which is injective. We therefore assume that A and B are
reduced, and, by replacing A by its image, we may also assume that A ⊆ B. Then A ↪→ B
is an integral extension, since every b ∈ B has a power in A, and it follows that there is
a prime ideal Q of S lying over a given prime P of A. If u ∈ Q, then uq ∈ A for some
q, and so uq ∈ Q ∩ A = P . It follows that Q ⊆ Rad (PB), and since Q is a radical ideal
containing PB, we have that Q = Rad (PB). Therefore, as claimed in the statement of
the Proposition, we have that Rad (PB) is the unique prime ideal of S lying over P . This
shows that Spec (f) is bijective. To show that g = Spec (f) is a homeomorphism, it suffices
to show that its inverse is continuous, i.e., that g maps closed sets to closed sets. But for
any b ∈ B, we may choose q so that bq ∈ A, and then

g
(
V(bB)

)
= V(bqA) ⊆ Spec (A). �

The Radu-André Theorem is valid even when R is not reduced. In this case, we do not
want to use the notation R1/q. Instead, we let R(e) denote R viewed as an R algebra via
the structural homomorphism F e : R→ R. We restate the result using this notation.
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Theorem (Radu-André). Let R and S be F-finite rings of prime characteristic p > 0
such that R→ S is flat with geometrically regular fibers. Then for all e, R(e)⊗R S → S(e)

is faithfully flat.

Proof. Let Te = R(e) ⊗R S. Consider the maps S → Te → S(e). Any element in the
kernel of S → S(e) is nilpotent. It follows that this is also true of any element in the
kernel of S → Te. Note that every element of Te has q th power in the image of S, since
(r ⊗ s)q = rq ⊗ sq = 1 ⊗ rqsq. It follows that Spec (S(e)) → Spec (Te) → Spec (S) are
homeomorphisms. Hence, if S(e) is flat over Te, then it is faithfully flat over Te.

It is easy to see that geometric regularity is preserved by localization of either ring, and
the issue of flatness is local on the primes of S(e) and their contractions to Te. Localizing
S(e) at a prime gives the same result as localizing at the contraction of that prime to S.
It follows that we may replace S by a typical localization SQ and R by RP where P is the
contraction of S ot R. Thus, we may assume that (R, m, K) is local, and that R → S
is a local homomorphism of local rings. Evidently, S(e) and R(e) are local as well, and it
follows from the remarks in the first paragraph that the maps S → Te → S(e) are also
local.

Let m(e) be the maximal ideal of R(e): of course, if we identify R(e) with the ring R,
then m(e) is identified with the maximal ideal m of R.

We shall now prove that A = Te → S(e) = B is flat using the local criterion for flatness,
taking I = m(e)Te. Note that since R→ S is flat, so is R(e) → R(e)⊗R S = Te. Therefore,
m(e)Te ∼= m(e)⊗R S. The expansion of I to B = S(e) may be identified with m(e)S(e), and
since R(e) → S(e) as a map of rings is the same as R → S, we have that S(e) is flat over
R(e), and we may identify m(e)S(e) with m(e) ⊗R(e) S(e).

There are two things to check. One is that B/I is flat over A/I, which says that
S(e)/(m(e) ⊗R(e) S(e)) is flat over (R(e) ⊗R S)/(m(e) ⊗R S). The former may be identified
with (S/mS)(e), and the latter with K(e) ⊗K (S/mS), since R(e)/m(e) may be identified
with K(e). Since R is F-finite, so is K, and it follows that K(e) ∼= K1/q is a finite purely
inseparable extension of K. Since the fiber K → K⊗RS = S/mS is geometrically regular,
we have that K(e) ⊗R (S/mS) ∼= K(e) ⊗K (S/mS) is regular and, in particular, reduced.
Since it is purely inseparable over the regular local ring S/mS we have from the Proposition
on p. 2 that

K(e) ⊗K (S/mS) ∼= (S/mS)[K1/q].

is a local ring. Hence, it is a regular local ring.

We have as well that (S/mS)(e) ∼= (S/mS)1/q is regular, since S/mS is, and is a
module-finite extension of (S/mS)[K1/q]. Thus, B/IB = (S/mS)1/q is module-finite local
and Cohen-Macaulay over A/IA = (S/mS)[K1/q], which is regular local. By the Lemma
on p. 8 of the Lecture Notes of September 8, B/IB is free over A/I, and therefore flat.

Finally, we need to check that I ⊗A B � IB is an isomorphism, and this the map

φ : (m(e) ⊗R S)⊗R(e)⊗RS S
(e) � m(e) ⊗R(e) S(e).
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The map takes (u⊗ s)⊗ v to u⊗ (sv). We prove that φ is injective by showing that it has
an inverse. There is an R(e)-bilinear map

m(e) × S(e) → (m(e) ⊗R S)⊗R(e)⊗RS S
(e)

that sends (u, v) 7→ (u⊗ 1)⊗ v. This induces a map

ψ : m(e) ⊗R(e) S(e) → (m(e) ⊗R S)⊗R(e)⊗RS S
(e)

and it is straightforward to see that ψ ◦ φ sends

(u⊗ s)⊗ v 7→ (u⊗ 1)⊗ (sv) = (u⊗ s)⊗ v,

and that φ ◦ ψ sends u⊗ v to itself. �

Note that if a Noetherian ring R is reduced and R → S is flat with reduced fibers
over the minimal primes of R, then S is reduced. (Because nonzerodivisors in R are
nonzerodivisors on S, we can replace R by its total quotient ring, which is a product of
fields, and S becomes the product of the fibers over the minimal primes of R.) Hence, if
R → S is flat with geometrically regular (or even reduced) fibers and R is reduced, so is
S. This is used several times in the sequel.

Theorem. If R → S is a flat map of F-finite rings of prime characteristic p > 0 with
geometrically regular fibers and R is strongly F-regular then so is S.

Proof. We can choose c ∈ R◦ such that Rc is regular, and then we know that there is
an R-linear map θ : R1/q → R sending c1/q 7→ 1. Now Rc → Sc is flat with regular
fibers and Rc is regular, so that Sc is regular as well. By Theorem at the bottom of p. 6
of the Lecture Notes of September 24, it suffices to show that there is an S-linear map
S1/q → S such that c1/q 7→ 1. Let θ′ = θ ⊗R 1S : R1/q ⊗R S → S, so that θ′ is an
S-linear map such that θ′(c1/q ⊗ 1) = 1. By the Corollary on p. 3 of the Lecture Notes of
September 28, the inclusion R1/q⊗R S → S1/q, which takes c1/q⊗1 to c1/q, has a splitting
α : S1/q → R1/q ⊗R S that is linear over R1/q ⊗R S. Hence, α is also S-linear, and θ′ ◦ α
is the required S-linear map from S1/q to S. �

We also can improve our result on the existence of big test elements now.

Theorem. Let R be a reduced F-finite ring of prime characteristic p > 0 and let c ∈ R◦
be such that Rc is strongly F-regular. Also assume that there is an R-linear map R1/p → R
that sends 1 to c. If S is F-finite and flat over R with geometrically regular fibers, then
the image of c3 in S is a big test element for S.

In particular, for every element c as above, c3 is a completely stable big test element.

Hence, every element c of R◦ such that Rc is strongly F-regular has a power that is a
completely stable big test element, and remains a completely stable big test element after
every geometrically regular base change to an F-finite ring.
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Proof. By the Theorem at the bottom of p. 1 of the Lecture Notes of September 26, to
prove the result asserted in the first paragraph it suffices to show that the image of c in
S has the same properties: because the map is flat, the image is in S◦, and so it suffices
to show that Sc is strongly F-regular and that there is an S-linear map S1/p → S such
that the value on 1 is the image of c in S. But the map Rc → Sc is flat, Rc is strongly
F-regular, and the fibers are a subset of the fibers of the map R → S corresponding to
primes of R not containing c. Hence, the fibers are geometrically regular, and so we can
conclude that Sc is strongly F-regular. We have an R-linear map R1/p → R that sends
1 7→ c. We may apply ⊗R 1S to get a map R1/p ⊗R S → S sending 1 to the image of c,
and then compose with a splitting of the inclusion R1/p ⊗R S → S1/p to get the required
map.

The statement of the second paragraph now follows because a localization map is geo-
metrically regular, and F-finite rings are excellent, so that the map from a local ring to its
completion is geometrically regular as well.

To prove the third statement note that whenever Rc is strongly F-regular, there is a
map R1/p → R whose value on 1 is a power of c: this is a consequence of the first Lemma
on p. 1 of the Lecture Notes of September 26. �

Mapping cones

Let B• and A• be complexes of R-modules with differentials δ• and d•, respectively.
We assume that they are indexed by Z, although in the current application that we have
in mind they will be left complexes, i.e., all of the negative terms will be zero. Let φ• be
a map of complexes, so that for every n we have φn : Bn → An, and all the squares

An
dn−−−−→ An−1

φn

x φn−1

x
Bn

δn−−−−→ Bn−1

commute. The mapping cone Cφ•• of φ• is defined so that Cφ•n := An ⊕ Bn−1 with the
differential that is simply dn on An and is (−1)n−1φn−1⊕ δn−1 on Bn−1. Thus, under the
differential in the mapping cone,

an ⊕ bn−1 7→
(
dn(an) + (−1)n−1φ(bn−1)

)
⊕ δn−1(bn−1).

If we apply the differential a second time, we obtain(
dn−1

(
dn(an) + (−1)n−1φn−1(bn−1)

)
+ (−1)n−2φn−2δn−1(bn−1)

)
⊕ δn−2δn−1(bn−1),

which is 0, and so we really do get a complex. We frequently omit the superscript φ• , and

simply write C• for Cφ•• .
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Note that A• ⊆ C• is a subcomplex. The quotient complex is isomorphic with B•,
except that degrees are shifted so that the degree n term in the quotient is Bn−1. This
leads to a long exact sequence of homology:

· · · → Hn(A•)→ Hn(C•)→ Hn−1(B•)→ Hn−1(A•)→ · · · .

One immediate consequence of this long exact sequence is the following fact.

Proposition. Let φ• : B• → A• be a map of left complexes. Suppose that A• and B• are
acyclic, and that the induced map of augmentations H0(B•) → H0(A•) (which may also
be described as the induced map B0/δ0(B1)→ A0/d0(A1)) is injective. Then the mapping
cone is an acyclic left complex, and its augmentation is A0/

(
d(A1) + φ0(B0)

)
. �

The Koszul complex

The Koszul complex K•(x1, . . . , xn; R) of a sequence of elements x1, . . . , xn ∈ R on
R may be defined as an iterated mapping cone as follows. Let K•(x1; R) denote the left
complex in which K1(x1; R) = Ru1, a free R-module, K0(x1, R) = R, and the map is such

that u1 7→ x1. I.e., we have 0 −→ Ru1
u1 7→x1−−−−→ R→ 0.

Then we may define K•(x1, . . . , xn; R) recursively as follows. If n > 1, multiplication
by xn (in every degree) gives a map of complexes

K•(x1, . . . , xn−1; R)
xn·−−→ K•(x1, . . . , xn−1),

and we let K•(x1, . . . , xn; R) be the mapping cone of this map.

We may prove by induction thatKn(x1, . . . , xn; R) is a free complex of length n in which
the degree j term is isomorphic with the free R-module on

(
n
j

)
generators, 0 ≤ j ≤ n. Even

more specifically, we show that we may identify Kj(x1, . . . , xn; R) with the free module
on generators uσ indexed by the j element subsets σ of {1, 2, . . . , n} in such a way that
if σ = {i1, . . . , ij} with 1 ≤ i1 < · · · < ij ≤ n, then

duσ =

j∑
t=1

(−1)t−1xituσ−{it}.

We shall use the alternative notation ui1i2···ij for uσ in this situation. We also identify u∅,
the generator of K0(x1, . . . , xn; R), with 1 ∈ R.

To carry out the inductive step, we assume that A• = K•(x1, . . . , xn−1; R) has the
specified form. We think of this complex as the target of the map multiplication by xn,
and index its generators by the subsets of {1, 2, . . . , n − 1}. This complex will be a
subcomplex of K•(x1, . . . , xn; R). We index the generators of the complex B•, which will
be the domain for the map given by multiplication by xn, and which is also isomorphic to
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K•(x1, . . . , xn−1;R), by using the free generator uσ∪{n} to correspond to uσ. In this way,
it is clear that K•(x1, . . . , xn; R) is free, and we have indexed its generators in degree j
precisely by the j element subsets of {1, 2, . . . , n}. It is straightforward to check that the
differential is as described above.

We can define the Koszul complex of x1, . . . , xn ∈ R on an R-module M , which we
denote K•(x1, . . . , xn; M), in two ways. One is simply as K•(x1, . . . , xn; R)⊗RM . The
second is to let K•(x1;M) be the complex 0 → M ⊗R Ru1 → M → 0, and then to let
K•(x1, . . . , xn; M) be the mapping cone of multiplication by xn mapping the complex
K•(x1, . . . , xn−1; M) to itself, just as we did in the case M = R. It is quite easy to verify
that these two constructions give isomorphic results: in fact, quite generally, ⊗R M
commutes with the mapping cone construction on maps of complexes of R-modules.
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Math 711: Lecture of October 3, 2007

Koszul homology

We define the i th Koszul homology module Hi(x1, . . . , xn; M) of M with respect to
x1, . . . , xn as the i th homology module Hi

(
K•(x1, . . . , xn; M) of the Koszul complex.

We note the following properties of Koszul homology.

Proposition. Let R be a ring and x = x1, . . . , xn ∈ R. Let I = (x)R. Let M be an
R-module.

(a) Hi(x; M) = 0 if i < 0 or if i > n.

(b) H0(x; M) ∼= M/IM .

(c) Hn(x; M) = AnnMI.

(d) AnnRM kills every Hi(x1, . . . , xn; M).

(e) If M is Noetherian, so is its Koszul homology Hi(x; M).

(f) For every i, Hi(x; ) is a covariant functor from R-modules to R-modules.

(g) If
0→M ′ →M →M ′′ → 0

is a short exact sequence of R-modules, there is a long exact sequence of Koszul ho-
mology

· · · → Hi(x; M ′)→ Hi(x; M)→ Hi(x; M ′′)→ Hi−1(x; M)→ · · ·

(h) If x1, . . . , xn is a possibly improper regular sequence on M , then Hi(x; M) = 0, i ≥ 1.

Proof. Part (a) is immediate from the definition. Part (b) follows from the fact that last
map in the Koszul complex from K1(x; M) → K0(x; M) may be identified with the map
Mn → M such that (v1, . . . , vn) 7→ x1v + · · ·+ xnvn. Part (c) follows from the fact that
the map Kn(x; M) → Kn−1(x; M) may be identified with the map M → Mn such that
v 7→ (x1v, −x2v, · · · , (−1)n−1xnv).

Parts (d) and (e) are clear, since every term in the Koszul complex is itself a direct sum
of copies of M .

To prove (f), note that if we are given a map M → M ′, there is an induced map of
complexes

K•(x; R)⊗M → K•(x; R)⊗M ′.
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This map induces a map Hi(x; M) → Hix; M ′). Checking that this construction gives a
functor is straightforward.

For part (g), we note that

(∗) 0→ K•(x; R)⊗RM ′ → K•(x; R)⊗RM → K•(x; R)⊗RM ′′ → 0

is a short exact sequence of complexes, because each Kj(x; R) is R-free, so that the functor
Kj(x; R)⊗R is exact. The long exact sequence is simply the result of applying the snake
lemma to (∗). (This sequence can also be constructed by interpreting Koszul homology as
a special case of Tor: we return to this point later.)

Finally, part (h) is immediate by induction from the iterative construction of the Koszul
complex as a mapping cone and the Proposition at the top of p. 6 of the Lecture Notes
of October 1. The map of augmentations is the map given by multiplication by xn from
M/(x1, . . . , xn−1)M to itself, which is injective because x1, . . . , xn is a possibly improper
regular sequence. �

Corollary. Let x = x1, . . . , xn be a regular sequence on R and let I = (x)R. Then R/I
has a finite free resolution of length n over R, and does not have any projective resolution
of length shorter than n. Moreover, for every R-module M ,

TorRi (R/I, M) ∼= Hi(x; M).

Proof. By part (f) of the preceding Proposition, K•(x; R) is acyclic. Since this is a free
complex of finitely generated free modules whose augmentation is R/I, we see that R/I

has the required resolution. Then, by definition of Tor, we may calculate TorRi (R/I, M) as
Hi

(
K•(x; R)⊗RM

)
, which is precisely Hi(x; M). To see that there is no shorter projective

resolution of R/I, take M = R/I. Then

Torn(R/I, R/I) = Hn(x; R/I) = AnnR/II = R/I,

by part (c) of the preceding Proposition. If there were a shorter projective resolution, we
would have Torn(R/I, R/I) = 0. �

Independence of Koszul homology of the base ring

The following observation is immensely useful. Suppose that we have a ring homomor-
phism R → S and an S-module M . By restriction of scalars, M is an R-module. Let
x = x1, . . . , xn ∈ R and let y = y1, . . . , yn be the images of the xi in S. Note that
the actions of xi and yi on M are the same for every i. This means that the complexes
K•(x; M) and K•(y; M) are the same. In consequence, Hj(x; M) ∼= Hj(y; M) for all j, as
S-modules. Note that even if we treat M as an R-module initially in caclulating Hj(x; M),
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we can recover the S-module structure on the Koszul homoolgy from the S-module struc-
ture of M . For every s ∈ S, multiplication by s is an R-linear map from M to M , and
since Hi(x; ) is a covariant functor, we recover the action of s on Hi(x; M).

Koszul homology and Tor

Let R be a ring and let x = x1, . . . , xn ∈ R. Let M be an R-module. We have already
seen that if x1, . . . , xn is a regular sequence in R, then we may interpretHi(x1, . . . , xn; M)
as a Tor over R.

In general, we may interpret Hi(x; M) as a Tor over an auxiliary ring. Let A be any
ring such that R is an A-algebra. We may always take A = Z or A = R. If R contains a
field K, we may choose A = K. Let X = X1, . . . , Xn be indeterminates over A, and map
B = A[X1, . . . , Xn]→ R by sending Xj 7→ xj for all j. Then M is also a B-module, as in
the section above, and X1, . . . , Xn is a regular sequence in B.

Hence:

Proposition. With notation as in the preceding paragraph,

Hi(x1, . . . , x;M) ∼= TorBj
(
B/(X)B, M

)
.

Corollary. Let x = x1, . . . , xn ∈ R, let I = (x)R, and let M be an R-module. Then I
kills Hi(x; M) for all i.

Proof. We use the idea of the discussion preceding the Proposition above, taking A = R, so
that with X = X1, . . . , Xn we have an R-algebra map B = R[X]→ R such that Xi 7→ xi,
1 ≤ i ≤ n. Then

(∗) Hi(x; M) ∼= TorBi (B/(X)B, M).

When M is viewed as a B-module, every Xi − xi kiils M . But X kills B/(X)B, and

so for every i, both Xi − xi and Xi kill TorBi (B/(X)B, M). It follows that every xi =
Xi − (Xi − xi) kills it as well, and the result now follows from (∗). �

An application to the study of regular local rings

Let M be a finitely generated R-module over a local ring (R, m, K). A minimal free
resolution of M may be constructed as follows. Let b0 be the least number of generators
of M , and begin by mapping Rb0 onto M using these generators. If

Rbi
αi−→ · · · α1−→ Rb0

α0−→M −→ 0

has already been constructed, let bi+1 be the least number of generators of Zi = Ker (αi),
and construct αi+1 : Rbi+1 → Rbi by mapping the free generators of Rbi+1 to a minimal set
of generators of Zi ⊆ Rbi . Think of the linear maps αi , i ≥ 1, as given by matrices. Then
it is easy to see that a free resolution for M is minimal if and only if all of the matrices αi
for i ≥ 1 have entries in m. We have the following consequence:
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Proposition. Let (R, m, K) be local, let M be a finitely generated R-modules, and let

· · · −→ Rbi
αi−→ · · · −→ Rb0 −→M −→ 0

be a minimal resolution of M . Then for all i, TorRi (M, K) ∼= Kbi .

Proof. We may use the minimal resolution displayed to calculate the values of Tor. We
drop the augmentation M and apply K ⊗R . Since all of the matrices have entries in m,
the maps are alll 0, and we have the complex

· · · 0−→ Kbi 0−→ · · · 0−→ Kb0 0−→ 0.

Since all the maps are zero, the result stated is immediate. �

Theorem (Auslander-Buchsbaum). Let (R, m, K) be a regular local ring. Then every
finitely generated R-module has a finite projective resolution of length at most n = dim (R).

Proof. Let x = x1, . . . , xn be a regular system of parameters for R. These elements form
a regular sequence. It follows that K = R/(x) has a free resolution of length at most n.
Hence, Tori(M, K) = 0 for all i > n and for every R-module M .

Now let M be a finitely generated R-module, and let

· · · → Rbi → · · · → Rb1 → Rb0 → R→M → 0

be a minimal free resolution of M . For i > n, bi = 0 because Tori(M, K) = 0, and so
Rbi = 0 for i > n, as required. �

It is true that a local ring is regular if and only if its residue class field has finite
projective dimension: the converse part was proved by J.-P. Serre. The argument may be
found in the Lecture Notes of February 13 and 16, Math 615, Winter 2004.

It is an open question whether, if M is a module of finite length over a regular local
ring (R, m, K) of Krull dimension n, one has that

dimKTori(M, K) ≥
(
n

i

)
.

The numbers βi = dimKTorRi (M, K) are called the Betti numbers of M . If x = x1, . . . , xn
is a minimal set of generators of m, these may also be characterized as the dimensions of
the Koszul homology modules Hi(x; M). A third point of view is that they give the ranks
of the free modules in a minimal free resolution of M .

The binomial coefficients are the Betti numbers of K = R/m: they are the ranks of the
free modules in the Koszul complex resolution of K. The question as to whether these are
the smallest possible Betti numbers for an R-module was raised by David Buchsbaum and
David Eisenbud in the first reference listed below, and was reported by Harthshorne in a
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1979 paper (again, see the list below) as a question raised by Horrocks. The question is
open in dimension 5 and greater. An affirmative answer would imply that the sum of the
Betti numbers is at least 2n: this weaker form is also open. We refer the reader interested
in learning more about this problem to the following selected references:

D. Buchsbaum and D Eisenbud, Algebra structures for finite free resolutions and some
structure theorems for ideals of codimension 3, Amer. J. of Math. 99 (1977) 447–485.

S.-T. Chang, Betti numbers of modules of exponent two over regular local rings, J. of Alg.
193 (1997) 640–659.

H. Charalambous, Lower Bounds for Betti Numbers of Multigraded Modules, J. of Alg.
137 (1991) 491–500.

D. Dugger, Betti Numbers of Almost Complete Intersections, Illinois J. Math. 44 (2000)
531–541.

D. Eisenbud and C. Huneke, editors, Free resolutions in commutative algebra and algebraic
geometry, Research Notes in Mathematics: Sundance 90, A. K. Peters, Ltd., 1992.

E.G. Evans and P. Griffith, Syzygies, London Math. Soc. Lecture Note Series 106 Cam-
bridge Univ. Press, Cambridge, 1985.

R. Hartshorne, Algebraic Vector Bundles on Projective Spaces: a Problem List, Topology,
18 (1979) 117–128.

M. Hochster and B. Richert, Lower bounds for Betti numbers of special extensions, J. Pure
and Appl. Alg 201 (2005) 328–339.

C. Huneke and B. Ulrich, The Structure of Linkage, Ann. of Math. 126 (1987) 277–334.

L. Santoni, Horrocks’ question for monomially graded modules, Pacific J. Math. 141 (1990)
105–124.



108

Math 711: Lecture of October 5, 2007

More on mapping cones and Koszul complexes

Let φ• : B• → A• be a map of complexes that is injective. We shall write d• for the
differential on A• and δ• for the differential on B•. Then we may form a quotient complex
Q• such that Qn = Bn/φn(An) for all n, and the differential on Q• is induced by the
differential on B•. Let C• be the mapping cone of φ•.

Proposition. With notation as in the preceding paragraph, Hn(C•) ∼= Hn(Q•) for all n.

Proof. We may assume that every φn is an inclusion map. A cycle in Qn is represented
by an element z ∈ An whose boundary dnz is 0 in An−1/φn−1(Bn−1). This means that
dnz = φn−1(b) for some b ∈ Bn−1. (Once we have specified z there is at most one choice
of b, by the injectivity of φn−1.) The boundaries in Qn are represented by the elements
dn+1(An+1) + φn(B). Thus,

Hn(Q•) ∼=
d−1
n

(
φn−1(Bn−1)

)
dn+1(An+1) + φn(Bn)

.

A cycle in Cn is represented by a sum z ⊕ b′ such that(
dn(z) + (−1)n−1φn−1(b′)

)
⊕ δn−1(b′) = 0

Again, this element is uniquely determined by z, which must satisfy dn(z) ∈ φn−1(Bn−1).
b′ is then uniquely determined as (−1)nb where b ∈ Bn−1 is such that φn−1(b) = dn(z).
Such an element b is automatically killed by δn−1, since

φn−2δn−1(b) = dn−1φn−1(b) = dn−1dn(z) = 0,

and φn−2 is injective. A boundary in Cn has the form(
dn+1(a) + (−1)nφn(bn)

)
⊕ δnbn.

This shows that

Hn(C•) ∼=
d−1
n

(
φn−1(Bn−1)

)
dn+1(An+1) + φn(Bn)

,

as required. �
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Corollary. Let x = x1, . . . , xn ∈ R be elements such that xn is not a zerodivisor on the
R-module M . Let x− = x1, . . . , xn−1, i..e., the result of omitting xn from the sequence.
Then Hi(x; M) ∼= Hi(x

−; M/xnM) for all i.

Proof. We apply that preceding Proposition with A• = B• = K•(x−; M), and φi given by
multiplication by xn in every degree i. Since every term of K•(x−; M) is a finite direct
sum of copies of M , the maps φi are injective. The mapping cone, which is K•(x; M),
therefore has the same homology as the quotient complex, which may be identified with

K•(x−, M)⊗ (R/xnR) ∼= K•(x−; R)⊗RM ⊗R R/xnR ∼= K•(x−; R)⊗R (M/xnM)

which is K•(x−; M/xnM), and the result follows. �

We also observe:

Proposition. Let φ• : B• → A• be any map of complexes and let C• be the mapping cone.
In the long exact sequence

· · · −→ Hn(A•) −→ Hn(C•) −→ Hn−1(B•)
∂n−1−−−→ Hn−1(A•) −→ · · ·

the connecting homomorphism ∂n−1 is induced by (−1)n−1φn−1.

Proof. We follow the prescription for constructing the connecting homomorphism. Let
b ∈ Bn−1 be a cycle in Bn−1. We lift this cycle to an element of Cn that maps to it: one
such lifting is 0 ⊕ b (the choice of lifting does not affect the result). We now apply the
differential in the mapping cone C• to the lifting: this gives

(−1)n−1φn−1(b)⊕ δn−1(b) = (−1)n−1φn−1(b)⊕ 0,

since b was a cycle in Bn−1. Call the element on the right α. Finally, we choose an
element of An−1 that maps to α: this gives (−1)n−1φn−1(b), which represents the value of
∂n−1([b]), as required. �

Corollary. Let x = x1, . . . , xn ∈ R be arbitrary elements. Let x− = x1, . . . , xn−1, i..e.,
the result of omitting xn from the sequence. Let M be any R-module. Then there are short
exact sequences

0→ Hi(x
−; M)

xnHi(x−; M)
→ Hi(x; M)→ AnnHi−1(x−;M)xn → 0

for every integer i.

Proof. By the preceding Proposition, the long exact sequence for the homology of the
mapping cone of the map of complexes

K•(x−; M)
xn·−−→ K•(x−; M)
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has the form

· · · −→ Hi(x
−; M)

(−1)ixn·−−−−−→ Hi(x
−; M) −→ Hi(x; M)

−→ Hi−1(x−; M)
(−1)i−1xn·−−−−−−−→ Hi−1(x−; M) −→ · · ·

Since the maps given by multiplication by xn and by −xn have the same kernel and
cokernel, this sequence implies the existence of the short exact sequences specified in the
statement of the Theorem. �

The cohomological Koszul complex

Notice that if P is a finitely generated projective module over a ring R, ∗ denotes
the functor that sends N 7→ HomR(N, R), and M is any module, then there is a natural
isomorphism

HomR(P, M) ∼= P ∗ ⊗RM

such that the inverse map ηP is defined as follows: ηP is the linear map induced by the
R-bilinear map BP given by BP (g, u)(v) = g(v)u for g ∈ P ∗, u ∈ M , and v ∈ P . It is
easy to check that

(1) ηP⊕Q = ηP ⊕ ηQ and

(2) that ηR is an isomorphism.

It follows at once that

(3) ηRn is an isomorphism for all n ∈ N.

For any finitely generated projective module P we can choose Q such that P ⊕Q ∼= Rn,
and then, since ηP ⊕ ηQ is an isomorphism, it follows that

(4) ηP is an isomorphism for every finitely generated projective module P .

If R is a ring, M an R-module, and x = x1, . . . , xn ∈ R, the cohomological Koszul
complex K•(x; M), is defined as

HomR

(
K•(x; R), M

)
,

and its cohomology, called Koszul cohomology, is denoted H•(x; M). The cohomological
Koszul complex of R (and, it easily follows, of M) is isomorphic with the homological
Koszul complex numbered “backward,” but this is not quite obvious: one needs to make
sign changes on the obvious choices of bases to get the isomorphism.
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To see this, take the elements uj1, ... ,ji with 1 ≤ j1 < · · · < ji ≤ n as a basis for
Ki = Ki(x; R). We continue to use the notation ∗ to indicate the functor HomR( , R).
We want to set up isomorphisms K∗n−i ∼= Ki that commute with the differentials.

Note that there is a bijection between the two free bases for Ki and Kn−i as follows:
given 1 ≤ j1 < · · · < ji ≤ n, let k1, . . . , kn−i be the elements of the set

{1, 2, . . . , n} − {j1, . . . , ji}

arranged in increasing order, and let uj1, ... ,ji correspond to uk1, ... ,kn−i which we shall also
denote as vj1, ... ,ji .

When a free R-module G has free basis b1, . . . , bt, this determines what is called a dual
basis b′1, . . . , b

′
t for G∗, where b′j is the map G→ R that sends bj to 1 and kills the other

elements in the free basis. Thus, K∗n−i has basis v′j1, ... ,ji . However, when we compute the
value of the differential d∗n−i+1 on v′j1, ... ,ji , while the coefficient of v′h1, ... ,hi−1

does turn out

to be zero unless the elements h1 < · · · < hi−1 are included among the ji, if the omitted
element is jt then the coefficient of v′h1, ... ,hi−1

is

d∗n−i+1(v′j1, ... ,ji)(vh1, ... ,hi−1
) = v′j1, ... ,ji

(
dn−i+1(vh1, ... ,hi−1

)
)
,

which is the coefficient of vj1, ... ,ji in dn−i+1(vh1, ... ,hi−1
).

Note that the complement of {j1, . . . , ji} in {1, 2, . . . , n} is the same as the complement
of {h1, . . . , hi−1} in {1, 2, . . . , n}, except that one additional element, jt, is included in
the latter. Thus, the coefficient needed is (−1)s−1xjt , where s−1 is the number of elements
in the complement of {h1, . . . , hi−1} that precede jt. The signs don’t match what we get
from the differential in K•(x; R): we need a factor of (−1)(s−1)−(t−1) to correct (note that
t − 1 is the number of elements in j1, . . . , ji that precede jt). This sign correction may
be written as (−1)(s−1)+(t−1), and the exponent is jt − 1, the total number of elements
preceding jt in {1, 2, . . . , n}. This sign implies that the signs will match the ones in the

homological Koszul complex if we replace every v′ji by (−1)Σv′ji , where Σ =
∑i
t=1(jt − 1).

This completes the proof. �

|

This duality enables us to compute Ext using Koszul homology, and, hence, Tor in
certain instances:

Theorem. Let x = x1, . . . , xn be a possibly improper regular sequence in a ring R and
let M be any R-module. Then

ExtiR(R/(x)R; M) ∼= Hi(x; M) ∼= Hn−i(x; M) ∼= TorRn−i(R/(x)R, M).
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Proof. Because the Koszul complex on the xi is a free resolution of R/(x)R, we may
use it to calculate Extj(R/(x)R, M): this yields the leftmost isomorphism. The middle
isomorphism now follows from the self-duality of the Koszul complex proved above, and we
have already proved that the Koszul homology yields Tor when x is a regular sequence in R:
this is simply because we may use again that K•(x; R) is a free resolution of R/(x)R. �

Depth and Ext

When R → S is a homomorphism of Noetherian rings, N is a finitely generated R-
module, and M is a finitely generated S-module, the modules ExtjR(N, M) are finitely
generated S-modules. One can see this by taking a left resolution G• of N by finitely
generated free R-modules, so that

ExtjR(N, M) = Hj
(
HomR(G•, M)

)
.

Since each term of HomR(G•, M) is a finite direct sum of copies of M , the statement
follows.

If I is an ideal of R such that IM 6= M , then any regular sequence in I on M can
be extended to a maximal such sequence that is necessarily finite. To see that we cannot
have an infinite sequence x1, . . . , xn, . . . ∈ I that is a regular sequence on M we may
reason as follows. Because R is Noetherian, the ideals Jn = (x1, . . . , xn)R must be
eventually constant. Alternatively, we may argue that because M is Noetherian over S,
the submodules JnM must be eventually constant. In either case, once JnM = Jn+1M we
have that xn+1M ⊆ JnM , and so the action of xn+1 on M/JnM is 0. Since Jn ⊆ I and
IM 6= M , we have that M/JnM 6= 0, and this is a contradiction, since xn+1 is supposed
to be a nonzerodivisor on M/JnM . We shall show that maximal regular sequences on M
in I all have the same length, which we will then define to be the depth of M on I.

The following result will be the basis for our treatment of depth.

Theorem. Let R→ S be a homomorphism of Noetherian rings, let I ⊆ R be an ideal and
let N be a finitely generated R-module with annihilator I. Let M be a finitely generated
S-module with annihilator J ⊆ S.

(a) The support of N ⊗RM is V(IS+J). Hence, N ⊗RM = 0 if and only if IS+J = S.
In particular, M = IM if and only if IS + J = S.

(b) If IM 6= M , then there are finite maximal regular sequences x1, . . . , xd on M in I. For

any such maximal regular sequence, ExtiR(N, M) = 0 if i < d and ExtdR(N, M) 6= 0.
In particular, these statements hold when N = R/I. Hence, any two maximal regular
sequences in I on M have the same length.

(c) IM = M if and only if ExtiR(N, M) = 0 for all i. In particular, this statement holds
when N = R/I.

Proof. (a) N ⊗RM is clealy killed by J and by I. Since it is an S-module, it is also killed
by IS and so it is killed by IS + J . It follows that any prime in the support must contain
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IS+J . Now suppose that Q ∈ Spec (S) is in V(IS+J), and let P be the contraction of Q to
R. It suffices to show that (N⊗RM)Q 6= 0, and so it suffices to show that NP⊗RPMQ 6= 0.
Since I ⊆ P , NP 6= 0 and NP /PNP is a nonzero vector space over κ = RP /PRP : call it
κs, where s ≥ 1. MQ maps onto MQ/QMQ = λt, where λ = SQ/QSQ, is a field, t ≥ 1,
and we have κ ↪→ λ. But then we have

(N ⊗RM)Q ∼= NP ⊗RP MQ � κs ⊗RP λt ∼= κs ⊗κ λt ∼= (κ⊗κ λ)st ∼= λst 6= 0,

as required. The second statement in part (a) is now clear, and the third is the special
case where N = R/I.

Now assume that M 6= IM , and choose any maximal regular sequence x1, . . . , xd ∈ I
on M . We shall prove by induction on d that ExtiR(N, M) = 0 for i < d and that

ExtdR(N, M) 6= 0.

First suppose that d = 0. Let Q1, . . . , Qh be the associated primes of M in S. Let Pj be
the contraction of Qj to R for 1 ≤ j ≤ h. The fact that depthIM = 0 means that I consists
entirely of zerodivisors on M , and so I maps into the union of the Qj . This means that I is
contained in the union of the Pj , and so I is contained in one of the Pj : called it Pj0 = P .
Choose u ∈ M whose annihilator in S is Qj0 , and whose annihilator in R is therefore P .
It will suffice to show that HomR(N, M) 6= 0, and therefore to show that its localization
at P is not 0, i.e., that HomRP (NP ,MP ) 6= 0. Since P contains I = AnnRN , we have that
NP 6= 0. Therefore, by Nakayama’s lemma, we can conclude that NP /PNP 6= 0. This
module is then a nonzero finite dimensional vector space over κP = RP /PRP , and we have
a surjection NP /PNP � κP and therefore a composite surjection NP � κP . Consider
the image of u ∈ M in MP . Since AnnRu = P , the image v of u ∈ MP is nonzero, and
it is killed by P . Thus, AnnRP v = PRP , and it follows that v generates a copy of κP in
MP , i.e., we have an injection κP ↪→ MP . The composite map NP � κP ↪→ MP gives a
nonzero map NP →MP , as required.

Finally, suppose that d > 0. Let x = x1, which is a nonzerodivisor on M . Note that
x2, . . . , xd ∈ I is a maximal regular sequence on M/xM . Since x ∈ I, we have that x kills
N . The short exact sequence 0→M →M →M/xM → 0 gives a long exact sequence for
Ext when we apply HomR(N, ). Because x kills N , it kills all of the Ext modules in this
sequence, and thus the maps induced by multiplication by x are all 0. This implies that
the long exact sequence breaks up into short exact sequences

(∗j) 0→ ExtjR(N, M)→ ExtjR(N, M/xM)→ Extj+1
R (N, M)→ 0

We have from the induction hypothesis that the modules ExtjR(N, M/xM) = 0 for j <

d − 1, and the exact sequence above shows that ExtjR(N, M) = 0 for j < d. Moreover,

Extd−1
R (N, M/xM) 6= 0, and (∗d−1) shows that Extd−1

R (N, M/xM) is isomorphic with

ExtdR(N, M).

The final statement in part (b) follows because the least exponent j for which, say,

ExtjR(R/I, M) 6= 0 is independent of the choice of maximal regular sequence.
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It remains to prove part (c). If IM 6= M , we can choose a maximal regular sequence

x1, . . . , xd on M in I, and then we know from part (b) that ExtdR(N, M) 6= 0. On the
other hand, if IM = M , we know that IS + AnnRM = S from part (a), and this ideal

kills every ExtjR(N, M), so that all of the Ext modules vanish. �

If R → S is a map of Noetherian rings, M is a finitely generated S-module, and
IM 6= M , we define depthIM , the depth of M on I, to be, equivalently, the length of any

maximal regular sequence in I on M , or inf{j ∈ Z : ExtjR(R/I, M) 6= 0}. If IM = M , we
define the depth of M on I as +∞, which is consistent with the Ext characterization.

Note the following:

Corollary. With hypothesis as in the preceding Theorem, depthIM = depthISM . More-
over, if R′ is flat over R, e.g., a localization of R, then depthIR′R

′ ⊗RM ≥ depthIM .

Proof. Choose a maximal regular sequence in I, say x1, . . . , xd. These elements map to a
regular sequence in IS. We may replace M by M/(x1, . . . , xd)M . We therefore reduce to
showing that when depthIM = 0, it is also true that depthISM = 0 . But it was shown
in the proof of the Theorem above that that under the condition depthIM = 0 there is an
element u ∈M whose annihilator is an associated prime Q ∈ Spec (S) of M that contains
IS. The second statement follows from the fact that calculation of ExtR commutes with
flat base change when the first module is finitely generated over R. (One may also use the
characterization in terms of regular sequences.) �

We also note:

Proposition. With hypothesis as in the preceding Theorem, let x = x1, . . . , xn be gener-
ators of I ⊆ R. If IM = M , then all of the Koszul homology Hi(x; M) = 0. If IM 6= M ,
then Hn−i(x; M) = 0 if i < d, and Hn−d(x; M) 6= 0.

Proof. We may map a Noetherian ring B containing elements X1, . . . , Xn that form a
regular sequence in B to R so that Xi 7→ xi, 1 ≤ i ≤ n. For example, we may take
B = R[X1, . . . , Xn] and map to R using the R-algebra map that sends Xi 7→ xi, 1 ≤ i ≤ n.
Let J = (X1, . . . , Xn)B. Then depthIM = depthJM , and the latter is determined by the

least integer j such that ExtjB(B/(X)B, M) 6= 0. The result is now immediate from the
Theorem at the bottom of p. 4. �

Cohen-Macaulay rings and lifting while preserving height

Proposition. A Noetherian ring R is Cohen-Macaulay if and only if for every proper
ideal I of R, depthIR = height (I).

Proof. Suppose that R is Cohen-Macaulay, and let I be any ideal of R. We use induction
on height (I). If height (I) = 0, then I is contained in a minimal prime of R, and so



115

depthIR = 0. Now suppose that height (I) > 0. Each prime in Ass (R) must be minimal:
otherwise, we may localize at such a prime, which yields a Cohen-Macaulay ring of positive
dimension such that every element of its maximal ideal is a zerodivisor, a contradiction.
Since I is not contained in the union of the minimal primes, I is not contained in the union
of the primes in Ass (R). Choose an element x1 ∈ I not in any minimal prime of R and,
hence, not a zerodivisor on R. It follows that R/x1R is Cohen-Macaulay, and the height
of I drops exactly by one. The result now follows from the induction hypothesis applied
to I/x1R ∈ R/x1R.

For the converse, we may apply the hypothesis with I a given maximal ideal m of height
d. Then m contains a regular sequence of length d, say x1, . . . , xd. This is preserved when
we pass to Rm. The regular sequence remains regular in Rm, and so must be a system of
parameters for Rm: killing a nonzerodivisor drops the dimension of a local ring by exactly
1. Hence, Rm is Cohen-Macaulay. �

We also note:

Proposition. Let R be a Noetherian ring and let x1, . . . , xd generate a proper ideal I
of height d. Then there exist elements y1, . . . , yd ∈ R such that for every i, 1 ≤ i ≤ d,
yi ∈ xi + (xi+1, . . . , xd)R, and for all i, 1 ≤ i ≤ d, y1, . . . , yi generate an ideal of height
i in R. Moreover, (y1, . . . , yd) = I, and yd = xd.

If R is Cohen-Macaulay, then y1, . . . , yd is a regular sequence.

Proof. We use induction on d. Note that by the coset form of the Lemma on prime
avoidance, we cannot have that x1+(x2, . . . , xd)R is contained in the union of the minimal
primes of R, or else (x1, . . . , xd)R has height 0. This enables us to pick y1 = x1 + ∆1 with
∆1 ∈ (x2, . . . , xd)R such that y1 is not in any minimal prime of R. In case R is Cohen-
Macaulay, this implies that y1 is not a zerodivisor. It is clear that (y1, x2, . . . , xd)R = I.
The result now follows from the induction hypothesis applied to the images of x2, . . . , xd
in R/y1R. �

Note that even in the polynomial ring K[x, y, z] the fact that three elements generate
an ideal of height three does not imply that these elements form a regular sequence:
(1− x)y, (1− x)z, x gives a counterexample.

Proposition. Let R be a Noetherian ring, let p be a minimal prime of R, and let x1, . . . , xd
be elements of R such that (x1, . . . , xi)(R/p) has height i, 1 ≤ i ≤ d. Then there are ele-
ments δ1, . . . , δd ∈ p such that if yi = xi + δi, 1 ≤ i ≤ d, then (y1, . . . , yi)R has height i,
1 ≤ i ≤ d.

Proof. We construct the δi recursively. Suppose that δ1, . . . , δt have already been chosen:
t may be 0. If t < d, we cannot have that xt+1 +p is contained in the union of the minimal
primes of (y1, . . . , yt). If that were the case, by the coset form of prime avoidance we would
have that xt+1R+p ⊆ Q for one such minimal prime Q. Then Q has height at most t, but
modulo p all of x1, . . . , xt+1 are in Q, so that height (Q/p) ≥ t+ 1, a contradiction. �
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The following result will be useful in proving the colon-capturing property for tight
closure.

Lemma. Let P be a prime ideal of height h in a Cohen-Macaulay ring S. Let x1, . . . , xk+1

be elements of R = S/P such that (x1, . . . , xk)R has height k in R while (x1, . . . , xk+1)R
has height k+ 1. Then we can choose elements y1, . . . , yh ∈ P and z1, . . . , zk+1 ∈ S such
that:

(1) y1, . . . , yh, z1, . . . , zk+1 is a regular sequence in S.

(2) The images of z1, . . . , zk in R generate the ideal (x1, . . . , xk)R.

(3) The image of zk+1 in R is xk+1.

Proof. By the first Proposition on p. 8, we may assume without loss of generality that
x1, . . . , xi generate an ideal of height i in R, 1 ≤ i ≤ k. We also know this for i = k + 1.
Choose zi arbitrarily such that zi maps to xi, 1 ≤ i ≤ k + 1. Choose a regular sequence
y1, . . . , yh of length h in P . Then P is a minimal prime of (y1, . . . , yh)S. By the second
Proposition on p. 8 applied to the images of the of the zi in S/(y1, . . . , yh)S with p =
P/(y1, . . . , yh)S, we may alter the zi by adding elements of P so that the height of the
image of the ideal generated by the images of z1, . . . , zi in S/(y1, . . . , yh) is i, 1 ≤ i ≤ k+1.
Since S/(y1, . . . , yh)S is again Cohen-Macaulay, it follows from the first Proposition on
p. 8 that the images of the z1, . . . , zk+1 modulo (y1, . . . , yh)S form a regular sequence.
But this means that y1, . . . , yh, z1, . . . , zk+1 is a regular sequence. �

Colon-capturing

We can now prove a result on the colon-capturing property of tight closure.

Theorem (colon-capturing). Let R be a reduced Noetherian ring of prime characteristic
p > 0 that is a homomorphic image of a Cohen-Macaulay ring. Let x1, . . . , xk+1 be
elements of R. Let It denote the ideal (x1, . . . , xt)R, 0 ≤ t ≤ k + 1. Suppose that the
image of the ideal Ik has height k modulo every minimal prime of R, and that the image
of the ideal Ik+1R has height k + 1 modulo every minimal prime of R. Then:

(a) Ik :R xk+1 ⊆ I∗k .

(b) If R has a test element, I∗k :R xk+1 ⊆ I∗k , i.e., xk+1 is not a zerodivisor on R/I∗k .

Proof. To prove part (a), note that it suffices to prove the result working in turn modulo
each of the finitely many minimal primes of R. We may therefore assume that R is a
domain. We can consequently write R = S/P , where S is Cohen-Macaulay. Let h be the
height of P . Then we can choose y1, . . . , yh ∈ P and z1, . . . , zk+1 in S as in the conclusion
of the Lemma just above, i.e., so y1, . . . , yh, z1, . . . , zk+1 is a regular sequence in S, and
so that we may replace x1, . . . , xk+1 by the images of the zi in R. Since P has height h,
it is a minimal prime of J = (y1, . . . , yh)S, and so if we localize at S − P , we have that
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P is nilpotent modulo J . Hence, for each generator gi of P we can choose ci ∈ S − P and
an exponent of the form qi = pei such that cig

qi
i ∈ J . It follows that if c ∈ S − P is the

product of the ci and q0 is the maximum of the qi, then cP [q0] ⊆ J .

Now suppose that we have a relation

rxk+1 = r1x1 + · · ·+ rkxk

in R. Then we can lift r, r1, . . . , rk to elements s, s1, . . . , sk ∈ S such that

szk+1 = s1z1 + · · ·+ skzk + v,

where v ∈ P . Then for all q ≥ q0 we may raise both sides to the q th power and multiply
by c to obtain

csqzqk+1 = csq1z
q
1 + · · ·+ csqkz

q
k + cvq;

moreover, cvq ∈ (y1, . . . , yh). Therefore

csqzqk+1 ∈ (zq1 , . . . , z
q
k, y1, . . . , yh)S.

Since y1, . . . , yh, z
q
1 , . . . , z

q
k+1 is a regular sequence in S, we have that

csq ∈ (zq1 , . . . , z
q
k)S + (y1, . . . , yh)S.

Let c ∈ R◦ be the image of c. Then, working modulo P ⊇ (y1, . . . , yh)R, we have

crq ∈ (x1, . . . , xk)[q]

for all q ≥ q0, and so r ∈ (x1, . . . , xk)∗ in R, as required. This completes the argument
for part (a).

It remains to prove part (b). Suppose that R has a test element d ∈ R◦, that r ∈ R,
and that rxk+1 ∈ I∗k . Then there exists c ∈ R◦ such that c(rxk+1)q ∈ (I∗k)[q] for all q � 0.

Note that (I∗k)[q] ⊆ (I
[q]
k )∗, so that crqxqk+1 ∈ (I

[q]
k )∗, and dcrqxqk+1 ∈ I

[q]
k . From part (a),

it follows that dcrq ∈ (I
[q]
k )∗ for all q � 0, and so d2crq ∈ I [q]

k for all q � 0. But then
r ∈ I∗k , as required. �

Corollary. Let R be a Noetherian ring of prime characteristic p > 0 that is a homomor-
phic image of a Cohen-Macaulay ring, and suppose that R is weakly F-regular. Then R is
Cohen-Macaulay.

Proof. Consider a local ring of R at a maximal ideal. Then this local ring remains weakly
F-regular, and is normal. Therefore, we may assume that R is a local domain. Let
x1, . . . , xn be a system of parameters. Then for every k < n, (x1, . . . , xk) :R xk+1 ⊆
(x1, . . . , xk)∗ = (x1, . . . , xk), since (x1, . . . , xk) is tightly closed. �
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Properties of regular sequences

In the sequel we shall need to make use of certain standard facts about regular sequences
on a module: for convenience, we collect these facts here. Many of the proofs can be made
simpler in the case of a regular sequence that is permutable, i.e., whose terms form a regular
sequence in every order. This hypothesis holds automatically for regular sequences on a
finitely generated module over a local ring. However, we shall give complete proofs here
for the general case, without assuming permutability. The following fact will be needed
repeatedly.

Lemma. Let R be a ring, M an R-module, and let x1, . . . , xn be a possibly improper
regular sequence on M . If u1, . . . , un ∈M are such that

n∑
j=1

xjuj = 0,

then every uj ∈ (x1, . . . , xn)M .

Proof. We use induction on n. The case where n = 1 is obvious. We have from the
definition of possibly improper regular sequence that un =

∑n−1
j=1 xjvj , with v1, . . . , vn−1 ∈

M , and so
∑n−1
j=1 xj(uj + xnvj) = 0. By the induction hypothesis, every uj + xnvj ∈

(x1, . . . , xn−1)M , from which the desired conclusion follows at once �

Proposition. Let 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mh = M be a finite filtration of M . If
x1, . . . , xn is a possibly improper regular sequence on every factor Mk+1/Mk, 0 ≤ k ≤ h−1,
then it is a possibly improper regular sequence on M . If, moreover, it is a regular sequence
on M/Mh−1, then it is a regular sequence on M .

Proof. If we know the result in the possibly improper case, the final statement follows, for
if I = (x1, . . . , xn)R and IM = M , then the same hold for every homomorphic image of
M , contradicting the hypothesis on M/Mh−1.

It remains to prove the result when x1, . . . , xn is a possibly improper regular sequence
on every factor. The case where h = 1 is obvious. We use induction on h. Suppose that
h = 2, so that we have a short exact sequence

0→M1 →M → N → 0
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and x1, . . . , xn is a possibly regular sequence on M1 and N . Then x1 is a nonzerodivisor
on M , for if x1u = 0, then x1 kills the image of u in N . But this shows that the image
of u in N must be 0, which means that u ∈ M1. But x1 is not a zerodivisor on M1. It
follows that

0→ xM1 → xM → xN → 0

is also exact, since it is isomorphic with the original short exact sequence. Therefore, we
have a short exact sequence of quotients

0→M1/x1M1 →M/x1N →M/x1N → 0.

We may now apply the induction hypothesis to conclude that x2, . . . , xn is a possibly
improper regular sequence on M/x1M , and hence that x1, . . . , xn is a possibly improper
regular sequence on M .

We now carry through the induction on h. Suppose we know the result for filtrations
of length h− 1. We can conclude that x1, . . . , xn is a possibly improper regular sequence
on Mh−1, and we also have this for M/Mh−1. The result for M now follows from the case
where h = 2. �

Theorem. Let x1, . . . , xn ∈ R and let M be an R-module. Let t1, . . . , tn be integers ≥ 1.
Then x1, . . . , xn is a regular sequence (respectively, a possibly improper regular sequence)
on M iff xt11 , . . . , x

tn
n is a regular sequence on M (respectively, a possibly improper regular

sequence on M).

Proof. If IM = M then IkM = M for all k. If each of I and J has a power in the other,
it follows that IM = M iff JM = M . Thus, we will have a proper regular sequence in
one case iff we do in the other, once we have established that we have a possibly improper
regular sequence. In the sequel we deal with possibly improper regular sequences, but for
the rest of this proof we omit the words “possibly improper.”

Suppose that x1, . . . , xn is a regular sequence on M . By induction on n, it will suffice
to show that xt11 , x2, . . . , xn is a regular sequence on M : we may pass to x2, . . . , xn and
M/xt1nM and then apply the induction hypothesis. It is clear that xt11 is a nonzerodivisor

when x1 is. Moreover, M/xt11 M has a finite filtration by submodules xj1M/xt11 M with

factors xj1M/xj+1
1 M ∼= M/x1M , 1 ≤ j ≤ t1 − 1. Since x2, . . . , xn is a regular sequence

on each factor, it is a regular sequence on M/xt11 M by the preceding Proposition.

For the other implication, it will suffice to show that if x1, . . . , xj−1, x
t
j , xj+1, . . . , xn

is a regular sequence on M , then x1, . . . , xn is: we may change the exponents to 1 one
at a time. The issue may be considered mod (x1, . . . , xj−1)M . Therefore, it suffices to
consider the case j = 1, and we need only show that if xt1, x2, . . . , xn is a regular sequence
on M then so is x1, . . . , xn. It is clear that if xt1 is a nonzerodivisor then so is x1.

By induction on n we may assume that x1, . . . , xn−1 is a regular sequence on M . We
need to show that if xnu ∈ (x1, . . . , xn−1)M , then u ∈ (x1, x2, . . . , xn−1)M . If we multiply
by xt−1

1 , we find that
xn(xt−1

1 u) ∈ (xt1, x2, . . . , xn−1)M,
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and so
xt−1

1 u = xt1v1 + x2v2 + · · ·+ xn−1vn−1,

i.e.,
xt−1

1 (u− x1v1)− x2v2 − · · · − xn−1vn−1 = 0.

By the induction hypothesis, x1, . . . , xn−1 is a regular sequence on M , and by the first
part, xt−1

1 , x2, ..., xn−1 is a regular sequence on M . By the Lemma on p. 1, we have that

u− x1v1 ∈ (xt−1
1 , x2, . . . , xn−1)M,

and so u ∈ (x1, . . . , xn−1)M , as required. �

Theorem. Let x1, . . . , xn be a regular sequence on the R-module M , and let I denote the
ideal (x1, . . . , xn)R. Let a1, . . . , an be nonnegative integers, and suppose that u, u1, . . . , un
are elements of M such that

(#) xa1
1 · · ·xann u =

n∑
j=1

x
aj+1
j uj .

Then u ∈ IM .

Proof. We use induction on the number of nonzero aj : we are done if all are 0. If ai > 0,

let y be Πj 6=ix
aj
j . Rewrite (#) as

∑
j 6=i x

aj+1
j uj − x

aj
i (yu− xiui) = 0. Since powers of the

xj are again regular, the Lemma on p. 1 yields that yu− xiui ∈ xaii M + (x
aj+1
j : j 6= i)M

and so yu ∈ xiM + (x
aj+1
j : j 6= i)M . Now ai = 0 in the monomial y, and there is one

fewer nonzero aj . The desired result now follows from the induction hypothesis. �

If I is an ideal of a ring R, we can form the associated graded ring

grI(R) = R/I ⊕ I/I2 ⊕ · · · ⊕ Ik/Ik+1 ⊕ · · · ,

an N-graded ring whose k th graded piece is Ik/Ik+1. If f ∈ Ih represents an element
a ∈ Ih/Ih+1 = [grIR]h and g ∈ Ik represents an element b ∈ Ik/Ik+1 = [grI(R)]k, then ab
is the class of fg in Ih+k/Ih+k+1. Likewise, if M is an R-module, we can form

grIM = M/IM ⊕ IM/I2M ⊕ · · · ⊕ IkM/Ik+1M ⊕ · · · .

This is an N-graded module over grI(R) in an obvious way: with f and a as above, if
u ∈ IkM represents an element z ∈ IkM/Ik+1M , then the class of fu in Ih+kM/Ih+k+1M
represents az.

If x1, . . . , xn ∈ R generate I, the classes [xi] ∈ I/I2 generate grI(R) as an (R/I)-
algebra. Let θ : (R/I)[X1, . . . , Xn] � grI(R) be the (R/I)-algebra map such that Xi 7→
[xi]. This is a surjection of graded (R/I)-algebras. By restriction of scalars, grI(M) is also
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a module over (R/I)[X1, . . . , Xn]. The (R/I)-linear map M/IM ↪→ grIM then gives a
map

θM : (R/I)[X1, . . . , Xn]⊗R/I M/IM → grI(M).

Note that θR = θ. If u ∈ M represents [u] in M/IM and t1, . . . , tn are nonnegative
integers whose sum is k, then

Xt1
1 · · ·Xtn

n ⊗ [u] 7→ [xt11 · · ·xtnn u],

where the right hand side is to be interpreted in IkM/Ik+1M . Note that θM is surjective.

Theorem. Let x1, . . . , xn be a regular sequence on the R-module M , and suppose that
I = (x1, . . . , xn)R. Let X1, . . . , Xn be indeterminates over the ring R/I. Then

grI(M) ∼= (R/I)[X1, . . . , Xn]⊗R/I (M/IM)

in such a way that the action of [xi] ∈ I/I2 = [grI(R)]1 on grI(M) is the same as multi-
plication by the variable Xi.

In particular, if x1, . . . , xn is a regular sequence in R, then grI(R) ∼= (R/I)[X1, . . . , Xn]
in such a way that [xi] corresponds to Xi.

In other words, if x1, . . . , xn is a regular sequence on M (respectively, R), then the map
θM (respectively, θ) discussed in the paragraph above is an isomorphism.

Proof. The issue is whether θM is injective. If not, there is a nontrivial relation on the
monomials in the elements [xi] with coefficients in M/IM , and then there must be such a
relation that is homogeneous of, say, degree k. Lifting to M , we see that this means that
there is an (M − IM)-linear combination of mutually distinct monomials of degree k in
x1, . . . , xn which is in Ik+1M . Choose one monomial term in this relation: it will have the
form xa1

1 · · ·xann u, where the sum of the aj is k and u ∈ M − IM . The other monomials
of degree k in the elements x1, . . . , xn and the monomial generators of Ik+1 all have as a
factor at least one of the terms xa1+1

1 , . . . , xan+1
n . This yields that

(#) (Πjx
aj
j )u =

n∑
j=1

x
aj+1
j uj .

By the preceding Theorem, u ∈ IM , contradictioning that u ∈M − IM . �

|

Another description of the Koszul complex

Let R be a ring and let x = x1, . . . , xn ∈ R. In our development of the Koszul complex,

we showed that Ki(x; R) has

(
n

i

)
generators uj1···ji where 1 ≤ j1 < · · · < ji ≤ n, so that
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the generators may the thought of as indexed by strictly increasing sequences of integers
between 1 and n inclusive of length i. We may also think of the generators as indexed by
the i element subsets of {1, . . . , n}.

This means that with

G = K1(x; R) = Ku1 ⊕ · · · ⊕Kun,

we have that

Ki(x; R) ∼=
i∧
G,

for all i ∈ Z in such a way that uj1···ji corresponds to uj1 ∧· · ·∧uji . Thus, the Koszul com-
plex coincides with the skew-commutative N-graded algebra

∧•
(G). (A skew-commutative

N-graded algebra is an associative N-graded ring with identity such that if u and v are
forms of degree d, e respectively, then vu = (−1)deuv. The elements of even degree span a
subalgebra that is in the center.) A graded derivation of such an algebra of degree −1 is a
Z-linear map δ that lowers degrees by 1 and satisfies

δ(uv) =
(
δ(u)

)
v + (−1)duδ(v)

when u and v or forms as above.

It is easy to check that the differential of the Koszul complex is a derivation of degree
−1 in the sense specified. Moreover, given any R-linear map G→ R, it extends uniqely to
an R-linear derivation of

∧•
(G) of degree −1. If we choose a basis for G, call it u1, . . . , un,

and let xi be the value of the map on ui, we recover K•(x; R) in this way.

Maps of quotients by regular sequences

Let x = x1, . . . , xn and y = y1, . . . , yn be two regular sequences in R such that J =
(y1, . . . , yn)R ⊆ (x1, . . . , xn)R = I. It is obvious that there is a surjection R/J � R/I.
It is far less obvious, but very useful, that there is an injection R/I → R/J .

Theorem. Let x1, . . . , xn and y1, . . . , yn be two regular sequences on a Noetherian mod-
ule M over a Noetherian ring R. Suppose that

J = (y1, . . . , yn)R ⊆ (x1, . . . , xn)R = I.

Choose elements aij ∈ R such that for all j, yj =
∑n
i=1 aijxi. Let A be the matrix

(
aij
)
,

so that we have a matrix equation

(y1 . . . yn) = (x1 . . . xn)A.

Let D = det(A). Then DI ⊆ J , and the map M/IM →M/JM induced by multiplication
by D on the numerators in injective.
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Proof. Let B be the classical adjoint of A, so that BA = AB = DIn, where In is the n×n
identity matrix. Then

(y1 . . . yn)B = (x1 . . . xn)AB = (x1 . . . xn)D

shows that DI ⊆ J .

The surjection R/J � R/I lifts to a map of projective resolutions of these modules:
we can use any projective resolutions, but in this case we use the two Koszul complexes
K•(x; R) and K•(y; R). With these specific resolutions, we can use the matrix A to give
the lifting as far as degree 1:

K1(x; R)
(x1 ... xn)−−−−−−→ R −−−−→ R/(x1, . . . , xn) −−−−→ 0

A

x 1R

x x
K1(y; R)

(y1 ... yn)−−−−−−→ R −−−−→ R/(y1, . . . , yn) −−−−→ 0

Here, we are using the usual bases for K1(x; R) and K1(y; R). It is easy to check that if
we use the maps

i∧
A : Ki(y; R)→ Ki(x; R)

for all i, we get a map of complexes. This means that the map

R ∼= Kn(y; R)→ Kn(x; R) ∼= R

is given by multiplication by D. It follows that the map induced by multiplication by D
gives the induced map

ExtnR(R/(x1, . . . , xd), M)→ Extn(R/(y1, . . . , yn), M).

We have already seen that these top Ext modules may be identified with M/(x1, . . . , x)M
and M/(y1, . . . , yn)M , respectively: this is the special case of the Theorem at the bottom
of p. 4 of the Lecture Notes of October 5 in the case where i = n.

Consider the short exact sequence

0→ I/J → R/J → R/I → 0.

The long exact sequence for Ext yields, in part,

Extn−1
R (I/J ;M)→ ExtnR(R/I; M)→ ExtnR(R/J ;M).

Since the depth of M on AnnR(I/J) ⊇ J is at least n, the leftmost term vanishes, which
proves the injectivity of the map on the right. �
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Remark. We focus on the case where M = R: a similar comment may be made in
general. We simply want to emphasize that the identification of ExtnR(R/I, R) with R/I
is not canonical: it depends on the choice of generators for I. But a different identification
can only arise from multiplication by a unit of R/I. A similar remark applies to the
identification of ExtnR(R/J, R) with R/J .

Remark. The hypothesis that R and M be Noetherian is not really needed. Even if
the ring is not Noetherian, if the annihilator of a module N contains a regular sequence
x1, . . . , xd of length d on M , it is true that ExtiR(N, M) = 0 for i < d. If d ≥ 1, it is easy
to see that any map N → M must be 0: any element in the image of the map must be
killed by x1, and AnnMx1 = 0. The inductive step in the argument is then the same as in
the Noetherian case: consider the long exact sequence for Ext arising when HomR(N, )
is applied to

0 −→M
x1·−−→M −→M/x1M −→ 0.

The type of a Cohen-Macaulay module over a local ring

Let (R, m, K) be local and let M be a finitely generated nonzero R-module that is
Cohen-Macaulay, i.e., every system of parameters for R/I, where I = AnnRM , is a regular
sequence on M . (It is equivalent to assume that depthmM = dim (M).) Recall that the
socle of an R-module M is AnnMm ∼= HomR(K, M). It turns out that for any maximal
regular sequence x1, . . . , xd on M , the dimension as a K-vector space of the socle in
M/(x1, . . . , xd)M is independent of the choice of the system of parameters. One way to
see this is as follows:

Propostion. Let (R, m, K) and M be as above with M Cohen-Macaulay of dimension
d over R. Then for every maximal regular sequence x1, . . . , xd on M and for every i,
1 ≤ i ≤ d,

ExtdR(K, M) ∼= Extd−iR

(
K, M/(x1, . . . , xi)M

)
.

In particular, for every maximal regular sequence on M , the socle in M/(x1, . . . , xd)M

is isomorphic to ExtdR(K, M), and so its K-vector space dimension is independent of the
choice maximal regular sequence.

Proof. The statement in the second paragraph follows from the result of the first paragraph
in the case where i = d. By induction, the proof that

ExtdR(K, M) ∼= Extd−iR

(
K, M/(x1, . . . , xi)M

)
reduces at once to the case where i = 1. To see this, apply the long exact sequence for Ext
arising from the application of HomR(K, ) to the short exact sequence

0→M →M →M/x1M → 0.
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Note that Extj(K, M) = 0 for j < d, since the depth of M on AnnRK = m is d, and that
Extj(K, M/x1M) = 0 for j < d− 1, similarly. Hence, we obtain, in part,

0 −→ Extd−1
R (K, M/x1M) −→ ExtdR(K, M)

x1·−−→ ExtdR(K, M).

Since x1 ∈ m kills K, the map on the right is 0, which gives the required isomorphism. �

Proposition. Let M 6= 0 be a Cohen-Macaulay module over a local ring R. Let x1, . . . , xn
and y1, . . . , yn be two systems of parameters on M with (y1, . . . , yn)R ⊆ (x1, . . . , xn)R
and let A =

(
aij
)

be a matrix of elements of R such that (y1 . . . yn) = (x1 . . . xn)A. Let
D = det(A). Then the map M/(x1, . . . , xn)M → M/(y1, . . . , yn)M induced by multipli-
cation by D on the numerators carries the socle of M/(x1, . . . , xn)M isomorphically onto
the socle of M/(y1, . . . , yn)M .

In particular, if yi = xti, 1 ≤ i ≤ n, then the map induced by multiplication by
xt−1

1 · · ·xt−1
n carries the socle of the quotient module M/(x1, . . . , xn)M isomorphically

onto the socle of M/(xt1, . . . , x
t
n)M .

Proof. By the Theorem on p. 5, multiplication by D gives an injection

M/(x1, . . . , xn)M ↪→M/(y1, . . . , yn)M

which must map the socle in the left hand module injectively into the socle in the right
hand module. Since, by the preceding Proposition, the two socles have the same finite
dimension as vector spaces over K, the map yields an isomorphism of the two socles. The
final statement follows because in the case of this specific pair of systems of parameters,
we may take A to be the diagonal matrix with diagonal entries xt−1

1 , . . . , xt−1
n . �

F-rational rings

Definition: F-rational rings. We shall say that a local ring (R, m, K) is F-rational if it
is a homomorphic image of a Cohen-Macaulay ring and every ideal generated by a system
of parameters is tightly closed.

We first note:

Theorem. An F-rational local ring is Cohen-Macaulay, and every ideal generated by part
of a system parameters is tightly closed. Hence, an F -rational local ring is a normal
domain.

Proof. Let x1, . . . , xk be part of a system of parameters (it may be the empty sequence)
and let I = (x1, . . . , xk). Let x1, . . . , xn be a system of parameters for R, and for every
t ≥ 1 let Jt = (x1, . . . , xk, x

t
k+1, . . . , x

t
n)R. Then for all t, I ⊆ Jt and Jt is tightly closed,

so that I∗ ⊆ Jt and I∗ ⊆
⋂
t Jt = I, as required. In particular, (0) and principal ideals

generated by nonzerodivisors are tightly closed, so that R is a normal domain, by the
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Theorem on the top of p. 5 of the Lecture Notes from September 17. In particular, R
is equidimensional, and by part (a) of the Theorem on colon-capturing from p. 9 of the
Lecture Notes from October 5, we have that for every k, 0 ≤ k ≤ n− 1,

(x1, . . . , xk) :R xk+1 ⊆ (x1, . . . , xk)∗ = (x1, . . . , xk),

so that R is Cohen-Macaulay. �

Theorem. Let (R, m, K) be a reduced local ring of prime characteristic p > 0. If R is
Cohen-Macaulay and the ideal I = (x1, . . . , xn) generated by one system of parameters
is tightly closed, then R is F-rational, i.e., every ideal generated by part of a system of
parameters is tightly closed.

Proof. Let It = (xt1, . . . , x
t
n)R. We first show that all of the ideals It are tightly closed. If

not, suppose that u ∈ (It)
∗ − It. Since (It)

∗/It has finite length, u has a nonzero multiple
v that represents an element of the socle of I∗t /It, which is contained in the socle of R/It.
Thus, we might as well assume that u = v represents an element of the socle in R/It. By
the last statement of the Proposition on p. 8, , we can choose z representing an element
of the socle in R/I such that the class of v mod I has the form [xt−1

1 · · ·xt−1
n z]. Then

xt−1
1 · · ·xt−1

n z also represents an element of I∗− I. Hence, we can choose c ∈ R◦ such that
for all q � 0,

c(xt−1
1 · · ·xt−1

n z)q ∈ I [q]
t = Itq,

i.e., cxtq−q1 · · ·xtq−qn zq ∈ Itq, which implies that

czq ∈
(
(xq1)t, . . . , (xqn)t

)
:R (xq1)t−1 · · · (xqn)t−1.

By the Theorem on p. 3 applied to the regular sequence xq1, . . . , x
q
n, the right hand side is

(xq1, . . . , x
q
n) = I [q], and so

czq ∈ I [q]

for all q � 0. This shows that z ∈ I∗ = I, contradicting the fact that z represents a
nonzero socle element in R/I.

Now consider any system of parameters y1, . . . , yn. For t � 0, (xt1, . . . , x
t
n)R ⊆

(y1, . . . , yn)R. Then there is an injectiion R/y1, . . . , yn)R ↪→ R/(xt1, . . . , x
t
n)R by the

Theorem at the bottom of p. 5. Since 0 is tightly closed in the latter, it is tightly closed
in R/(y1, . . . , yn)R, and so (y1, . . . , yn)R is tightly closed in R. �

We shall see soon that under mild conditions, if (R, m, K) is a local ring of prime
characteristic p > 0 and a single ideal generated by a system of parameters is tightly
closed, then R is F-rational: we can prove that R is Cohen-Macaulay even though we are
not assuming it.
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Math 711, Fall 2007 Problem Set #2
Due: Wednesday, October 24

In all problems, R, S are Noetherian rings of prime characteristic p > 0.

1. Suppose that (R,m,K) has a test element. Show that for every proper ideal I ⊆ R,

I∗ =
⋂
n

(I +mn)∗.

2. Suppose that c is a completely stable test element in (R, m, K). Let I be an m-primary

ideal. Show that u ∈ I∗ if and only if u ∈ (IR̂)∗ in R̂.

3. Let R be a Noetherian domain of characteristic p > 0, and suppose that the integral
closure S of R in its fraction field is weakly F-regular. Prove that for every ideal I of R,
I∗ = IS ∩ R. (This is the case in subrings of polynomial rings over a field K generated
over K by finitely many monomials.)

4. If R is a ring of prime characteristic p > 0, define the Frobenius closure IF of I to be
the set of elements r ∈ R such that for some q = pe, rq ∈ I [q]. Suppose that c ∈ R◦ has
the property that for every maximal ideal m of R, there exists an integer Nm such that
cNm is a test element for Rm. Prove that for every ideal I of R, cI∗ ⊆ IF.

5. Let R ⊆ S be integral domains such that S is module-finite over R, and suppose that
S has a test element. Prove that R has a test element.

6. Let (R, m, K) be a local Gorenstein ring, and let x1, . . . , xd be a system of parameters
for R. Let y ∈ R generate the socle modulo (x1, . . . , xd). Suppose that for every integer
t ≥ 1, the ideal

(
xt1, . . . , x

t
d, (x1 · · ·xd)t−1y

)
R is tightly closed. Prove that either R is

weakly F-regular, or else that τ(R) = m.
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Math 711: Lecture of October 10, 2007

We now want to make precise the assertion at the end of the preceding lecture to the
effect that, under mild conditions on the local ring R, if one system of parameters of R
generates a tightly closed ideal then R is F-rational. We already know that this is true
when R is Cohen-Macaulay. The new point is that we do not need to assume that R is
Cohen-Macaulay — we can prove it. However, we need the strong form of colon-capturing,
and so we assume the existence of a test element. The following Theorem will enable us
to prove the result that we want.

Theorem. Let (R, m, K) be a reduced local ring of prime characteristic p > 0, and let
x1, . . . , xn be a sequence of elements of m such that Ik = (x1, . . . , xk) has height k modulo
every minimal prime of R, 1 ≤ k ≤ n. Suppose that R has a test element. If (x1, . . . , xn)R
is tighly closed, then Ik is tightly closed, 0 ≤ k ≤ n, and x1, . . . , xn is a regular sequence
in R.

Proof. We first prove that every Ik is tightly closed, 0 ≤ k ≤ n, by reverse induction on
k. We are given that In is tightly closed. Now suppose that we know that Ik+1 is tightly
closed, where 0 ≤ k ≤ n−1. We prove that Ik is tightly closed. Let u ∈ I∗k be given. Since
Ik ⊆ Ik+1, we have that I∗k ⊆ I∗k+1 = Ik+1 by hypothesis,, and Ik+1 = Ik + xk+1R. Thus,
u = v + xk+1w, where v ∈ Ik and w ∈ R. But then xk+1w = u− v ∈ I∗k , since u ∈ I∗k and
v ∈ Ik. Consequently, v ∈ I∗k :R xk+1. By part (b) of the Theorem on colon-capturing at
the bottom of p. 9 of the Lecture Notes from October 5, we have that I∗k :R xk+1 = I∗k .
That is, u ∈ Ik+xk+1I

∗
k . Since u ∈ I∗k was arbitrary, we have shown that I∗k ⊆ Ik+xk+1I

∗
k ,

and the opposite inclusion is obvious. Let N = I∗k/Ik. Then we have that xk+1N = N ,
and so N = 0 by Nakayama’s Lemma. But this says that I∗k = Ik, as required. The fact
that the xi form a regular sequence is then obvious from the Theorem at the bottom of
p. 9 of the Lecture Notes from October 5 cited above. �

We then have:

Theorem. Let (R, m, K) be a reduced, equidimensional local ring that is a homomorphic
image of a Cohen-Macaulay ring. Suppose that R has a test element. If the ideal generated
by one system of parameters of R is tightly closed, then R is F-rational. That is, R is
Cohen-Macaulay and every ideal generated by part of a system of parameters is tightly
closed.

Proof. By the preceding Theorem, R is Cohen-Macaulay, and the result now follows from
the Theorem on p. 9 of the Lecture Notes from October 8. �
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|

A localization of an F-rational local ring at any prime is F-rational. The proof is left
as an exercise in Problem Set #3. It is therefore natural to define a Noetherian ring R
of prime characteristic p > 0 to be F-rational if its localization at every maximal ideal
(equivalently, at every prime ideal) is F-rational.

|

Definition: Gorenstein local rings. A local ring (R, m, K) is called Gorenstein if it
is Cohen-Macaulay of type 1. Thus, if x1, . . . , xn is any system of parameters in R, the
Artin local ring R/(x1, . . . , xn)R has a one-dimensional socle, which is contained in every
nonzero ideal of R. Notice that if (R, m, K) is Gorenstein of dimension n, we know that
ExtiR(K, R) = 0 if i < n, while ExtnR(K, R) ∼= K.

Note that killing part of a system of parameters in a Gorenstein local ring does not
change its type: hence such a quotient is again Gorenstein. Regular local rings are Goren-
stein, since the quotient of a regular local ring by a regular system of parameters is K. The
quotient of a regular local ring by part of a system of parameters is therefore Gorenstein.
In particular, the quotient R/f of a regular local ring R by a nonzero proper principal
ideal fR is Gorenstein. Such a ring R/fR is called a local hypersurface.

We shall need the following very important result.

Theorem. If an Artin local ring is Gorenstein, it is injective as a module over itself.

This was proved in seminar. See also, for example, [W. Bruns and J. Herzog, Cohen-
Macaulay rings, Cambridge Studies in Advanced Math. 39 Cambridge Univ. Press, Cam-
bridge, 1993] Theorems (3.1.17) and (3.2.10).

In consequence, we are able to prove the following most useful result. Notice that it
reduces checking whether a given Gorenstein local ring is weakly F-regular to determining
whether one specific element is in the tight closure of the ideal generated by one system of
parameters.

Theorem. Let (R, m, K) be a reduced Gorenstein local ring of prime characteristic p > 0.
Let x1, . . . , xn be a system of parameters for R, and let u in R represent a generator of
the socle in R/(x1, . . . , xn)R. Then the following conditions are equivalent.

(1) R is weakly F-regular.

(2) R is F-rational

(3) (x1, . . . , xn)R is tightly closed.

(4) The element u is not in the tight closure of (x1, . . . , xn)R.
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Proof. Let I = (x1, . . . , xn). It is clear that (1) ⇒ (2) ⇒ (3) ⇒ (4). But (4) ⇒ (3)
because if I∗ is strictly larger than I, then I∗/I is a nonzero ideal of R/I and must contain
the socle element represented by u, from which it follows that u ∈ I∗. The fact the
(3) ⇒ (2) follows from the Theorem on p. 9 of the Lecture Notes from October 8. What
remains to be proved is the most interesting implication, that (2)⇒ (1).

Assume that R is F -rational, and let N ⊆ M be finitely generated R-modules. We
must show that N is tightly closed. If not, choose u ∈ N∗ −M . We may replace N by
a submodule N ′ of M with N ⊆ N ′ ⊆ M such that N ′ is maximal witth respect to the
property of not containing u. We will still have that u is in the tight closure of N ′ in M ,
and u /∈ N ′. We may then replace M and N ′ by M/N ′ and 0, respectively, and u by its
image in M/N ′. The maximality of N ′ implies that u is in every submodules of M/N ′.
We change notation: we may assume that u ∈ M is in every nonzero submodule of M ,
and that u ∈ 0∗M .

By the Lemma on the first page of the Lecture Notes from September 17, we have that
M has finite length and is killed by a power of the maximal ideal of R. Moreover, u is
in every nonzero submodule of M . Let x1, . . . , xn be a system of parameters for R. For
t � 0, we have that every xti kills M . Thus, we may think of M as a module over the
Artin local ring A = R/(xt1, . . . , x

t
n)R, which is a Gorenstein Artin local ring. Let v be

the socle element in A. Then
Ru ∼= K ∼= Rv ⊆ A

gives an injective map of Ru ⊆M to A. Since A is injective as an A-module and M is an
A-module, this map extends to a map θ : M → A that is A-linear and, hence, R-linear.
We claim that θ is injective: if the kernel were nonzero, it would be a nonzero submodule
of M , and so it would contain u, contradicting the fact that u has nonzero image in A.
Since M ↪→ AR, to show that 0 is tightly closed in M over R, it suffices to show that 0 is
tightly closed in A over R. Since A = R/(xt1, . . . , x

t
n)R, this is simply equivalent to the

statement that (xt1, . . . , x
t
n)R is tightly closed in R. �
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Capturing the contracted expansion from an integral extension

Using the result of the first problem in Problem Set #1, we can now prove that tight
closure has one of the good properties, namely property (3) on p. 15 of the Lecture Notes
from September 5, described in the introduction to the subject in the first lecture.

Recall that if M is a module over a domain D, the torsion-free rank of M is

dimK(K ⊗D M).

We first note a preliminary result that comes up frequently:

Lemma. Let D be a domain with fraction field K, and let M be a finitely generated torsion-
free module over D. Then M can be embedded in a finitely generated free D-module Dh,
where h is the torsion-free rank of M over D. In particular, given any nonzero element
u ∈M , there is a D-linear map θ : M → D such that θ(u) 6= 0.

Proof. We can choose h elements b1, . . . , bh of M that are linearly independent over K
and, hence, over D. This gives an inclusion map

Db1 + · · ·+Dbh = Dh ↪→M.

Let u1, . . . , un generate M . Then each un is a linear combination of b1, . . . , bh over K,
and we may multiply by a common denominator ci ∈ D − {0} to see that ciui ∈ Dh ⊆M
for 1 ≤ i ≤ n. Let c = c1 · · · cn. Then cui ∈ Dh for all i, and so cM ⊆ Dh. But M ∼= cM
via the map u 7→ cu, and so we have that f : M ↪→ Dh, as required.

If u 6= 0, then f(u) = (d1, . . . , dh) has some coordinate not 0, say dj . Let πj denote
the j th coordinate projection Dh → D. Then we may take θ = π ◦ f . �

Theorem. Let R be a Noetherian ring of prime characteristic p > 0. Suppose that R ⊆ S
is an integral extension, and that I is an ideal of R. Then IS ∩R ⊆ I∗.

Proof. Let r ∈ IS ∩ R. It suffices to show that the image of r is in I∗ working modulo
every minimal prime p of R in turn. Let q be a prime ideal of S lying over p: we can
choose such a prime q by the Lying Over Theorem. Then we have R/p ↪→ S/q, and the
image of r in R/p is in I(S/q). We have therefore reduced to the case where R and S are
domains.

Since r ∈ IS, if f1, . . . , fn generate I we can write

r = s1f1 + · · ·+ snfn.
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Hence, we may replace S by R[f1, . . . , fn] ⊆ SW , and so assume that S is module-finite
over R. By the preceding Lemma, S is solid as an R-algebra, and the result now follows
from Problem 1 of Problem Set #1. �

Test elements for reduced algebras essentially of finite type

over excellent semilocal rings

Although we have test elements for F-finite rings, we do not yet have a satisfactory
theory for excellent local rings. In fact, as indicated in the title of this section, we can do
much better. In this section, we want to sketch the method that will enable us to prove
the following result:

Theorem. Let R be a Noetherian ring of prime characteristic p > 0. Suppose that R is
reduced and essentially of finite type over an excellent semilocal ring B. Then there are
elements c ∈ R◦ such that Rc is regular, and every such element c has a power that is a
completely stable big test element.

We shall, in fact, prove better results in which the hypotheses on Rc are weakened, but
we want to use the Theorem stated to motivate the constructions we need.

The idea of the argument is as follows. We first replace the semilocal ring B by its

completion B̂ with respect to its Jacobson radical. Then R1 = B̂ ⊗B R is essentially of

finite type over B̂, is still reduced, and the map R→ R1 is flat with geometrically regular
fibers. It follows that (R1)c is still regular. Thus, we have reduced to the case where B is
a complete semilocal ring. Such a ring is a finite product of complete local rings, and so is
the B-algebra R. The problem can be treated for each factor separately. Therefore, we can
assume that B is a complete local ring. Then B is module-finite over a complete regular
local ring A, and we henceforth want to think about the case where R is essentially of finite
type over a regular local ring (A, m, K). We can choose a coefficient field K ⊆ A such
that the composite map K ↪→ A� A/m is an isomorphism. We know from the structure
theory of complete local rings that A has the form K[[x1, . . . , xn]], where x1, . . . , xn are
formal power series indeterminates over K.

We know that R has the form W−1R0 where R0 is finitely generated as an A-algebra.
It is not hard to see that if (W−1R0)c is regular, then there exists w ∈ W such that(
(R0)w

)
c

is regular. If we show that cN is a completely stable big test element for (R0)w,
this is automatically true for every further localization as well, and so we have it for
W−1R0 = R. This enables us to reduce to the case where R is finitely generated over
A = K[[x1, . . . , xn]]. The key to proving the Theorem above is then the following result.

Theorem. Let K be a field of characteristic p > 0, let (A, m, K) denote the regular local
ring K[[x1, . . . , xn]], and let R be a reduced finitely generated A-algebra. Suppose that Rc
is regular. Then A has an extension AΓ such that

(1) A→ AΓ is faithfully flat and local.
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(2) AΓ is purely inseparable over A.

(3) The maximal ideal of AΓ is mAΓ.

(4) AΓ is F-finite.

(5) AΓ ⊗A R is reduced.

(6) (AΓ ⊗A R)c is regular.

It will take quite an effort to prove this. However, once we have this Theorem, the rest
of the argument for the Theorem on p. 2 is easy. The point is that RΓ = AΓ ⊗A R is
faithfully flat over R and is F-finite and reduced by (4) and (5) above, Moreover, we still
have that (RΓ)c is regular, by part (6). It follows that cN is a completely stable big test
element for RΓ by the Theorem at the bottom of p. 4 of the Lecture Notes from October
1, and then we have the corresponding result for R.

This motivates the task of proving the existence of extensions A→ AΓ with properties
stated above. The construction depends heavily on the behavior of p -bases for fields of
prime characteristic p > 0.

Properties of p -bases

We begin by recalling the notion of a p -base for a field K of characteristic p > 0. As
usual, if q = pe we write

Kq = {cq : c ∈ K},

the subfield of K consisting of all elements that are q th powers. It will be convenient to
call a polynomial in several variables e-special, where e ≥ 1 is an integer, if every variable
occurs with exponent at most pe − 1 in every term. This terminology is not standard.

Let K be a field of characteristic p > 0. Finitely many elements λ1, . . . , λn in K (they
will turn out to be, necessarily, in K −Kp) are called p -independent if the following three
equivalent conditions are satisfied:

(1) [Kp[λ1, . . . , λn] : Kp] = pn.

(2) Kp ⊆ K[λ1] ⊆ Kp[λ1, λ2] ⊆ · · · ⊆ Kp[λ1, λ2, . . . , λn] is a strictly increasing tower of
fields.

(3) The pn monomials λa1
1 · · ·λann such that 0 ≤ aj ≤ p− 1 for all j with 1 ≤ j ≤ n are a

Kp-vecctor space basis for K over Kp.

Note that since every λj satisfies λpj ∈ Kp, in the tower considered in part (2) at each

stage there are only two possibilities: the degree of λj+1 over Kp[λ1, . . . , λj ] is either 1,
which means that

θj+1 ∈ Kp[λ1, . . . , λj ],

or p. Thus, K[λ1, . . . , λn] = pn occurs only when the degree is p at every stage, and this
is equivalent to the statement that the tower of fields is strictly increasing. Condition (3)
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clearly implies condition (1). The fact that (2) ⇒ (3) follows by mathematical induction
from the observation that

1, λj+1, λ
2
j+1, . . . , λ

p−1
j+1

is a basis for Lj+1 = Kp[λ1, . . . , λj+1] over Lj = K[λ1, . . . , λj ] for every j, and the fact
that if one has a basis C for Lj+1 over Lj and a basis B for Lj over Kp then all products
of an element from C with an element from B form a basis for Lj+1 over Kp.

Every subset of a p -independent set is p -independent. An infinite subset of K is called
p -independent if every finite subset is p -independent.

A maximal p -independent subset of K, which will necessarily be a subset of K−Kp, is
called a p -base for K. Zorn’s Lemma guarantees the existence of a p -base, since the union
of a chain of p -independent sets is p -independent. If Λ is a x-base, then K = Kp[Λ], for if
there were an element θ′ of K−Kp[Θ], it could be used to enlarge the p -base. The empty
set is a p -base for K if and only if K is perfect. If K is not perfect, a p -base for K is never
unique: one can change an element of it by adding an element of Kp.

From the condition above, it is easy to see that Λ is a p -base for K if and only if every
element of K is uniquely expressible as a polynomial in the elements of Λ with coefficients
in Kp such that the exponent on every λ ∈ Λ is at most p − 1: this is equivalent to the
assertion that the monomials in the elements of Λ of degree at most p− 1 in each element
are a basis for K over Kp. Another equivalent statement is that every element of K is
uniquely expressible as as 1-special polynomial in the elements of Λ with coefficients in
Kp.

If q = pe, then the elements of Λq = {λq : λ ∈ Λ} are a p -base for Kq over Kpq: in fact
we have a commutative diagram:

K
F q−−−−→ Kqx x

Kp −−−−→
Fpq

Kpq

where the vertical arrows are inclusions and the horizontal arrows are isomorphisms: here,
F q(c) = cq. In particular, Λp = {λp : λ ∈ Λ} is a p -base for Kp, and it follows by
multiplying the two bases together that the monomials in the elements of Λ of degree at

most p2− 1 are a basis for K over Kp2

. By a straightforward induction, the monomials in
the elements of Λ of degree at most pe − 1 in each element are a basis for K over Kpe for
every e ≥ 1. An equivalent statement is that every element of K can be written uniquely
as an e-special polynomial in the elements of Λ with coefficients in Kpe .

By taking p th roots, we also have that K1/p = K[λ1/p : λ ∈ Λ]. It is also true that for
any h distinct elements λ1, . . . , λh of the p -base and for all q, [Kq[λ1, . . . , λh] : Kq] = qh

and that K1/q = K[λ1/q : λ ∈ Λ]. It follows that the monomials of the form

(∗) λα1
i1
· · ·λαhih
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where every α is a rational number in [0, 1) that can be written with denominator dividing
q is a basis for K1/q over K.

Hence, with K∞ =
⋂
qK

1/q, we have

Proposition. With K a field of prime characteristic p > 0 and Λ a p -base as above, the
monomials of the form displayed in (∗) with λ1, . . . , λh ∈ Λ and with the denominators of
the αi ∈ [0, 1) allowed to be arbitrary powers of p form a basis for K∞ over K. �

The gamma construction for complete regular local rings

Let K be a fixed field of characteristic p > 0 and let Λ be a fixed p -base for K. Let
A = K[[x1, . . . , xn]] be a formal power series ring over K. We shall always use Γ to
indicate a subset of Λ that is cofinite, by which we mean that Λ − Γ is a finite set. For
every such Γ we define a ring AΓ as follows.

Let Ke (or KΓ
e if we need to be more precise) denote the field K[λ1/q : λ ∈ Γ], where

q = pe as usual. Then K ⊆ Ke ⊆ K1/q, and the q th power of every element of Ke is in
K. We define

AΓ =
⋃
e

Ke[[x1, . . . , xn]].

We refer to AΓ as being obtained from A by the gamma construction.

Our next objective is to prove the following:

Theorem. Consider the local ring (A,m,K) obtained from a field K of characteristic
p > 0 by adjoining n formal power series indeterminiates x1, . . . , xn. That is, A =
K[[x1, . . . , xn]] and m = (x1, . . . , xn)A. Fix a p -base Λ for K, let Γ be a cofinite subset
of Λ, and let AΓ be defined as above. Then A ↪→ AΓ is a flat local homomorphism, and
the ring AΓ is regular local ring of Krull dimension n. Its maximal ideal is mAΓ and its
residue class field is KΓ =

⋃
eK

Γ
e . Moreover, AΓ is purely inseparable over A, and AΓ is

F-finite.

It will take some work to prove all of this.
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We next want to prove the Theorem stated at the end of the Lecture Notes from October
12. Recall that A = K[[x1, . . . , xn]] and that Γ is cofinite in a fixed p -base Λ for K.

First note that it is clear that K[[x1, . . . , xn]]→ Ke[[x1, . . . , xn]] is faithfully flat: every
system of parameters in the former maps to a system of parameters in the extension ring,
and since the extension is regular it is Cohen-Macaulay. Faithful flatness follows from the
Theorem at the top of p. 2 of the Lecture Notes of September 14. Since a direct limit of
flat extensions is flat, it is clear that AΓ is flat over A.

Since (Ke)
q ⊆ K, we have that

(AΓ)q ∈ (Ke)
q[[xq1, . . . , x

q
n]] ∈ K[[x1, . . . , xn]] = A.

Thus, every Ae = Ke[[x1, . . . , xn]] is purely inseparable over A, and it follows that the
union AΓ is as well. Hence, A → AΓ is local. Note that the maximal ideal in each Ae is
mAe = (x1, . . . , xn)Ae. Every element of the maximal ideal of AΓ is in the maximal ideal
of some Ae, and so in mAe ⊆ mAΓ. Thus, mAΓ = (x1, . . . , xn)AΓ is the maximal ideal of
AΓ. The residue class field of AΓ is clearly the direct limit of the residue class fields Ke,
which is the union

⋃
eKe = KΓ: this is the gamma construction applied to A = K.

We next want to check that AΓ is Noetherian. Note that AΓ is contained in the regular
ring KΓ[[x1, . . . , xn]] = B, and that each of the maps Ae → B is faithfully flat. Hence,
for every ideal I of Ae, IB ∩Ae = I. The Noetherian property for AΓ now follows from:

Lemma. Let {Ai}i be a directed family of rings and injective homomorphisms whose
direct limit A embeds in a ring B. Suppose that for all i and for every ideal J of any Ai,
JB ∩ Ai = I. Then for every ideal I of A, IB ∩ A = I. Hence, if B is Noetherian, then
A is Noetherian.

Proof. Suppose that u ∈ A, I ⊆ A and u ∈ IB − IA. Then u = f1b1 + · · · + fnbn where
f1, . . . , fn ∈ I and b1, . . . , bn ∈ B. We can choose i so large that u, f1, . . . , fn ∈ Ai, and
let J = (f1, . . . , fn)Ai. Evidently, u ∈ JB∩Ai = J , and, clearly, J ⊆ IA, a contradiction.

For the final statement, let I be any ideal of A. Then a finite subset g1, . . . , gn ∈ I
generates IB. Let I0 = (g1, . . . , gn)A. Then I ⊆ IB ∩ A = I0B ∩ A = I0 ⊆ I, so that
I = I0. �

Since AΓ is Noetherian of Krull dimension n with maximal ideal (x1, . . . , xn)AΓ, we
have that AΓ is regular. To complete the proof of the final Theorem stated in the Lecture
Notes from October 12, it remains only to prove:
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Theorem. AΓ is F -finite.

Proof. Throughout this argument, we write Ke for KΓ
e = K[λ1/q : λ ∈ Γ], and Ae for

Ke[[x1, . . . , xn]]. Let θ1, . . . , θh be the finitely many elements that are in the p -base Λ

but not in Γ. Let M be the set of monomials in θ
1/p
1 , . . . , θ

1/p
h of degree at most p− 1 in

each element, and let N be the set of monomials in x
1/p
1 , . . . , x

1/p
d of degree at most p− 1

in each element. Let
T =MN = {µν : µ ∈M, ν ∈ N}.

We shall complete the proof by showing that T spans (AΓ)1/p as an AΓ-module. First
note that

(AΓ)1/p =
⋃
e

(Ae)
1/p,

and for every e,

(Ae)
1/p = K1/p

e [[x
1/p
1 , . . . , x

1/p
d ]].

This is spanned over K
1/p
e [[x1, . . . , xd]] byN . Also observe that K

1/p
e is spanned over K by

products of monomials in N and monomials in the elements λ1/qp for λ ∈ Γ, and the latter

are inKe+1. Hence, K
1/p
e is spanned byN overKe+1, and it follows thatK

1/p
e [[x1, . . . , xn]]

is spanned by N over Ke+1[[x1, . . . , xn]] = Ae+1. Hence, A
1/p
e is spanned by T = MN

over Ae+1, as claimed. �

Note that AΓ ⊆ KΓ[[x1, . . . , xn]], but these are not, in general, the same. Any single
power series in AΓ has all coefficients in a single Ke. When the chain of fields Ke is infinite,
we can choose ce ∈ Ke+1 −Ke for every for every e ≥ 0, and then

∞∑
e=0

cex
e ∈ KΓ[[x]]−K[[x]]Γ.

Complete tensor products, and an alternative view

of the gamma construction

Let (R, m, K) be a complete local ring with coefficient field K ⊆ R. When R = A =
K[[x1, . . . , xn]], we may enlarge the residue class field K of A to L by considering instead
L[[x1, . . . , xn]]. This construction can be done in a more functorial way, and one does not
need the ring to be regular.

Consider first the ring RL = L ⊗K R. This ring need not be Noetherian, and will
not be complete except in special cases, e.g., if L is finite algebraic over K. However,
RL/mRL ∼= L, so that mRL is a maximal ideal of this ring, and we may form the (mRL)-
adic completion of RL. This ring is denoted L⊗̂KR, and is called the complete tensor
product of L with R over K. Of course, we have a map R→ RL → L⊗̂KR.
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Note that

L⊗̂KR = lim
←− t

L⊗K R

mt(L⊗K R)
∼= lim
←− t

(
L⊗K

R

mt

)
.

In case R = K[[x]], where x = x1, . . . , xn are formal power series indeterminates, this
yields

lim
←− t

L⊗K
(K[[x]]

(x)t
) ∼= lim

←− t
L⊗K

(K[x]

(x)t
) ∼= lim

←− t
L[x]

(x)t
∼= L[[x]],

which gives the result we wanted.

Now suppose that we have a local map (R, m, K)→ (S, n, K) of complete local rings
such that S is module-finite over R, i.e., over the image of R: we are not assuming that
the map is injective. For every t, we have a map R/mtR → S/mtS and hence a map
L⊗K R/mtR→ L⊗K S/mtS. This yields a map

(∗) lim
←− t

L⊗K R/mtR→ lim
←− t

L⊗K S/mtS.

The map R/mS → S/mS is module-finite, which shows that S/mS has Krull dimension
0. It follows that mR is primary to n, so that the ideals mtR are cofinal with the power
of n. Therefore the inverse limit on the right in (∗) is the same as lim

←− t
L⊗K R/ntR, and

we see that we have a map L⊗̂KR→ L⊗̂KS.

We next note that when R → S is surjective, so is the map L⊗̂KR → L⊗̂KS. First
note that RL → SL is surjective, and that mRL maps onto nSL. Second, each element
σ of the completion of SL with respect to n can be thought of as arising from the classes
modulo successive powers of n of the partial sums of a series

s0 + s1 + · · ·+ st + · · ·

such that st ∈ ntSL = mtSL for all t ∈ N. Since mtRL maps onto ntSL, we can left this
series to

r0 + r1 + · · ·+ rt + · · ·

where for every t ∈ N, rt ∈ mtRL and maps to st. The lifted series represents an element
of the completion of RL that maps to σ.

Since every complete local ring R with coefficient field K is a homomorphic image of a
ring of the form K[[x1, . . . , xn], it follows that L⊗̂KR is a homomorphic image of a ring
of the form L[[x1, . . . , xn]], and so L⊗̂KR is a complete local ring with coefficient field L.

Next note that whenR→ S is a module-finite (not necessarily injective)K-homomorphism
of local rings with coefficient field K, we have a map

(L⊗̂KR)⊗R S → L⊗̂KS,

since both factors in the (ordinary) tensor product on the left map to L⊗̂KS. We claim
that this map is an isomorphism. Since, as noted above, mS is primary to n, and both
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sides are complete in the m-adic topology, it suffices to show that the map induces an
isomorphism modulo the expansions of mt for every t ∈ N. But the left hand side becomes(

L⊗K (R/mt)
)
⊗R S ∼= L⊗K (S/mtS),

which is exactly what we need.

It follows that L⊗̂KR is ffaithfully flat over R: we can represent R as a module-finite
extension of a complete regular local ring A with the same residue class field, and then
L⊗̂KR = (L⊗̂KA) ⊗A R, so that the result follows from the fact that L⊗̂A is faithfully
flat over A.

With this machinery available, we can construct RΓ, when R is complete local with
coefficient field K and Γ is cofinite in a p -base Λ for K, as

⋃
eKe⊗̂KR. If R is regular this

agrees with our previous construction.

If A, R are complete local both with coefficient field K, and A→ R is a local K-algebra
homomorphism that is module-finite (not necessarily injective), then we have

Ke⊗̂KR = (Ke⊗̂KA)⊗A R

for all e. Since tensor commutes with direct limit, it follows that

RΓ ∼= AΓ ⊗A R.

In particular, this holds when A is regular. It follows that RΓ is faithfully flat over R.

Properties preserved for small choices of Γ

Suppose that Λ is a p -basse for a field K of characteristic p > 0. We shall say that
a property holds for all sufficiently small cofinite Γ ⊆ Λ or for all Γ � Λ if there exists
Γ0 ⊆ Λ, cofinite in Λ, such that the property holds for all Γ ⊆ Γ0 that are cofinite in Λ.

We are aiming to prove the following:

Theorem. Let B be a complete local ring of prime characteristic p > 0 with cooefficient
field K, let Λ be a p -base for K, and and let R an algebra essentially of finite type over
B. For Γ cofinite in Λ, let RΓ denote BΓ ⊗B R.

(a) If R is a domain, then RΓ is a domain for all Γ� Λ.

(b) If R is reduced, then RΓ is reduced for all Γ� Λ.

(c) If P ⊆ R is prime, then PRΓ is prime for all Γ� Λ.

(d) If I ⊆ R is radical, then IRΓ is radical for all Γ� Λ.

We shall also prove similar results about the behavior of the singular locus. We first
note:
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Lemma. Let M be an R-module, let P1, . . . , Ph be submodules of M , and let S be a flat
R-module. Then the intersection of the submodules S ⊗R Pi for 1 ≤ i ≤ h is

(P1 ∩ · · · ∩ Ph)⊗RM.

Here, for P ⊆ M , we are identifying S ⊗R P with its image in S ⊗R M : of course, the
map S ⊗R P → S ⊗RM is injective.

Proof. By a straightforward indcution on h, this comes down to the intersection of two
submodules P and Q of the R-module M . We have an exact sequence

0 −→ P ∩Q −→M
f−→ (M/P ⊕M/Q)

where the rightmost map f sends u ∈M to (u+P )⊕ (u+Q). Since S is R-flat, applying
S ⊗R yields an exact sequence

0 −→ S ⊗R (P ∩Q) −→ S ⊗RM
1S⊗f−−−→

(
S ⊗R (M/P )

)
⊕
(
S ⊗R (M/Q)

)
.

The rightmost term may be identified with

(S ⊗RM)/(S ⊗R P )⊕ (S ⊗RM)/(S ⊗R Q),

from which it follows that the kernel of 1S ⊗ f is the intersection of S ⊗R P and S ⊗R Q.
Consequently, this intersection is given by S ⊗R (P ∩Q). �

We next want to show that part (a) of the Theorem stated above implies the other
parts.

Proof that part (a) implies the other parts of the Theorem. Part (c) follows from part (a)
applied to (R/P ), since

(R/P )Γ = BΓ ⊗B (R/P ) ∼= RΓ/PRΓ.

To prove that (a) ⇒ (d), let I = P1 ∩ · · · ∩ Pn be the primary decomposition of the
radical ideal I, where the Pi are prime. Since BΓ is flat over B, RΓ is flat over R. Hence,
IRΓ, which may be identified with RΓ ⊗R I, is the intersection of the ideals RΓ ⊗R Pi,
1 ≤ i ≤ h, by the Lemma above. By part (a), we can choose Γ cofinite in Λ such that
every RΓ ⊗R Pi is prime, and for this Γ, IRΓ is radical.

Finally, (c) is part (d) in the case where I = (0). �

It remains to prove part (a). Several preliminary results are needed. We begin by
replacing B by its image in the domain R, taking the image of K as a coefficient ring.
Thus, we may assume that B ↪→ R is injective. Then B is a module-finite extension of a
subring of the form K[[x1, . . . , xn]] with the same coefficient field, by the structure theory
of complete local rings. We still have that R is essentially of finite type over A. Moreover,
BΓ ∼= AΓ⊗AB, from which it follows that RΓ ∼= AΓ⊗RA. Therefore, in proving part (a) of
the Theorem, it suffices to consider the case where B = A = K[[x1, . . . , xn]] and A ⊆ R.
For each Γ cofinite in Λ ⊆ K, let LΓ denote the fraction field of AΓ. Let L denote the
fraction field of A. Let Ω be any field finitely generated over R that contains the fraction
field of R. To prove part (a) of the Theorem stated on p. 4, it will suffice to prove the
following:
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Theorem. Let K be a field of characteristic p with p -base Λ. Let A = K[[x1, . . . , xn]],
and let L, AΓ and LΓ be defined as above for every cofinite subset Γ of Λ. Let Ω be any
field finitely generated over L. Then for all Γ� Λ, LΓ ⊗L Ω is a field.

We postpone the proof of this result. We first want to see (just below) that it implies
part (a) of the Theorem stated on p. 4. Beyond that, we shall need to prove some auxiliary
results first.

To see why the preceding Theorem implies part (a) of the Theorem on page 4, choose
Ω containing the fraction field of R (we can choose Ω = frac (R), for example). Since
AΓ is A-flat, we have an injection AΓ ⊗A R ↪→ AΓ ⊗A Ω. Thus, it suffices to show that
this ring is a domain. Since the elements of A − {0} are already invertible in Ω, we have
that Ω ∼= frac (A) ⊗A Ω. Since AΓ is purely inseparable over A, inverting the nonzero
elements of A inverts all nonzero elements of AΓ. Moreover, the tensor product of two
frac (A)-modules over frac (A) is the same as their tensor product over A. Hence,

AΓ ⊗A Ω ∼= AΓ ⊗A frac (A)⊗A Ω ∼= frac (AΓ)⊗frac(A) Ω = LΓ ⊗L Ω.

It is now clear that Theorem above implies part (a) of the Theorem on p. 4.

In order to prove the Theorem above, we need several preliminary results. One of them
is quite easy:

Lemma. Let K be a field of characteristic p > 0 and let Λ be a p -base for K. The
family of subfields KΓ as Γ runs through the cofinite subsets of Λ is directed by ⊇, and the
intersection of these fields is K.

Proof. K∞ has as a basis 1 and all monomials

(#) λα1
1 · · · λ

αt
t

where t is some positive integer, λ1, . . . , λt are mutually distinct elements of Λ, and the αj
are positive rational numbers in (0, 1) whose denominators are powers of p. If u were in the
intersection and not in K it would have a unique representation as a K-linear combination
of these elements, including at least one monomial µ as above other than 1. Choose λ ∈ Λ
that occurs in the monomial µ with positive exponent. Choose Γ cofinite in Λ such that
λ /∈ Γ. Then the monomial µ is not in KΓ, which has a basis consisting of 1 and all
monomials as in (#) such that the λj occurring are in Γ. It follows that u /∈ KΓ. �

We shall also need the following result, as well as part (b) of the Theorem stated after
it.

Theorem. Let L be a field of characteristic p > 0, and let L′ be a finite purely inseparable
extension of L. Let {Li}i be a family of fields directed by ⊇ whose intersection is L. Then
there exists j such that for all i ≤ j, Li ⊗ L′ is a field.
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Theorem. Let {Ki}i be a nonempty family of subfields of an ambient field K0 such that
the family is directed by ⊇, and has intersection K. Let x1, . . . , xn be formal power series
indeterminates over these fields. Then

(a)
⋂
i

frac (Ki[x1, . . . , xn]) = frac (K[x1, . . . , xn]).

(b)
⋂
i

frac (Ki[[x1, . . . , xn]]) = frac (K[[x1, . . . , xn]]).

We note that part (a) is easy. Choose an arbitrary total ordering of the monomials in
the variables x1, . . . , xn. Let f/g be an element of the intersection on the left hand side
written as the ratio of polynomials f, g 6= 0 in K0[x1, . . . , xn], where f and g are chosen so
that GCD(f, g) = 1. Also choose g so that the greatest monomial occurring has coefficient
1. This representation is unique. If the same element is also in frac (Ki[x1, . . . , xn]), it
can be represented in the same way working over Ki, and the two representations must be
the same. Hence, all coefficients of f and of g must be in all of the Ki, i.e., in K which
shows that f/g ∈ frac (K[x1, . . . , xn]), as required.

We shall have to work a great deal harder to prove part (b).
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Math 711: Lecture of October 19, 2007

Our next goal is to prove the two results stated at the end of the Lecture Notes of
October 17.

Proof of the theorem on preserving the field property for a finite purely inseparable exten-
sion. Recall that L′ is a finite purely inseparable extension of L, and {Li}i is a family of
fields directed by ⊇ whose intersection if L. Fix L0 in the family: we need only consider
fields in the family contained in L0. Let L0 be an algebraic closure of L0. Since L′ is
purely inseparable over L, L′ may be viewed, in a unique way, as a subfield of L0. Choose
a basis b1, . . . , bh for L′ over L. For every i we have a map

Li ⊗L L′ → Li[L′],

where the right hand side is the smallest subfield of L0 containing Li and L′. The image
of this map is evidently a field. Therefore, to prove the Theorem, we need only prove that
the map is an isomorphism whenever i is sufficiently small.

Note that the elements 1⊗ bj span the left hand side as a vector space over Li. Hence,
for every i, the left hand side is a vector space of dimension h over Li. The image of the
map is a ring containing Li and the bj . It therefore contains Lb1+· · ·+Lbn = L′. It follows
that the image of the map is Li[L′], i.e., the map is onto. The image of the map is spanned
by b1, . . . , bh as an Li-vector space. Therefore, the map is an isomorphism whenever
b1, . . . , bh are linearly indpendent over Li. Choose i so as to make the dimension of the
vector space span of b1, . . . , bh over Li as large as possible. Since this dimension must be
an integer in {0, . . . , h}, this is possible. Note that if a subset of the b1, . . . , bh has no
nonzero linear relation over Li, this remains true for all smaller fields in the family.

Call the maximum possible dimension d. By renumbering, if necessary, we may assume
that b1, . . . , bd are linearly independent over Li. We can conclude the proof of the Theorem
by showing that d = h. If not, bd+1 is linearly dependent on b1, . . . , bd, so that there is a
unique linear relation

(∗) bd+1 = c1b1 + · · ·+ cdbd,

where every cj ∈ Li. Since b1, . . . , bh are linearly independent over L, at least one cj0 /∈ L.
Choose Li′ ⊆ Li such that cj0 /∈ Li′ . Then b1, . . . , bd+1 are linearly independent over Li′ :
if there were a relation different from (∗), it would imply the dependence of b1, . . . , bd.
This contradictis that d is maximum. �

Our next objective is to prove part (b) of the Theorem stated at the top of p. 7 of the
Lecture Notes from October 17. We first introduce some terminology. An module C over
B (which in the applications here will be a B-algebra) is called injectively free over B if
for every u 6= 0 in C there is an element f ∈ HomB(C, B) such that f(u) 6= 0. This is
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equivalent to the assumption that C can be embedded in a (possibly infinite) product of
copies of B: if fB = B for every f ∈ HomB(C, B), then

C →
∏

f∈HomB(C,B)

fB

is an injection if and only if C is injectively free over B. It is also quite easy to see that C
is injectively free over B if and only if the natural map

C → HomB

(
Hom(C, B), B

)
from C to its double dual over B is injective.

Note that if C is injectively free over B then C[x1, . . . , xn] is injectively free over
B[x1, . . . , xn], and that C[[x1, . . . , xn]] in injectively free over B[[x1, . . . , xn]]: choose a
nonzero coefficient of u, choose a map C → B which is nonzero on that coefficient, and
then extend it by letting it act on coefficients.

We shall use the notation F((x1, . . . , xn)) for frac (F [[x1, . . . , xn]]) when F is a field.
Note that in case there is just one indeterminates F((x)) = F [[x]][x−1] is the ring of
Laurent power series in x with coefficients in the field F : any given series contains at
most finitely many terms in which the exponent on x is negative, but the largest negative
exponent depends on the series under consideration.

We next observe the following fact:

Lemma. If B ⊆ C are domains, F = frac (B), C is injectively free over B, and x is a
formal indeterminate over C, then(

frac (C[[x]])
)
∩ F((x)) = frac (B[[x]]).

Proof. It suffices to show ⊆: the other inclusion is obvious. Suppose that

u ∈ frac (C[[x]]) ∩ F((x))− {0}.

Then we can write

u = xh(
∞∑
j=0

βjx
j)

where h ∈ Z, the βj ∈ F , and β0 6= 0. All three fields contain the powers of x, and so
we may multiply by x−h without affecting the issue. Thus, we may assume that h = 0.
We want to show that u ∈ frac (B[[x]]). Since u ∈ frac (C[[x]]), there exists v 6= 0 and w
in C[[x]] such that w = vu ∈ C[[x]]. Let v =

∑∞
j=0 cjx

j and w =
∑∞
k=0 c

′
kx

k, where the

cj , c
′
j ∈ C. Then for each m ≥ 0, we have that

(∗)
∑

j+k=m

cjβk = c′m.
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Choose j0 such that cj0 6= 0 and choose f : C → B, B-linear, such that f(cj0) 6= 0 in B.
Extend f to a map C[[x]] to B[[x]] by letting it act on coefficients. Then we may multiply
the equation (∗) by b to get ∑

j+k=m

cj(bβk) = bc′m,

and now the B-linearity of f implies that∑
j+k=m

f(cj)bβk = bf(c′m).

Now we may use the fact that b is not a zerodivisor in B to conclude that∑
j+k=m

f(cj)βk = f(c′m),

as we wanted to show. These equations show that f(v)u = f(w), and f(v) 6= 0 because
f(cj0) 6= 0. Since f(v), f(w) ∈ B[[x]], we have that u = f(w)/f(v) ∈ frac (B[[x]]), as
required. �

We can now prove part (b) of the Theorem on p. 7 of the Lecture Notes from October
17.

Proof of the theorem on intersections of fraction fields of formal power series rings. We
prove the theorem by induction on n. If n = 1 it follows from the uniqueness of coefficients
in the Laurent expansion of an element of

frac (Kj([[x]]) = Kj [[x]][x−1].

Now assume the result for n− 1 variables. For every j, we have

Kj((x1, . . . , xn)) ⊆ Kj((x1, . . . , xn−1))((xn)).

It follows from the one variable case that⋂
j

Kj((x1, . . . , xn)) ⊆
(⋂
j

Kj((x1, . . . , xn−1))
)
((xn)),

and from the induction hypothesis that⋂
j

Kj((x1, . . . , xn−1)) = K((x1, . . . , xn−1)).

Hence, ⋂
j

Kj((x1, . . . , xn)) ⊆ K((x1, . . . , xn−1))((xn)).
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Fix any element j0 in the index set. Then we have

(∗)
⋂
j

Kj((x1, . . . , xn)) ⊆ Kj0((x1, . . . , xn)) ∩ K((x1, . . . , xn−1))((xn)).

We now want to apply the Lemma from the preceding page. Let B = K[[x1, . . . , xn−1]]
and C = Kj0 [[x1, . . . , xn−1]]. Since Kj0 is K-free, it embeds in a direct sum of copies of K
and, hence, in a product of copies of K. Thus, Kj0 is injectively free over K, and it follows
that C is injectively free over B. The Lemma from p. 2 applied with x = xn then asserts
precisely that

(∗∗) Kj0((x1, . . . , xn)) ∩ K((x1, . . . , xn−1))((xn)) =

frac (C[[x]]) ∩
(
frac (B)

)
((xn)) = frac (B[[xn]]) = K((x1, . . . , xn)).

From (∗) and (∗∗), we have that⋂
i

Ki((x1, . . . , xn)) ⊆ K((x1, . . . , xn)).

The opposite inclusion is obvious. �

Corollary. Let K be a field of characteristic p > 0 and let Λ be a p -base for K. Let A be
the formal power series ring K[[x1, . . . , xn]]. Then⋂

Γ cofinite in Λ

frac (AΓ) = frac (A).

Proof. Since the completion of AΓ is KΓ[[x1, . . . , xn]], we have that

(∗)
⋂

Γ cofinite in Λ

frac (AΓ) ⊆
⋂

Γ cofinite in Λ

frac (KΓ[[x1, . . . , xn]]).

Since ⋂
Γ cofinite in Λ

KΓ = K

by the Lemma on p. 6 of the Lecture Notes from October 17 and part (b) of the Theorem
on p. 7 of the Lecture Notes from October 17 we have that the right hand term in (∗)
is frac (K[[x1, . . . , xn]]). This proves one of the inclusions needed, while the opposite
inclusion is obvious. �

We also want to observe the following:
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Lemma. Let L be any field of characteristic p > 0, and let Ω be any field finitely generated
over L. Then there exists a field Ω′ ⊇ Ω finitely generated over L such that Ω′ is a finite
separable algebraic extension of a pure transcendental extension L′(y1, . . . , yh) of a field
L′ that is a finite purely inseparable algebraic extension of L.

Proof. Let h be the transcendence degree of Ω over L. Then Ω is a finite algebraic extension
of a pure transcendental extension F = K(z1, . . . , zh), where z1, . . . , zh is a transcendence
basis for Ω over L. Suppose that Ω = F [θ1, . . . , θs] where every θj is algebraic over F .

Within the algebraic closure Ω of Ω, we may form F∞[θ1, . . . , θs], where F∞ is the perfect
closure of F in Ω. Since F∞ is perfect, every θi is separable over F∞, and so every θi
satsfies a separable equation over F∞. Let α1, . . . , αN be all the coefficients of these
equations. Then every θi is separable over F [α1, . . . , αN ], and every αj has a qj th power
in F . Hence, we can choose a single q = pe such that αqj ∈ F = L(z1, . . . , zh) for every j.

Every αqj can be written in the form

fj(z1, . . . , zh)

gj(z1, . . . , zh)

where fj , gj ∈ L[z1, . . . , zh] and gj 6= 0. Hence, αj can be written as a rational function

in the elements z
1/q
1 , . . . , z

1/q
h in which the coefficients are the q th roots of the coefficients

occurring in fj and gj . Let L′ be the field obtained by adjoining all the q th roots of all

coefficients of all of the fj and gj to L. Let yj = z
1/q
j , 1 ≤ j ≤ h. Then all of the αj are in

L′(y1, . . . , yh), and every θi satsifies a separable equation over L′(y1, . . . , yh). But then
we may take

Ω′ = L′(y1, . . . , yh)[θ1, . . . , θs],

which evdiently contains Ω. �

We are now read to prove the Theorem stated at the top of p. 6 of the Lecture Notes
from October 17.

Proof that frac (AΓ) ⊗A Ω is a field for Γ � Λ. We recall that, as usual, K is a field of
characteristic p > 0, and Λ is p -base for K. Let L = frac (A), and LΓ = frac (AΓ). Let
Ω be a field finitely generated over L. We want to show that for all Γ � Λ, LΓ ⊗L Ω
is a field. Since every element of LΓ has a q th power in L, it is equivalent to show that
this ring is reduced: it is purely inseparable over Ω. As in the preceding Lemma, we can
choose Ω′ ⊇ Ω such that Ω′ is separable over L′(y1, . . . , yh), where L′ is a finite purely
inseparable extension of L and y1, . . . , yh are indeterminates over L′. Since LΓ is flat over
the field L, we have that

LΓ ⊗L Ω ⊆ LΓ ⊗L Ω′,

and so it suffices to consider the problem for Ω′.

By the Corollary on p. 4 and the Theorem stated at the bottom of p. 6 of the Lecture
Notes from October 17 (which is proved on p. 1 of the notes from this lecture), for all Γ� Λ,
we have that LΓ ⊗L L′ is a field. The ring G = LΓ ⊗L L′(y1, . . . , yh) is a localization of
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the polynomial ring (LΓ ⊗L L′)[y1, . . . , yh]. Hence, it is a domain, and therefore a field.
Let F = L′(y1, . . . , yn). Then Ω′ is a finite separable algebraic extension of F , and it
suffices to show that G ⊗F Ω′ is reduced. This follows from the second Corollary on p. 4
of the Lecture Notes of September 19, but we give a separate elementary argument. We
can replace G by its algebraic closure: assume it is algebraically closed. By the theorem
on the primitive element, Ω′ ∼= F [X]/

(
h(X)

)
, where h is a separable polynomial. Then

G ⊗F Ω′ ∼= G[X]/
(
h(X)

)
,

and since h is a separable polynomial, this ring is reduced. �

We have now completed the proof of the Theorem on p. 4 of the Lecture Notes from
October 17 concerning properties we can preserve with the gamma construction for Γ
sufficiently small but cofinite in Λ.
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Math 711: Lecture of October 22, 2007

By the singular locus Sing (R) in a Noetherian ring R we mean the set

{P ∈ Spec (R) : RP is not regular}.

We know that if R is excellent, then Sing (R) is a Zariski closed set, i.e., it has the form
V(I) for some ideal I of R. We say that I defines the singular locus in R. Such an ideal I
is not unique, but its radical is unique. It follows easily that c ∈ Rad (I) if and only if Rc
is regular.

We next want to prove:

Theorem. Let K be a field of characteristic p with p -base Λ. Let B be a complete local
ring with with coefficient field K. Let R be a ring essentially of finite type over B, and for
Γ cofinite in Λ let RΓ = BΓ ⊗B R.

(a) If R is regular, then RΓ is regular for all Γ� Λ.

(b) If c ∈ R is such that Rc is regular, then (Rc)
Γ ∼= (RΓ)c is regular for all Γ� Λ.

(c) If I defines the singular locus of R, then for all Γ� Λ, IRΓ defines the singular locus
in RΓ.

Proof. For every Γ cofinite in Λ, R → RΓ is purely inseparable, and so we have a home-
omorphism Spec (RΓ)Spec (R) = X, given by contraction of primes. The unique prime
ideal of RΓ lying over P in R is Rad (PRΓ). See the Proposition on p. 2 of the Lecture
Notes from October 1. We identify the spectrum of every RΓ with X. Let ZΓ denote the
singular locus in RΓ, and Z the singular locus in R. Since all of these rings are excellent,
every singular locus is closed in the Zariski topology. If R → S is faithfully flat and S is
regular then R is regular, by the Theorem on p. 2 of the Lecture Notes of September 19.
Thus, a prime Q such that SQ is regular lies over a prime P in R such that RP is regular.

For Γ ⊆ Γ′ we have maps R → RΓ → RΓ′ : both maps are faithfully flat. It follows that
Z ⊆ ZΓ ⊆ ZΓ′ for all Γ ⊆ Γ′.

The closed sets in X have DCC, since ideals of R have ACC. It follows that we can
choose Γ cofinite in Λ such that ZΓ is minimal. Since the sets cofinite in Λ are directed
under ⊇, it follows that ZΓ is minimum, not just minimal. We have Z ⊆ ZΓ. We want to
prove that they are equal. If not, we can choose Q prime in RΓ lying over P in R such
that RΓ

Q is not regular but RP is regular. By part (a) of the Theorem at the bottom of
p. 4 of the Lecture Notes from October 17, we can choose Γ0 ⊆ Γ cofinite in Λ such that
PRΓ0 is prime. This prime will be the contraction Q0 of Q to RΓ0 . Let RP have Krull
dimension d. In RP , P has d generators. Hence, Q0R

Γ0

P = PRΓ0

P also has d generators,

and it follows that Q0 itself has d generators. Consequently, we have that RΓ0

Q0
is regular,

and this means that ZΓ0 is strictly smaller than ZΓ: the point corresponding to P is not
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in ZΓ0
. This contradiction shows that for all Γ � Λ, ZΓ = Z. It is immediate that for

such a choice of Γ, a prime Q of RΓ is such that RΓ
Q is not regular if and only if RQ∩R is

not regular. But this holds if and only if Q∩R contains I, i.e., if and only if Q ⊇ I, which
is equivalent to Q ⊇ IRΓ. This proves (c).

Part (a) is simply the case where Z is empty. Note that for any c ∈ R,

(Rc)
Γ = BΓ ⊗B Rc ∼= BΓ ⊗B (R⊗R Rc) ∼= (BΓ ⊗B R)⊗R Rc ∼= (RΓ)c.

Thus, (b) follows from (a) applied to Rc. �

We are now in a position to fill in the details of the proof of the Theorem on the existence
of completely stable big test elements stated on p. 2 of the Lecture Notes from October 12.
The proof was sketched earlier to motivate our development of the gamma construction.

We need one small preliminary result.

Lemma. If R is essentially of finite type over B and B → C is geometrically regular,
then C ⊗B R is geometrically regular over R.

Proof. This is a base change, so the map is evidently flat. Let P be a prime ideal of R
lying over p in B. Then

κP ⊗R (R⊗B C) ∼= κP ⊗B C ∼= κP ⊗κp
(κp ⊗B C).

Let T = κp ⊗B C, which is a geometrically regular κp-algebra by the hypothesis on the
fibers. Then all we need is that every finite algebraic purely inseparable extension field
extension L of κP , the ring L⊗κp

T is regular. We may replace L by a larger field finitely
generated over κp. By the Lemma at the top of p. 5 of the Lecture Notes of October 19, we
may assume this larger field is a finite separable algebraic extension of K(y1, . . . , yh), where
K is a finite algebraic purely inseparable extension of κp and y1, . . . , yh are indeterminates.
Then K ⊗κp

T is regular by the hypothesis of geometric regularity of the fiber T over κp.
Therefore, K(y1, . . . , yh) ⊗κp

T is regular because it is a localization of the polynomial
ring (K ⊗κp

T )[y1, . . . , yh]. Since L is finite separable algebraic over K(y1, . . . , yh), the
result now follows from the second Corollary on p. 4 of the Lecture Notes from September
19. �

We now restate the result that we want to prove.

Theorem. Let R be a Noetherian ring of prime characteristic p > 0. Suppose that R is
reduced and essentially of finite type over an excellent semilocal ring B. Then there are
elements c ∈ R◦ such that Rc is regular, and every such element c has a power that is a
completely stable big test element.

Proof. By the Lemma above, B̂ ⊗B R is geometrically regular over R. Moreover, the

localization at c may be viewed as has a regular base Rc, and the fibers of Rc → B̂ ⊗R Rc
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are still regular: they are a subset of the original fibers, corresponding to primes of R
that do not contain c. By the first Corollary at the top of p. 4 of the Lecture Notes of

September 19, (B̂ ⊗B R)c is regular. Since R is reduced and c ∈ R◦, c is not a zerodivisor

in R, i.e., R ⊆ Rc. It follows that B̂ ⊗B R ⊆ B̂ ⊗B Rc, and so B̂ ⊗B R is reduced. Since

R→ B̂⊗B R is faithfully flat, it suffices to prove the result for B̂⊗B R, by part (b) of the
Proposition at the bottom of p. 8 of the Lecture Notes from September 17.

Thus, we may replace B by its completion. Henceforth, we assume that B is complete.
B is now a product of local rings. R is a product in a corresponding way, and every R-
module is a product of R-modules over the factors. The hypotheses are preserved on each
factor ring, and all of the issues under consideration reduce to consideration of the factors
separately. Therefore we need only consider the case where B is a complete local ring.

Choose a coefficient field K for B, and a p -base Λ for K, so that we may use the gamma
construction on B. For all Γ� Λ, we have that RΓ = BΓ ⊗B R is reduced, and that

BΓ ⊗B Rc ∼= RΓ
c

is regular. Since RΓ is faithfully flat over R, it suffices to consider RΓ instead of R. Since
RΓ is F-finite, the result is now immediate from the Theorem at the bottom of p. 4 of the
Lectture Notes of October 1. �

We want to improve the result above: it will turn out that it suffices to assume that
Rc is Gorenstein and weakly F-regular. We will need some further results about weak
F-regularity in the Gorenstein case. In particular, we want to prove that when the ring is
F-finite, weak F-regularity implies strong F-regularity.

We first note the following fact:

Proposition. Let R be a Noetherian ring of prime characteristic p > 0. Then the follow-
ing conditions are equivalent:

(a) If N ⊆M are arbitary modules (with no finiteness condition), then N is tightly closed
in M .

(b) For every maximal ideal m of R, 0 is tightly closed (over R) in ER(R/m).

(c) For every maximal ideal m of R, if u generates the socle in E(R/m), then u is not in
the tight closure (over R) of 0 in ER(R/m).

Proof. Evidently (a) ⇒ (b) ⇒ (c). But (c) ⇒ (b) is clear, because if if the tight closure
of 0 is not 0, it must contain the socle: R/m ↪→ ER(R/m) is essential, and every nonzero
submodule of ER(R/m) therefore contains u.

Now suppose that N ⊆ M and u ∈ M is such that u ∈ N∗M − N . We may replace
N by a submodule of M maximal with respect to containing N and not containing u,
by Zorn’s Lemma. Then we may replace u and N ⊆ M by the image of u in M/N and
0 ⊆ M/N . Hence, we may assume that u ∈ 0∗M − {0} and that u is in every nonzero
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submodule of M . We may now apply the Lemma on p. 1 of the Lecture Notes from
September 17 to conclude that for every finitely generated nonzero submodule of M , there
is only one associated prime, m, which is maximal, and that the socle is one-dimensional
and generated by u. But then the same conclusion applies to M itself, and so M is an
essential extension of Ru ∼= Ku, where K = R/m. Hence, M embeds in ER(R/m) = E so
that u generates the socle in E, and u ∈ 0∗M implies that u ∈ 0∗E . �

We next want to prove the following:

Theorem. Let (R, m, K) be a Gorenstein local ring of prime characteristic p > 0. Then
the conditions of the preceding Proposition hold if and only if R is weakly F-regular.

Moreover, if R is weakly F-regular and F-finite, then R is strongly F-regular.

It will be a while before we can give a complete proof of this result. Our proof of the
Theorem requires understanding ER(K) when R is a Gorenstein local ring.

Calculation of the injective hull of a Gorenstein local ring

Theorem. Let (R, m, K) be a Gorenstein local ring with system of parameters x1, . . . , xn.
For every integer t ≥ 1, let It = (xt1, . . . , x

t
n)R. Let y = x1 · · · xn. Then

ER(K) ∼= lim
−→ tR/It,

where the map R/It → R/It+1 is induced by multiplication by y on the numerators.

Moreover, if u ∈ R represents a socle generator in R/(x1, . . . , xn)R, then for every t,
yt−1u ∈ R/It represents the socle generator in R/It and in ER(K).

Proof. Let E = EK(R) be a choice of injective hull for K. Then Et = AnnEIt is an
injective hull for K over R/It, and so is isomorphic to R/It. Since every element of E is
killed by a power of m, each element of E is some Et. Then

E =
⋃
t

Et

shows that there is some choice of injective maps

θt : R/It → R/It+1

such that
E = lim

−→ tEt,

using the maps θt. One injection of R/It into R/It+1 is given by the map ηt induced
by multiplication by y on the numerators: see the Theorem at the bottom of p. 5 of the
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Lecture Notes from October 8, applied to x1, . . . , xn and xt1, . . . , x
t
n, with the matrix

A = diag(xt−1
1 , . . . , xt−1

n ). (See also the last statement of the Proposition near the top of
p. 8 in the same lecture, which will prove the final statement of the Theorem.) Since the
modules have finite lengths, an injection of Et into Et+1 must have image Et = AnnEIt,
since the image is clear contained in Et, and so there must be an automorphism αt of Et
such that θt = αt ◦ ηt. In fact, αt ∈ HomR/It(Et, Et)

∼= Rt must be multiplication by a
unit of Rt. Thus, every αt lifts to a unit at ∈ R. Let b1 = 1, and let bt = a1 · · · at−1.

We can now construct a commutative diagram

E1
η1−−−−→ E2

η2−−−−→ · · · ηt−1−−−−→ Et
ηt−−−−→ Et+1

ηt+1−−−−→ · · ·

b1

y b2

y bt

y bt+1

y
E1

θ1−−−−→ E2
θ2−−−−→ · · · θt−1−−−−→ Et

θt−−−−→ Et+1
θt+1−−−−→ · · ·

Commutativity follows from the fact that on Et, bt+1ηt is induced by multiplication by
bt+1y = atbty = (aty)bt, and θt is induced by multiplication by aty on Et. Since the
vertical arrows are isomorphisms, the direct limits are isomorphic. The direct limit of the
top row is the module that we are trying to show is isomorphic to E, while the direct limit
of the bottom row is E. �
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Math 711: Lecture of October 24, 2007

The action of Frobenius on the injective hull of the

residue class field of a Gorenstein local ring

Let (R, m, K) be a Gorenstein local ring of prime characteristic p > 0, and let x1, . . . , xn
be a system of parameters. Let It = (xt1, . . . , x

t
n)R for all t ≥ 1, and let u ∈ R represent

a socle generator in R/I, where I = I1 = (x1, . . . , xn)R. Let y = x1 · · · xn. We have seen
that

E = lim
−→ tR/It

is an injective hull of K = R/m over R, where the map R/It → R/It+1 is induced by
multiplication by y acting on the numerators. Each of these maps is injective. Note that
the map from R/It → R/It+k in the direct limit system is induced by multiplication by
yk acting on the numerators.

Let e ∈ N be given. We want to understand the module Fe(E), and we also want
to understand the q th power map v 7→ vq from E to Fe(E). If r ∈ R, we shall write
〈r; xt1, . . . , xtn〉 for the image of r under the composite map R � R/It ↪→ E, where the
first map is the quotient surjection and the second map comes from our construction of E
as the direct limit of the R/It. With this notation,

〈r; xt1, . . . , xtn〉 = 〈ykr; xt+k1 , . . . , xt+kn 〉

for every k ∈ N.

Since tensor products commute with direct limit, we have that

Fe(E) = lim
−→ t Fe(R/It) = lim

−→ tR/(It)
[q] = lim

−→ tR/Itq.

In the rightmost term, the map from R/Itq → R/I(t+1)q = Itq+q is induced by multipli-
cation by tq acting on the numerators. The rightmost direct limit system consists of of a
subset of the terms in the system lim

−→ tR/It, and the maps are the same. The indices that

occur are cofinal in the positive integers, and so we may idenitfy Fe(E) with E. Under

this identification, if v = 〈r; xt1, . . . , xtn〉, then vq = 〈rq; xqt1 , . . . , xqtn 〉.

We can now prove the assertions in the first paragraph of the Theorem on p. 4 of the
Lecture Notes from October 22.

Proof that 0 is tightly closed in ER(K) for a weakly F-regular Gorenstein local ring. Let
(R, m, K) be a Gorenstein local ring of prime characteristic p > 0. We want to determine
when v = 〈u; x1, . . . , xn〉 is in 0∗ in E. This happens precisely when there is an element
c ∈ R◦ such that cvq = 0 in Fe(E) for all q � 0. But cvq = 〈cuq; xq1, . . . , xqn〉, which is 0
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if and only if cuq ∈ Iq = I [q] for all q � 0. Thus, 0 is tightly closed in E if and only if I is
tightly closed in R. This gives a new proof of the result that in a Gorenstein local ring, if
I is tightly closed then R is weakly F-regular. But it also proves that if I is tightly closed,
every submodule of every module is tightly closed. In particular, if R is weakly F-regular
then every submodule over every module is tightly closed. �

It remains to show that when a Gorenstein local ring is F-finite, it is strongly F-regular.
We first want to discuss some issues related to splitting a copy of local ring from a module
to which it maps.

Splitting criteria and approximately Gorestein local rings

Many of the results of this section do not depend on the characteristic.

Theorem. Let (R, m, K) be a local ring and M an R-module. Let f : R → M be an
R-linear map. Suppose that R is complete or that M is finitely generated. Let E denote
an injective hull for the residue class field K = R/m of R. Then R→M splits if and only
if the map E = E ⊗R R→ E ⊗RM is injective.

Proof. Evidently, if the map splits the map obtained after tensoring with E (or any other
module) is injective: it is still split. This direction does not need any hypothesis on R
or M . For the converse, first consdider the case where R is complete. Since the map
E ⊗R R → E ⊗R M is injective, if we apply HomR( , E), we get a surjective map. We
switch the order of the modules in each tensor product, and have that

HomR(R⊗E E, E)→ HomR(M ⊗R E, E)

is surjective. By the adjointness of tensor and Hom, this is isomorphic to the map

HomR

(
M, HomR(E, E)

)
→ HomR(R, HomR(E, E).

By Matlis duality, we have that HomR(E, E) may be naturally identified with R, since
R is complete, and this yields that the map HomR(M, R) → HomR(R, R) induced by
composition with f : R → M is surjective. An R-linear homomorphism g : M → R that
maps to the identity in HomR(R, R) is a splitting for f .

Now supppose that R is not necessarily complete, but that M is finitely generated.
By part (b) of the Theorem on p. 3 of the Lecture Notes from Septmeber 24, completing
does not affect whether the map splits. The result now follows from the complete case,

because E is the same for R and for R̂, and E ⊗
R̂

(R̂ ⊗R ) is the same as E ⊗R by
the associativity of tensor. �

This result takes a particularly concrete form in the Gorenstein case.
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Theorem (splitting criterion for Gorenstein rings). Let (R, m, K) be a Gorenstein
local ring, and let x1, . . . , xn be a system of parameters for R. Let u ∈ R represent a socle
generator in R/I, where I = (x1, . . . , xn), let y = x1 · · · , yn, and let It = (xt1, . . . , x

t
n)R

for I ≥ 1. Let f : R→M be an R-linear map with f(1) = w ∈M , and assume either that
R is complete or that M is finitely generated. Then the following conditions are equivalent:

(1) f : R→M is split.

(2) For every ideal J of R, R/J → M/JM is injective, where the map is induced by
applying (R/J)⊗R .

(3) For all t ≥ 1, R/It →M/ItM is injective.

(4) For all t ≥ 1, yt−1uw /∈ ItM .

Moreover, if x1, . . . , xn is a regular sequence on M , then the following two conditions
are also equivalent:

(5) R/I → R/IM is injective.

(6) uw /∈ IM .

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (5) is clear. The map R/It → M/ItM has a nonzero kernel
if and only if the socle element, which is the image of yt−1u, is killed, and this element
maps to yt−1uw. Thus, the statements in (3) and (4) are equivalent for every value of t,
and the equivalence (5) ⇔ (6) is the case t = 1. We know from the preceding Theorem
that R → M is split if and only if E → E ⊗R M is injective, and this map is the direct
limit of the maps R/It → (R/It) ⊗R M by the Theorem on p. 2. This shows that (3)
⇒ (1). Thus, (1), (2), (3), and (4) are all equivalent and imply (5) and (6), while (5)
and (6) are also equivalent. To complete the proof it suffices to show that (6) ⇒ (4)
when x1, . . . , xn is a regular sequence on M . Suppose ytuw ∈ (xt1, . . . , x

t
n)M . Then

uw ∈ (xt1, . . . , x
t
n)M :M yt = (x1, . . . , xn)M by the Theorem on p. 3 of the Lecture Notes

from October 8. �

Remark. If M = S is an R-algebra and the map R→ S is the structural homomorphism,
then the condition in part (2) is that every ideal J of R is contracted from S. Similarly,
the condition in (4) (respectively, (5)) is that It (respectively, I) be contracted from S.

We define a local ring (R, m, K) to be approximately Gorenstein if there exists a de-
creasing sequence of m-primary ideals I1 ⊇ I2 ⊇ · · · ⊇ It ⊇ · · · such that every R/It
is a Gorenstein ring (i.e., the socle of every R/It is a one-dimensional K-vector space)
and the It are cofinal with the powers of m. That is, for every N > 0, It ⊆ mN for all
t� 1. Evidently, a Gorenstein local ring is approximately Gorenstein, since we may take
It = (xt1, . . . , x

t
n)R, where x1, . . . , xn is a system of parameters.

Note that the following conditions on an m-primary ideal I in a local ring (R, m, K)
are equivalent:

(1) R/I is a 0–dimensional Gorenstrein.

(2) The socle in R/I is one-dimensional as a K-vector space.
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(3) I is an irreducible ideal, i.e., I is not the intersection of two strictly larger ideals.

Note that (2) ⇒ (3) because when (2) holds, any two larger ideals, considered modul
I, must both contain the socle of R/I. Conversely, if the socle of R/I has dimension 2 or
more, it contains nonzero vector subspaces V and V ′ whose intersection is 0. The inverse
iamges of V and V ′ in R are ideals strictly larger than I whose intersection is I. �

If R itself has dimension 0, the chain It is eventually 0, and so in this case an approxi-
mately Gorenstein ring is Gorenstein. In higher dimension, it turns out to be a relatively
weak condition on R.

Theorem. Let (R, m, K) be a local ring. Then R is approximately Gorenstein if and only

if R̂ is approximately Gorenstein. Moreover, R is approximately Gorenstein provided that
at least one of the following conditions holds:

(1) R̂ is reduced.

(2) R is excellent and reduced.

(3) R has depth at least 2.

(4) R is normal.

The fact that the condition holds for R if and only it holds for R̂ is obvious. Moreover,
(2) ⇒ (1) and (4) ⇒ (3). We shall say more about why the Theorem given is true in the
sequel. For a detailed treatment see [M. Hochster, Cyclic purity versus purity in excellent
Noetherian rings, Trans. Amer. Math. Soc. 231 (1977) 463–488.], which gives the following
precise characterization: a local ring of dimension at least one is approximately Gorenstein
if and only if R has positive depth and there is no associated prime P of the completion

R̂ such that dim (R̂/P ) = 1 and (R̂/P )⊕ (R̂/P ) embeds in R̂.

Before studying characterizations of the property of being approximately Gorenstein
further, we want to note the folliwing.

Propositon. Let (R, m, K) be an approximately Gorenstein local ring and let {It}t be
a descending chain of m-primary irreducible ideals cofinal with the powers of m. Then
an injective hull E = ER(K) is an increasing union

⋃
t AnnItE, and AnnEIt ∼= R/It, so

that E is the direct limit of a system in which the modules are the R/It and the maps are
injective.

Proof. Since every element of E is killed by a power of m, every element of E is in AnnEIt
for some t. We know that AnnEIt is an injective hull for K over R/It. Since R/It is
0-dimensional Gorenstein, this ring itself is an injective hull over itself for K. �

This yields:

Theorem. Let (R, m, K) be an approximately Gorenstein local ring and let {It}t be a
descending chain of m-primary irreducible ideals cofinal with the powers of m. Let ut ∈ R
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represent a socle generator in R/It. Let f : R → M be an R-linear map with f(1) = w ∈
M . Then the following conditions are equivalent:

(1) f : R→M splits over R.

(2) For all t ≥ 1, R/It →M/ItM is injective.

(3) For all t ≥ 1, utw /∈ ItM .

Proof. Since E = ER(K) is the direct limit of the R/It, we may argue exactly as in the
proof of the Theorem at the top of p 3. �

|

When is a ring approximately Gorenstein?

To prove a sufficient condition for a local ring to be approximately Gorenstein, we want
to introduce a corresponding notion for modules. Let (R,m,K) be local and let M be
a finitely generated R-module. We shall say that N ⊆ M is cofinite if M/N is killed by
power of m. (The reader should be aware that the term “cofinite module” is used by some
authors for a module with DCC.) The following two conditions on a cofinite submodule
are then equivalent, just as in the remark at the bottom of p. 3 and top of p. 4.

(1) The socle in M/N is one-dimensional as K-vector space.

(2) N is in irreducible submodule of M , i.e., it is not the intersection of two strictly larger
submodules of M .

We shall say that M has small cofinite irreducibles if for every positive integer t there
is an irreducible cofinite submodule N of M such that N ⊆ mtM . Thus, a local ring R is
approximately Gorenstein if and only if R itself has small cofinite irreducibles.

Note the the question of whether (R, m, K) is approximately Gorenstein or whether
M has small cofinite irreducibles is unaffected by completion: there is a bijection between

the cofinite submodules N of M and those of M̂ given by letting N correspond to N̂ . The

point is that if N ′ is cofinite in M̂ , M̂/N ′ is a finitely generated R-module (in fact, it has

finite length) and M → M̂/N ′ is surjective, since M/mtM ∼= M̂/mtM̂ for all t, so that

N ′ is the completion of N ′ ∩M . Moreover, when N and N ′ correspond, M/N ∼= M̂/N ′

since M/N is already a complete R-module. In particular, irreducibility is preserved by
the correspondence.

We have already observed that Gorenstein local rings are approximately Gorenstein.
We next note:
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Proposition. Let (R, m, K) be a local ring. If M is a finitely generated R-module that
has small cofinite irreducibles, then every nonzero submodule of M has small cofinite irre-
ducibles.

Proof. Suppose that N ⊆ M is nonzero. By the Artin-Rees lemma there is a constant
c ∈ N such that mtM ∩N ⊆ mt−cN for all t ≥ c. If Mt+c is cofinite in M and such that
Mt+c ⊆ mt+cM and M/Mt+c has a one-dimensional socle, then Nt = Mt+c ∩N is cofinite
in N , contained in mtN (so that N/Nt is nonzero) and has a one-dimensional socle, since
N/Nt embeds into M/Mt+c. �

Before giving the main result of this section, we note the following fact, due to Chevalley,
that will be needed in the argument.

Theorem (Chevalley’s Lemma). Let M be a finitely generated module over a complete
local ring (R,m,K) and let {Mt}t denote a nonincreasing sequence of submodules. Then⋂
tMt = 0 if and only if for every integer N > 0 there exists t such that Mt ⊆ mNM .

Proof. The “if” part is clear. Suppose that the intersection is 0. Let Vt,N denote the image
of Mt in M/mNM . Then the Vt,N do not increase as t increases, and so are stable for
all large t. Call the stable image VN . Then the maps M/mN+1M → M/mNM induce
surjections VN+1 � VN . The inverse limit W of the VN may be identified with a submodule
of the inverse limit of the M/mNM , i.e. with a submodule of M , and any element of W
is in ⋂

t,N

(Mt +mNM) =
⋂
t

(⋂
N

(Mt +mNM)
)

=
⋂
t

Mt.

If any VN0
is not zero, then since the maps VN+1 � VN are surjective for all N , the inverse

limit W of the VN is not zero. But VN is zero if and only if Mt ⊆ mNM for all t� 0. �

The condition given in the Theorem immediately below for when a finitely generated
module of positive dimension over a complete local ring has small cofinite irreducibles is
necessary as well as sufficient: we leave the necessity as an exercise for the reader. The
proof of the equivalence is given in [M. Hochster, Cyclic purity versus purity in excellent
Noetherian rings, Trans. Amer. Math. Soc. 231 (1977) 463–488.]

Theorem. Suppose that M is a finitely generated module over a complete local ring
(R,m,K) such that dimM ≥ 1. Suppose that m is not an associated prime of M and
that if P is an associated prime of M such that dimR/P = 1 then R/P ⊕ R/P is not
embeddable in M . Then M has small cofinite irreducibles.

Proof. We use induction on dimM . First suppose that dimM = 1. We represent the ring
R as a homomorphic image of a complete regular local ring S of dimension d. Because
R is catenary and dimM = 1, the annihilator of M must have height d − 1. Choose
part of a system of parameters x1, . . . , xd−1 in the annihilator. Now view M as a module
over R′ = S/(x1, . . . , xd−1). We change notation and simply write R for this ring. Then
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R is a one-dimensional complete local ring, and R is Gorenstein. It follows that R has
small cofinite irreducibles, and we can complete the argument, by the Proposition on the
preceding page, by showing that M can be embedded in R. Note that for any minimal
prime p in R, Rp is a (zero-dimensional) Gorenstein ring. (In fact, any localization of a
Gorenstein local ring at a prime is again Gorenstein: but we have not proved this here.
However, in this case, we may view Rp as the quotient of the regular ring Sq, where q is
the inverse image of p in S, by an ideal generated by a system of parameters for Sq, and
the result follows.)

To prove that we can embed M in R, it suffices to show that if W = R◦, then W−1M
can be embedded in W−1R. One then has M ⊆ W−1M ⊆ W−1R, and the values of the
injective map M ↪→ W−1R on a finite set of generators of M involve only finitely many
elements of W . Hence, one can multiply by a single element of W , and so arrange that
M ↪→W−1R actually has values in R.

But W−1R is a finite product of local rings Rp as p runs through the minimal primes
of R, and so it suffices to show that if p is a minimal prime of R in the support of M , then
Mp embeds in Rp. Now, Mp has only pRp as an associated prime, and since only one copy
of R/p can be embedded in M , only one copy of κp = Rp/pRp can be embedded in Mp.
Thus, Mp is an essential extension of a copy of κp. Thus, it embeds in the injective hull of
the residue field of Rp, which, since Rp is a zero-dimensional Gorenstein ring, is the ring
Rp itself.

Now suppose that dimM = d > 1 and that the result holds for modules of smaller
dimension. Choose a maximal family of prime cyclic submodules of M , say Ru1, . . . , Rus,
such that AnnRui is a prime Qi for every i and the sum N = Ru1⊕· · ·⊕Rus is direct. Then
M is an essential extension of N : if v ∈ M , it has a nonzero multiple rv that generates
a prime cyclic module, and if this prime cyclic module does not meet N we can enlarge
the family. Since M is an essential extension of N , M embeds in the injective hull of N ,
which we may identify with the direct sum of the Ei = ER(Rui). Note that a prime ideal
of R may occur more than once among the Qi, but not if dim (R/Qi) = 1, and R/m does
not occur. Take a finite set of generators of M . The image of each generator only involves
finitely many elements from a given Ei. Let Mi be the submodule of Ei generated by
these elements. Then Mi ⊆ Ei, so that Ass (Mi) = Qi, and Mi is an essential extension of
R/Qi. What is more M ⊆ ⊕si=1Mi.

By the Propositiion at the bottom of p. 5, it suffices to show that this direct sum,
which satisfies the same hypotheses as M , has small cofinite irreducibles. Thus, by we
need only consider the case where M =

⊕s
i=1Mi as described. We assume that, for i ≤ h,

AssMi = {Qi} with dim (R/Qi) = 1 and with the Qi mutually distinct, while for i > h,
dim (R/Qi) > 1, and these Qi need not all be distinct. Now choose primes P1, . . . , Ps
such that, for every i, dimR/Pi = 1, such that P1, . . . , Ps are all distinct, and such that
for all i, Pi ⊇ Qi. We can do this: for 1 ≤ i ≤ h, the choice Pi = Qi is forced. For i > h
we can solve the problem recursively: simply pick Pi to be any prime different from the
others alreaday selected and such that Pi ⊇ Qi and dimR/Pi = 1. (We are using the fact
that a local domain R/Q of dimension two or more contains infinitely many primes P such
that dimR/P = 1. To see this, kill a prime to obtain a ring of dimension exactly two. We
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then need to see that there are infinitely many height one primes. But if there are only
finitely many, their union cannot be the entire maximal ideal, and a minimal prime of an
element of the maximal ideal not in their union will be another height one prime.)

Fix a positive integer t. We shall construct a submodule N of M contained in mtM
and such that M/N is cofinite with a one-dimensional socle. We shall do this by proving
that for every i there is a submodule Ni of Mi with the following properties:

(1) Ni ⊆ mtMi

(2) AssMi/Ni = {Pi} and Mi/Ni is an essential extension of R/Pi.

It then follows that M = M/(
⊕

iNi) is a one-dimensional module with small cofinite

irreducibles, and so we can choose N ⊆ mtM such that M/N has finite length and a
one-dimensional socle. We can take N to be the inverse image of N in M . This shows
that the problem reduces to the construction of the Ni with the two properties listed.

If i ≤ h we simply take Ni = 0. Now suppose that i > h. To simplify notation we write
M , Q and P for Mi, Qi and Pi, respectively. Let Dk ⊆M be the contraction of P kMP to
M ⊆ MP . Since

⋂
k P

kMP = 0 (thinking over RP ), we have that
⋂
kDk = 0. Since M is

complete, by Chevalley’s Lemma, we can choose k so large that Dk ⊆ mtM .

We shall show that the completion of MP over the completion of RP satisfies the hy-
pothesis of the Theorem. But then, since MP and its completion have dimension strictly
smaller than M , it follows from the induction hypothesis that, working over RP , MP has
small cofinite irreducibles. Consequently, we may choose a cofinite irreducible N ′ ⊆ P kMP ,
and the contraction of N ′ to M will have all of the properties that we want, since it will
be contained in Dk ⊆ mtM .

Thus, we need only show that the completion of MP over the completion of RP satisfies
the hypothesis of the Theorem. Since Ass (M) = {Q}, we have that Ass (MP ) = {QRP },
and so PRP is not an associated prime of MP . Thus, the depth of MP is at least one,

and this is preserved when we complete. By Problem 2(b) of Problem Set #3, Ass (M̂P )
is the same as the set of associated primes of the completion of RP /QRP , which we may

identify with R̂P /QR̂P . Since this ring is reduced, the primes q that occur are minimal

primes of QR̂P . For such a prime q,

Ann
M̂P

q ⊆ Ann
M̂P

Q ∼= R̂P ⊗RP AnnMP
QRP ,

since R̂P is flat over RP . From the hypothesis, we know that AnnMP
QRP has torsion free

rank one over RP /QRP , and so it embeds in RP /QRP . It follows that Ann
M̂P

q embeds in

R̂P /QR̂P . Since this ring is reduced with q as one of the minimal primes, its total quotient
ring is a product of fields. Hence, it is not possible to embed the direct sum of two copies

of (R̂P /QR̂P )/q in R̂P /QR̂P . This completes the proof of the Theorem. �

|
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Math 711, Fall 2007 Problem Set #3
Due: Wednesday, November 7

1. Let R be a domain in which the test ideal has height two, and let P be a height one
prime ideal of R. Suppose that u ∈ N∗M , where N ⊆M are finitely generated R-modules.
Let R → S be a homomorphism to a domain S with kernel P . Show that 1 ⊗ u is in the
tight closure of the image of S ⊗R N in S ⊗RM over S, i.e., in 〈S ⊗R N〉∗S⊗RM .

2. Let R be a Noetherian ring of prime characteristic p > 0.

(a) Let I ⊆ R be an ideal, and let W ⊆ R be a multiplicative system disjoint from every
associated prime of every ideal of the form I [q]. Show that (IW−1R)∗ over W−1R may be
identified with W−1I∗.

(b) Let R be a reduced Cohen-Macaulay ring, and let x1, . . . , xn be a regular sequence in
R such that I = (x1, . . . , xn)R is tightly closed in R. Let P be a minimal prime of I. Prove
that RP is F-rational. (Suggestion: first localize at the multiplicative system W consisting
of the complement of the union of the minimal primes of I. After this localization, P
expands to a maximal ideal.)

(c) Let (R, m, K) be F-rational and P a prime ideal of R. Show that RP is F-rational.

3. (a) If M is a finitely generated module over a Noetherian ring R, show that M has a
finite filtration such that every factor is a finitely generated torsion-free (R/P )-module N
for some prime P ∈ Ass (M), and each such module N embeds in (R/P )⊕h for some h.

(b) Let R → S be flat, where R and S are Noetherian rings, and let M be an R-module.
Show that AssS(S ⊗RM) =

⋃
P∈AssR(M) AssS(S/PS).

4. Let (R, m, K) be a Gorenstein local ring of prime characteristic p > 0, and let
x1, . . . , xn be a system of parameters for R. Suppose that every xi is a test element.
Let I = (x1, . . . , xn)R. Show that I :R I

∗ is the test ideal τ(R) for R.

5. (a) Let (R, m, K) be a Gorenstein local ring of prime characteristic p > 0 that is
F-finite or complete, and let x1, . . . , xn be a system of parameters for R. Let u ∈ R
represent a generator of the socle in R/(x1, . . . , xn). Show that R is F-split if and only if
up /∈ (xp1, . . . , x

p
n)R.

(b) Let K be a perfect field of characteristic p > 0, where p 6= 3. Determine for which
primes p the ring K[[x, y, z]]/(x3 + y3 + z3) is F-split.

6. (a) Let R be ring of prime characteristic p > 0, and W be a multipllicative system in
R, and let S = W−1R. Let M be an S-module. Show that FeR(M) ∼= FeS(M).

(b) Let R be a Noetherian ring of prime characteristic p > 0. Show that if every submodule
of every R-module is tightly closed, then the same holds for W−1R for every multiplicative
system W in R. [Suggestion: it suffices to consider injective hulls of quotients of the ring
by prime ideals.]
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Math 711: Lecture of October 26, 2007

It still remains to prove the final assertion of the Theorem from p. 3 of the Lecture Notes
of October 22: that if R is F-finite and weakly F-regular, then R is strongly F-regular.
Before doing so, we want to note some consequences of the theory of test elements, and
also of the theory of approximately Gorenstein rings.

Theorem. Let (R, m, K) be a local ring of prime characteristic p > 0.

(a) If R has a completely stable test element, then R̂ is weakly F-regular if and only if R
is weakly F-regular.

(b) If R has a completely stable big test element, then R̂ has the property that every
submodule of every module is tightly closed if and only if R does.

Proof. We already know that if a faithfully flat extension has the relevant property, then
R does. For the converse, it suffices to check that 0 is tightly closed in every finite length

module over R̂ (respectively, in the injective hull E of the residue class field over R̂, which

is the same as the injective hull of the residue class field over R). A finite length R̂-module
is the same as a finite length R-module. We can use the completely stable (big, for part
(b)) test element c ∈ R in both tests, which are then bound to have the same outcome for
each element of the modules. For a module M supported only at m,

Fe
R̂

(M) ∼= Fe
R̂

(R̂⊗RM) ∼= R̂⊗R FeR(M) ∼= FeR(M). �

Proposition. Let R have a test element (respectively, a big test element) c and let N ⊆M
be finitely generated (respectively, arbitrary) R-modules. Let d ∈ R◦ and suppose u ∈ M
is such that cuq ∈ N [q] for infinitely many values of q. Then u ∈ N∗M .

Proof. Suppose that duq ∈ N [q] and that pe1 = q1 < q, so that q = q1q2. Then (duq1)q2 =
dq2−1duq ∈ (N [q1])[q2] = N [q], and it follows that for all q3, (duq1))q2q3 ∈ (N [q1])[q2q3].
Hence, duq1 ∈ (N [q1])∗ in Fe1(M) whenever q1 ≤ q. Hence, if duq ∈ N [q] for arbitrarily
large values of q, then duq ∈ (N [q])∗ in Fe(M) for all q and it follows that cduq ∈ N [q] for
all q, so that u ∈ N∗M . �

Theorem. Let R be a Noetherian ring of prime characteristic p > 0.

(a) If every ideal of R is tightly closed, then R is weakly F-regular.

(b) If R is local and {It}t is a descending sequence of irreducible m-primary ideals cofinal
with the powers of m, then R is weakly F-regular if and only if It is tightly closed for
all t ≥ 1.
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Proof. (a) We already know that every ideal is tightly closed if and only if every ideal
primary to a maximal ideal is tightly closed, and this is not affected by localization at
a maximal ideal. Therefore, we may reduce to the case where R is local. The condition
that every ideal is tightly closed implies that R is normal and, hence, approximately
Gorenstein. Therefore, it suffices to prove (b). For (b), we already know that R is weakly
F-regular if and only if 0 is tightly closed in every finitely generated R-module that is an
essential extension of K. Such a module is killed by It for some t � 0, and so embeds in
ER/It(K) ∼= R/It for some t. Since It is tightly closed in R, 0 is tightly closed in R/It,
and the result follows. �

We next want to establish a result that will enable us to prove the final assertion of the
Theorem from p. 3 of the Lecture Notes of October 22.

Theorem. Let (R, m, K) be a complete local ring of prime characteristic p > 0. If R is
reduced and c ∈ R◦, let θq,c : R→ R1/q denote the R-linear map such that 1 7→ c1/q. Then
the following conditions are equivalent:

(1) Every submodule of every module is tightly closed.

(2) 0 is tightly closed in the injective hull E = ER(K) of the residue class field K = R/m
of R.

(3) R is reduced, and for every c ∈ R◦, there exists q such that the θq,c splits.

(4) R is reduced, and for some c that has a power which is a big test element for R, there
exists q such that θq,c splits.

(5) R is reduced, and for some c such that Rc is regular, there exists q such that θq,c splits.

Proof. Note that all of the conditions imply that R is reduced.

We already know that conditions (1) and (2) are equivalent. Let u denote a socle
generator in E. Then we have an injection K → E that sends 1 7→ u, and we know that
0 is tightly closed in E if and only if u is in the tight closure of 0 in E. This is the case
if and only if for some c ∈ R◦ (respectively, for a single big test element c ∈ R◦), cuq = 0
in Fe(E) for all q � 0. We may view Fe : R → R as R ⊆ R1/q instead. Then Fe(E) is
identified with R1/q ⊗R E, and R acts via the isomorphism R ∼= R1/q such that r 7→ r1/q.
Then uq corresponds to 1⊗ u, and cuq corresponds to c1/q ⊗ u.

Then u ∈ 0∗E if and only if for every c ∈ R◦ (respectively, for a single big test element

c ∈ R◦), the map K → R1/q ⊗RE that sends 1 7→ c1/q ⊗u is 0 for all q � 0. We may now
apply the functor HomR( , E) to obtain a dual condition. Namely, u ∈ 0∗E if and only if
for every c ∈ R0 (respectively, for a single big test element c ∈ R◦), the map

HomR(R1/q ⊗R E, E)→ HomR(K, E)

is 0 for all q � 0. The map is induced by composition with K → R1/q ⊗R E. By the
adjointness of tensor and Hom, we may identify this map with

HomR

(
R1/q, HomR(E, E)

)
→ HomR(K, E).
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This map sends f to the composition of K → R1/q ⊗R E with the map such that s⊗ v 7→
f(s)(v). Since HomR(E, E) ∼= R by Matlis duality and HomR(K, E) ∼= K, we obtain the
map

HomR(R1/q, R)→ K

that sends f to the image of f(c1/q) in R/m.

Thus, u ∈ 0∗E if and only if for every c ∈ R0 (respectively, for a single big test element

c ∈ R◦), every f : R1/q → R sends c1/q into m for every q � 0. This is equivalent to the
statement that θq,c : R → R1/q sending 1 → c1/q does not split for every q � 0, since if

f(c1/q) = a is a unit of R, a−1f is a splitting.

Note that if R → R1/q sending 1 7→ c1/q splits, then R → R1/q splits as well: the
argument in the Lecture Notes from September 21 (see pages 4 and 5) applies without any
modification whatsoever. Moreover, the second Proposition on p. 5 of those notes shows
that if one has the splitting for a given q, one also has it for every larger q.

We have now shown that u ∈ 0∗E if and only if for every c ∈ R0 (respectively, for a single

big test element c ∈ R◦), θq,c : R→ R1/q sending 1→ c1/q does not split for every q.

Hence, 0 is tightly closed in E if and only if for every c ∈ R0 (respectively, for a single
big test element c ∈ R◦) the map θq,c splits for some q.

We have now shown that conditions (1), (2), and (3) are equivalent, and that (4) is
equivalent as well provided that c is a big test element.

Now suppose that we only know that c has a power that is a big test element. Then
this is also true for any larger power, and so we can choose q1 = pe1 such that cq1 is a test
element. If the equivalent conditions (1) , (2), and (3) hold, then we also know that the
map R → R1/qq1 sending 1 7→ (cq1)1/qq1 = c1/q splits for all q � 0, and we may restrict
this splitting to R1/q. Thus, (1) through (4) are equivalent.

Finally, (5) is equivalent as well, because we know that if c ∈ R◦ is such that Rc is
regular, then c has a power that is a big test element. �

Remark. It is not really necessary to assume that R is reduced in the last three conditons.
We can work with R(e) instead of R1/q, where R(e) denotes R viewed as an R-algebra
via the structural homomorphism Fe. We may then define θq,c to be the R-linear map

R→ R(e) such that 1 7→ c. The fact that this map is split for some some c ∈ R◦ and some
q implies that R is reduced: if r is a nonzero nilpotent, we can replace it by a power which
is nonzero but whose square is 0. But then the image of r is rqc = 0, and the map is not
even injective, a contradiction. Once we know that R is reduced, we can identify R(e) with
R1/q and c is identified with c1/q.

We want to apply the preceding Theorem to the F-finite case. We first observe:

Lemma. Let (R, m, K) be an F-finite reduce local ring. Then R̂1/q ∼= R̂1/q ∼= R̂⊗R R1/q

for all q = pe.
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Proof. R1/q is a local ring module-finite over R. Hence, the maximal ideal of R expands to

an ideal primary to the maximal ideal of R1/q, and it follows that R̂1/q is the mR1/q-adic

completion of R1/q. Thus, we have an isomorphism α : R̂1/q ∼= R̂ ⊗R R1/q. Since R is
reduced, so is R1/q. Since R is F-finite, so is R1/q, and R1/q is consequently excellent.

Hence, the completion R̂1/q is reduced. If we use the identification α to write a typical

element of u ∈ R̂1/q as a sum of terms of the form s ⊗ r1/q, where s ∈ R̂ and r ∈ R,

we see that uq ∈ R̂. This shows that we have R̂1/q ⊆ R̂1/q. On the other hand, if

r0, r1, . . . , rk, . . . is a Cauchy sequence in R with limit s, then r
1/q
0 , r

1/q
1 , · · · , r1/q

k , · · ·
is a Cauchy sequence in R1/q, and its limit is s1/q. This shows that R̂1/q ⊆ R̂1/q. �

From the preceding Theorem we then have:

Corollary. If R is F-finite, then R is strongly F-regular if and only if every submodule of
every module is tightly closed.

Proof. We need only show that if every submodule of every module is tightly closed, then
R is strongly F-regular. We know that both conditions are local on the maximal ideals of
R (cf. problem 6. of Problem Set #3). Thus, we may assume that (R, m, K) is local. We
know that R has a completely stable big test element c. By part (b) of the Theorem on

the first page, R̂ has the property that every submodule of every module is tightly closed:
in particular, 0 is tightly closed in E = E

R̂
(K) ∼= ER(K). By the equivalence of (2) and

(4) in the preceding Theorem, we have that the R̂-linear map θ̂ : R̂ → R̂1/q that sends
1 7→ c1/q splits for some q. This map arises from the R-linear map θ : R → R1/q that

sends 1 7→ c1/q by applying R̂⊗R . Since R̂ is faithfully flat over R, the map θ is split if

and only if θ̂ is split, and so θ is split as well. �

Finally, we can prove the final statement in the Theorem on p. 4 of the Lecture Notes
from October 22.

Corollary. If R is Gorenstein and F-finite, then R is weakly F-regular if and only if R is
strongly F-regular.

Proof. The issue is local on the maximal ideals of R. We have already shown that in
the local Gorenstein case, (R, m, K) is weakly F-regular if and only if 0 is tightly closed
in ER(K). By the Corollary just above, this implies that R is strongly F-regular in the
F-finite case. �

This justifies extending the notion of strongly F-regular ring as follows: the definition
agrees with the one given earlier if the ring is F-finite.

Definition. Let R be a Noetherian ring of prime characteristic p > 0. We define R to be
strongly F-regular if every submodule of every module (whether finitely generated or not)
is tightly closed.
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Math 711: Lecture of October 29, 2007

We want to study flat local homomorphism (R, m, K)→ (S, n, L) to obtain informa-
tion about S from corresponding information about the base R and the closed fiber S/mS.
We recall one fact of this type from p. 3 of the Lecture Notes from September 19:

Proposition. Let (R, m, K) → (S, n, L) be a flat local homomorphism of local rings.
Then

(a) dim (S) = dim (R) + dim (S/mS), the sum of the dimensions of the base and of the
closed fiber.

(b) If R is regular and S/mS is regular, then S is regular.

Part (a) is generalized in the Theorem given below. We first want to note the following.

Lemma. Let R a ring, and S a flat R-algebra.

(a) If M is a finitely generated R-module, then

AnnS(S ⊗RM) = (AnnRM)S ∼= S ⊗ (AnnRM).

Hence, if N,N ′ ⊆W are R-modules with N ′ finitely generated, S⊗RN :S S⊗RN ′ =
(N :R N

′)S.

(b) If I is a finitely generated ideal of R, M is any R-module, and N is a flat R-module,
then then

AnnM⊗RNI
∼= (AnnMI)⊗R N.

Proof. (a) Let u1, . . . , un be generators of M . Then there is a map α : R → Mn that
sends r 7→ (ru1, . . . , run). The kernel of this map is evidently AnnRM , so that

0 −→ AnnRM −→ R
α−→Mn

is exact. Since S is flat, we may apply S ⊗R to get an exact sequence:

(∗) 0 −→ S ⊗R (AnnRM) −→ S
β−→ (S ⊗RM)n

where the map β = 1S ⊗α sends s ∈ S to s(1⊗u1, . . . , 1⊗un). Since the elements 1⊗uj
generate S⊗RM , the kernel of β is AnnS(S⊗RM), while the kernel is also S⊗R (AnnRM)
by the exactness of the sequence (∗). For the final statement, one may simply observe that
N :R N

′ = AnnR(N +N ′)/N .

(b) Let f1, . . . , fn be generators for I, and consider the map γ : M →Mn such that
u 7→ (f1u, . . . , fnu). Then

0 −→ AnnMI −→M
γ−→Mn
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is exact. It follows that

(∗∗) 0 −→ (AnnMI)⊗R N −→M ⊗R N
δ−→ (M ⊗R N)n

is exact, where δ = γ ⊗ 1N sends u⊗ v 7→ (f1u⊗ v, . . . , fnu⊗ v). Therefore the kernel is
AnnM⊗RNI, but from (∗∗) the kernel is also (AnnMI)⊗R N .

�

Comparison of depths and types for flat local extensions

In the Theorem below, the main case is when N = S, and the reader should keep this
case in mind. When N is an S-module, we refer to N/mN as the closed fiber of N over
R. When we refer to the depth of a finitely generated nonzero module over a local ring, we
always mean the depth on the maximal ideal of the local ring, unless otherwise specified.

Theorem. Let (R, m, K) → (S, n, L) be a local homomorphism of local rings, and let
N be a finitely generated nonzero S-module that is R-flat. Let M be a nonzero finitely
generated R-module. Then:

(a) dim (N) = dim (R) + dim (N/mN).

More generally, dim (M ⊗R N) = dim (M) + dim (N/mN).

(b) N is faithfully flat over R.

(c) If y1, . . . , yk ∈ n form a regular sequence on the closed fiber N/mN , then they form a
regular sequence on W ⊗RN for every nonzero R-module W . In particular, they form
a regular sequence on N/IN for every proper ideal I of R, and on N itself. Moreover,
N/(y1, . . . , yk)N is faithfully flat over R.

(d) depth(M⊗RN) = depth(M)+depth(N/mN). In particular, depth(N) = depth(R)+
depth(N/mN).

(e) N is Cohen-Macaulay if and only if both R and N/mN are Cohen-Macaulay.

More generally, if M is any finitely generated R-module, then M ⊗R N is Cohen-
Macaulay if and only if both M and N/mN are Cohen-Macaulay.

(f) If N is Cohen-Macaulay, then the type of N is the product of the type of R and the
type of N/mN . More generally, if M ⊗R N is Cohen-Macaulay, the type of M ⊗R N
is the product of the type of M and the type of N/mN .

If M is 0-dimensional and N/mN is 0-dimensional, then the socle of M ⊗R N is the
same as the socle of AnnMm⊗K N/mN .

Proof. We use induction on dim (R) to prove the first statement. If J is the nilradical of
R, we may make a base change and replace R, S, and N by R/J , S/JS, and N/JN . The
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dimensions of R and N do not change, and the closed fiber does not change. Thus, we
may assume that R is reduced. If dim (R) = 0, then R is a field, m = 0, and the result is
obvious. If dim (R) > 0 then m contains a nonzerodivisor x, which is also a nonzerodivisor
on N , because N is R-flat. We may make a base change to R/xR. The dimensions of
R and N decrease by one, and the closed fiber does not change. Hence, the validity of
the statement in (a) is not affected by this base change. The result now follows from the
induction hypothesis.

To prove the second statement, note that M has a finite filtration whose factors are
cyclic modules R/Ij , and so M ⊗R N has a corresponding filtration whose factors are the
(R/Ij)⊗RN . Thus, we can reduce to the case where M = R/I. But this case follows from
what we have already proved by base change from R to R/I.

(b) To see that a flat module N is faithfully flat over any ring R, it suffices to see that
Q⊗RN 6= 0 for every nonzero R-module Q. If u ∈ Q is a nonzero element, then Ru ↪→ Q,
and so it suffices to see that Ru⊗R N 6= 0 when Ru 6= 0. But Ru ∼= R/I for some proper
ideal I of R, and Ru⊗RM ∼= Q/IQ. Thus, it suffices to see that IQ 6= Q for every proper
ideal I of R. Since any proper ideal I is contained in a maximal ideal, it suffices to see
that mQ 6= Q when m is maximal in R. In the local case, there is only one maximal ideal
to check. In the situation here, mN ⊆ nN 6= N by Nakayama’s Lemma, since N is finitely
generated and nonzero.

(c) By a completely straightforward induction on k, part (c) reduces at once to the
case where k = 1. (Note that an important element in making this inductive proof work
is that we know that N/y1N is again R-flat.)

Write y for y1. To see that N/yN is R-flat, it suffices by the local criterion for flatness,
p. 1 of the Lecture Notes from October 1, to show that Tor1

R(R/m, N/yN) = 0. The short
exact sequence

(∗) 0 −→ N
y·−→ N −→ N/yN −→ 0

yields a long exact sequence part of which is

0 = TorR1 (R/m, N) −→ TorR1 (R/m, N/yN) −→ N/mN
y·−→ N/mN

where the 0 on the left is a consequence of the fact that N is R-flat. Since y is not a
zerodivisor on N/mN , we have that TorR1 (R/m, N/yN) = 0. Faithful flatness is then
immediate from part (b).

Note that if M 6= 0, we have that M ⊗R (N/yN) 6= 0 because N/yN is faithfully
flat over R. To show that y is not a zerodivisor on M ⊗R N , we may use the long exact
sequence for Tor arising from the short exact sequence (∗) displayed above when one applies

M ⊗R . The desired result follows because TorR1 (M, N/yN) = 0.

(d) We use induction on depth(M) + depth(N/mN). Suppose that both depths are
0. Because depth(M) = 0, m is an associated prime of M , and there is an injection
R/m ↪→ M . We may apply ⊗R N to obtain an injection N/mN ↪→ M ⊗R N . Since
depth(N/mN) = 0, there is an injection S/n ↪→ N/mN , and the composite

S/n ↪→ N/mN ↪→M ⊗R N
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shows that depth(M ⊗R N) = 0, as required. If depth(M) > 0 we may choose x ∈ m not
a zerodivisor on M . Then x is not a zerodivisor on M ⊗RN because N is R-flat. We may
replace M by M/xM . The depths of M and M ⊗RN decrease by 1, while the closed fiber
does not change. The result now follows from the induction hypothesis. Finally, suppose
depth(N/mN) > 0. Choose y ∈ n not a zerodivisor on N/mN . Then we may replace N by
N/yN . This module is still flat over R by part (c). The depths of N and N/mN decrease
by one, while M is unaffected. Again, the result follows from the induction hypothesis.

(e) M ⊗RN is Cohen-Macaulay if and only if dim (M ⊗RN) = depth(M ⊗RN), and
by parts (a) and (c), we have that

dim (M⊗RN)−depth(M⊗RN) = dim (M)+dim (N/mN)−
(
depth(M)+depth(N/mN)

)
=
(
dim (M)−depth(M)

)
+(dim (N/mN)−depth(N/mN)

)
.

The last sum is 0 if and only if both summands vanish, since both summands are nonneg-
ative. This proves (e).

(f) Choose a maximal regular sequence x1, . . . , xh ∈ m on M . This is also a regular
sequence on M ⊗R N , and so we may replace M by M/(x1, . . . , xh)M . Both types are
unaffected by this replacement. Similarly, we may choose y1, . . . , yk ∈ n that form a
maximal regular sequence on N/mN , and replace N by N/(y1, . . . , yk)N . Hence, we have
reduced to the case where M and N/mN both are 0-dimensional.

We next want to establish the final statement, from which the calculation of the type
will follow. We have that Annn(M ⊗R N) ⊆ Annm(M ⊗R N) ∼= (AnnMm)⊗R N , by part
(b) of the Lemma from p. 1. Since m kills the module AnnMm, this tensor product may
be identified with (AnnMm)⊗R (N/mN) ∼= (AnnMm)⊗K (N/mN). Then AnnMn ∼= Ks

where s is the type of M , and this module is (N/mN)⊕s. Clearly the socle is the direct
sum of s copies of the socle in N/mN , whose dimension over L is the type of N/mN , and
the statement about the product of the types is immediate. �

Corollary. Let (R, m, K)→ (S, n, L) be a flat local homomorphism of local rings.

(a) S is Gorenstein if and only if R and S/mS are both Gorenstein.

(b) If I is an irreducible m-primary ideal in R and y1, . . . , yk ∈ n have images that are
a system of parameters in S/mS, then for every integer t, IS + (yt1, . . . , y

t
k)S is an

irreducible m-primary ideal of S.

Proof. Part (a) is immediate from parts (e) and (f) of the preceding Theorem, since the
type of S is the product of the types of R and S/mS, and so the type of S will be 1 if and
only if and only if both R and S/mS are of type 1.

For part (b), make a base change to R/I, which is 0-dimensional Gorenstein ring. Thus,
S/IS is Gorenstein, the images of yk1 , . . . , y

k
t are a system of parameters and, hence, a

maximal a regular sequence. Thus, the quotient of S/I by the ideal they generate is a
0-dimensional Gorenstein ring. �

We can now prove:
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Theorem. Let (R, m, K) → (S, n, L) be a flat local homomorphism of local rings of
prime characteristic p > 0 such that the closed fiber S/m is regular. Suppose that c ∈ R◦
is a test element for both R and S. If R is weakly F-regular, then S is weakly F-regular.

Proof. It suffices to show that a sequence of irreducible ideals cofinal with the powers of
n is tightly closed. Since R is weakly F-regular, it is normal, and, hence, approximately
Gorenstein. Given t, choose I ⊆ mt that is m-primary and irreducible. Let u ∈ m represent
a socle generator in R/I. Choose y1, . . . , yk whose images in the regular local ring S/mS
are a minimal set of generators of the maximal ideal. Then (y1 · · · yk)t−1 represents a
socle generator in (S/mS)/(yt1, . . . , y

t
k)(S/mS). It follows from part (f) of the preceding

Theorem that
wt = (y1 · · · yk)t−1u

represents a socle generator in

S/
(
(IS + (yt1, . . . , y

t
k)S
)
;

this ideal is irreducible by the preceding Corollary. Note that IS + (yt1, . . . , y
t
k)S ⊆ nt. It

will therefore suffice to prove that every ideal J of the form IS + (yt1, . . . , y
t
k)S is tightly

closed, and for this it suffices to check that wt is not in the tight closure. Since c is a test
element for both rings, if wt were in the tight closure of J we would have

c(
(
y1 · · · yk)t−1u

)q ∈ I [q]S + (yqt1 , . . . , y
qt
k )S

for all q � 0. By part (c) of the Theorem on p. 2, y1, . . . , yk is regular sequence on
S/I [q]S. Hence, modulo I [q]S, cuq is in

(yqt1 , . . . , y
qt
k )(S/I [q]S) :S/I[q]S y

tq−q
1 · · · ytq−qk = (yq1, . . . , y

q
k)(S/I [q]S),

and so
cuq ∈ IqS + (yq1, . . . , y

q
k)S

for all q � 0. Now work modulo (yq1, . . . , y
q
k)S instead. Since T = S/(yq1, . . . , y

q
k)S

is faithfully flat over R by the part (c) of the Theorem on p. 2, we may think of R as a
subring of T . But then we have that cuq ∈ I [q]T ∩R = I [q] for all q � 0, and so u ∈ I∗R = I,
a contradiction, because u represents a socle generator in R/I. �

We next want to prove a corresponding result for strong F-regularity: this works in just
the same way, except that we need to assume that c is a big test element. However, the
proof involves some understanding of the injective hull of the residue class field of S in this
situation.
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Math 711: Lecture of October 31, 2007

Discussion: local cohomology. Let y1, . . . , yd be a sequence of elements of a Noether-
ian ring S and let N be an S-module, which need not be finitely generated. Let J be
an ideal whose radical is the same as the radical of (y1, . . . , yd)S. Then the d th local
cohomology module of N with supports in J , denoted Hd

J(N), may be obtained as

lim
−→ k

N

(yk1 , . . . , y
k
d)N

where the map from

Nk =
N

(yk1 , . . . , y
k
d)N

to Nk+h is induced by multiplication by zh, where z = y1 · · · yd, on the numerators.. If
u ∈ N , 〈u; yk1 , . . . , y

k
d〉 denotes the image of the class of u in Nk in Hd

J(N). With this
notation, we have that

〈u; yk1 , . . . , y
k
d〉 = 〈zhu; yk+h

1 , . . . , yk+h
d 〉

for every h ∈ N.

If y1, . . . , yd is a regular sequence on N , these maps are injective. We also know from
the seminar that if (S, n, L) is a Gorenstein local ring and y = y1, . . . , yd is a system

of parameters for S, then Hd
(y)(S) = Hd

n(S) is an injective hull for the residue class field

L = S/n of S over S. In the sequel, we want to prove a relative form of this result when
R→ S is a flat local homomorphism whose closed fiber is Gorenstein.

Theorem. Let (R, m, K)→ (S, n, L) be a flat local homomorphism such that the closed
fiber S/mS is Gorenstein. Let dim (R) = n and let dim (S/mS) = d. Let y = y1, . . . , yd ∈
n be elements whose images in S/mS are a system of parameters. Let E = ER(K) be an
injective hull for the residue class field K = R/m of R over R. Then E ⊗R Hd

(y)(S) is an

injective hull for L = S/n over S.

In the case where the rings are of prime characteristic p > 0,

FeS
(
E ⊗R Hd

(y)(S)
) ∼= FeR(E)⊗R Hd

(y)(S),

and if u ∈ E and s ∈ S, then

(u⊗ 〈s; yk1 , . . . , ykd〉)q = uq ⊗ 〈sq; yqk1 , . . . , yqkd 〉.

Proof. We first give an argument for the case where R is approximately Gorenstein, which
is somewhat simpler. We then treat the general case. Suppose that {It} is a descending
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sequence of m-primary ideals of R cofinal with the powers of M . We know that E =
lim
−→ tR/It for any choice of injective maps R/It → R/It+1. Let At,k = ItS + Jk, where

Jk = (yk1 , . . . , y
k
d)S. For every k we may tensor with the faithfully fflat R-algebra S/Jk

to obtain an injective map S/At,k → S/At+1,k. Since y1, . . . , yd is a regular sequence
on S/ItS for every It, we also have an injective map S/At,k → S/At,k+1 induced by
multiplication by z = y1 · · · yd on the numerators. The ideals At,k are n-prinary irreducible
ideals and as t, k both become large, are contained in aribtrarily large powers of n. (Once
It ⊆ ms and k ≥ s, we have that At, k ⊆ msS + ns ⊆ ns.) Thus, we have

ES(L) ∼= lim
−→ t,k

S

At,k
= lim
−→ t,k

(
R

It
⊗R

S

Jk

)
∼= lim
−→ k

(
lim
−→ t

( R
It
⊗R

S

Jk

)) ∼=
lim
−→ k

((
lim
−→ t

R

It

)
⊗R

S

Jk

)
∼= lim
−→ k

(
E ⊗R

S

Jk

)
∼= E ⊗R

(
lim
−→ k

S

Jt

)
∼= E ⊗R Hd

(y)(S).

We now give an alternative argument that works more generally. In particular, we
do not assume that R is approximately Gorenstein. Let Et denote AnnEm

t. We first
claim that that Et,k, which we define as Et ⊗R (S/Jk), is an injective hull of L over
St,k = (R/mt)⊗R (S/Jk). By part (f) of the Theorem on p. 2 of the Lecture Notes from
October 29, it is Cohen-Macaulay of type 1, since that is true for Et and for the closed
fiber of S/Jk, since S/mS is Gorenstein. Hence, Et,k is an essential extension of L, and
it is killed by At,k = mtS + Jk. To complete the proof, it suffices to show that it has the
same length as St,k. Let M denote either R/mt or Et. Note that M has a filtration with
`(M) factors, each of which is ∼= K = R/m. Since S/Jk is R-flat, this gives a filtration of
M⊗RS/Jk with `(M) factors each of which is isomorphic with K⊗RS/Jk = S/(mS+Jk).
Since `(R/mt) = `(Et), it follows that St,k and Et,k have the same length, as required.

If t ≤ t′ we have an inclusion Et ↪→ Et′ , and if k ≤ k′, we have an injection S/Jk →
S/Jk′ induced by multplication by zk

′−k acting on the numerators. This gives injections
Et ⊗R Sk → Et′ ⊗ Sk (since Sk is R-flat) and Et′ ⊗R Sk → Et′ ⊗R S′k (since y1, . . . , yd
is a regular sequence on Et′ ⊗R S). The composites give injections Et,k ↪→ Et′,k′ and
the direct limit over t, k is evidently E ⊗K Hd

(y)(S). The resulting module is clearly an

essential extension of L, since it is a directed union of essential extensions. Hence, it
is contained in a maximal essential extension ES(L) of L over S. We claim that this
inclusion is an equality. To see this, suppose that u ∈ ES(L) is any element. Then u
is killed by A = At,k = mtS + Jk for any sufficiently large choices of t and k. Hence
u ∈ AnnES(L)A = N , which we know is an injective hull for L over S/A. But Et ⊗R S/Jk
is a submodule of N contained in E⊗RHd

(y)(S), and is already an injective hull for L over

S/A. It follows, since they have the same length, that we must have that Et⊗R S/Jk ⊆ N
is all of N , and so u ∈ Et ⊗R S/Jk ⊆ E ⊗R Hd

(y)(S).

To prove the final statement about the Frobenius functor, we note that by the first
problem of Problem Set #4, one need only calculate FeS

(
Hd

(y)(S)
)
, and this calculation is

the precisely the same as in third paragraph of p. 1 of the Lecture Notes from October
24. �
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We are now ready to prove the analogue for strong F-regularity of the Theorem at the
top of p. 5 of the Lecture Notes from October 29, which treated the weakly F-regular case.

Theorem. Let (R, m, K) → (S, n, L) be a local homomorphism of local rings of prime
characteristic p > 0 such that the closed fiber S/m is regular. Suppose that c ∈ R◦ is a big
test element for both R and S. If R is strongly F-regular, then S is strongly F-regular.

Proof. Let u be a socle generator in E = ER(K), and let y = y1, . . . , yd ∈ n be elements
whose images in the closed fiber S/mS form a minimal set of generators of the maximal
ideal n/mS. Let z = y1 · · · yd. Then the image of 1 in S/

(
mS + (y1, . . . , yd)S

)
is a

socle generator, and it follows that v = u⊗ 〈1; y1, . . . , yd〉 generates the socle in ES(L) ∼=
E ⊗R Hd

(y)(S). Since c is a big test element for S, it can be used to test whether v is in

the tight closure of 0 in E ⊗R Hd
(y)(S).

This occurs if and only if for all q � 0, c(u⊗〈1; y1, . . . , yd〉)q = 0 in FeR(E)⊗RHd
(y)(S),

and this means that cuq ⊗ 〈1; yq1, . . . , y
q
d〉 = 0 in FeR(E) ⊗R Hd

(y)(S). By part (c) of the

Theorem on p. 2 of the Lecture Notes from October 29, y1, . . . , yd is a regular sequence
on E ⊗R S, from which it follows that the module FeR(E) ⊗R

(
S/(yq1, . . . , y

q
d)
)

injects

into FeR(E) ⊗R Hd
(y)(S). Since S = S/(yq1, . . . , y

q
d)S is faithfully flat over R, the map

FeR(E) → FeR(E) ⊗R S/(yq1, . . . , y
q
d)S sending w 7→ w ⊗ 1 is injective. The fact that

cuq⊗〈1; yq1, . . . , y
q
d〉 = 0 implies that cuq⊗1S is 0 in FeR(E)⊗R S, and hence that cuq = 0

in R. Since this holds for all q � 0, we have that u ∈ 0∗E , a contradiction. �

The following result will be useful in studying algebras essentially of finite type over an
excellent semilocal ring that are not F-finite but are strongly F-regular: in many instances,
it permits reductions to the F-finite case.

Theorem. Let R be a reduced Noetherian ring of prime characteristic p > 0 that is
essentially of finite type over an excellent semilocal ring B.

(a) Let B̂ denote the completion of B with respect to its Jacobson radical. Suppose that R

is strongly F-regular. Then B̂⊗B R is essentially of finite type over B̂ and is strongly
F-regular and faithfully flat over R.

(b) Suppose that B = A is a complete local ring with coefficient field K. Fix a p -base
Λ for K. For all Γ � Λ, let RΓ = AΓ ⊗A R. We nay identify Spec (RΓ) with
X = Spec (R) as topological spaces, and we let ZΓ denote the closed set in Spec (R)
of points corresponding to primes P such that RΓ

P is not strongly F-regular. Then
ZΓ is the same for all sufficiently small Γ � Λ, and this closed set is the locus in X
consisting of primes P such that RP is not strongly F-regular.

In particular, if R is strongly F-regular, then for all Γ� Λ, RΓ is strongly F-regular.

Proof. (a) Since B → B̂ is faithfully flat with geometrically regular fibers, the same is

true for R → B̂ ⊗B R. Choose c ∈ R◦ such that Rc is regular. Then we also have that
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(B̂ ⊗B R)c is regular. Hence, c has a power that is a completely stable big test element

in both rings. Let Q be any prime ideal of S = B̂ ⊗B R and let P be its contraction to
R. We may apply the preceding Theorem to the map RP → SQ, and so SQ is strongly
F-regular for all Q. It follows that S is strongly F-regular.

(b) For all choices of Γ′ ⊆ Γ cofinite in Λ, we have that R ⊆ RΓ′ ⊆ RΓ, and that
the maps are faithfully flat and purely inseparable. Since every RΓ is F-finite, we know
that every ZΓ is closed. Since the map RΓ′ ⊆ RΓ is faithfully flat, ZΓ decreases as Γ
decreases. We may choose Γ so that Z = ZΓ is minimal, and, hence, minimum, since a
finite intersection of cofinite subsets of Λ is cofinite.

We shall show that Z must be the set of primes P in Spec (R) such that RP is strongly
F-regular. If Q is a prime of RΓ not in ZΓ lying over P in R, the fact that RP → RΓ

Q is
faithfully flat implies that P is not in Z. Thus, Z ⊆ ZΓ. If they are not equal, then there is
a prime P of R such that RP is strongly F-regular but RΓ

Q is not strongly F-regular, where

Q is the prime of RΓ corresponding to P . Choose Γ′ ⊆ Γ such that Q′ = PRΓ′ is prime. It
will suffice to prove that S = RΓ′

Q′ is strongly F-regular, for this shows that ZΓ′ ⊆ ZΓ−{P}
is strictly smaller than ZΓ. Since S is F-finite, we may choose a big test element c1 for S.
Then c1 has a q1 th power c in RP for some q1, and c is still a big test element for S. The
closed fiber of RP → S is S/PS = S/Q′, a field. Hence, by the preceding Theorem, S is
strongly F-regular. �

Using this result, we can now prove:

Theorem. Let R be reduced and essentially of finite type over an excellent semilocal ring
B. Then the strongly F-regular locus in R is Zariski open.

Proof. We first consider the case where B = A is a complete local ring. Choose a coefficient
field K for A and a p -base Λ for it. Then the result is immediate from part (b) of the
preceding Theorem by comparison with RΓ for any Γ� Λ.

In the general case, let S = B̂⊗B R. Since B̂ is a finite product of complete local rings,
S is a finite product of algebras essentially of finite type over a complete local ring, and
so the non-strongly F-regular locus is closed. Let J denote an ideal of S that defines this
locus.

Now consider any prime ideal P of R such that RP is strongly F-regular. Let W = R−P .

Then we may apply part (a) of the preceding Theorem to RP → B̂ ⊗B RP to conclude

that B̂ ⊗R RP = W−1S is strongly F-regular. It follows that W must meet J : otherwise,
we can choose a prime Q of S containing J but disjoint from W , and it would follow that
SQ is strongly F-regular even though J ⊆ Q, a contradiction. Choose c ∈ W ∩ J . Then
Sc is strongly F-regular, and since Rc → Sc is faithfully flat, so is Rc. Thus, the set of
primes of R not containing c is a Zariski open nieghborhood of P that is contained in the
strongly F-regular locus. �



176

Math 711: Lecture of November 5, 2007

The following result is one we have already established in the F-finite case. We can now
extend it to include rings essentially of finite type over an excellent semilocal ring.

Theorem. Let R be a reduced ring of prime characteristic p > 0 essentially of finite
type over an excellent semilocal ring B. Suppose that c ∈ R◦ is such that Rc is strongly
F-regular. Then c has a power that is a completely stable big test element in R.

Proof. If c is a completely stable big test element in a faithfully flat extension of R, then
that is also true for R by part (b) of the Proposition at the bottom of p. 8 of the Lecture
Notes from September 17.

The hypothesis continues to hold if we replace R by B̂⊗B R, and it holds in each factor
of this ring. We may therefore assume that R is essentially of finite type over a complete
local ring A. As usual, choose a coefficient field K for A and a p -base Λ for K. Again,
the hypotheis continues to hold is we replace R by RΓ for Γ� Λ, and RΓ is faithfully flat
over R. But now we are done, since RΓ is F-finite. �

We next want to backtrack and prove that certain rings are approximately Gorenstein
in a much simpler way than in the lengthy and convoluted argument given in the Lecture
Notes from October 24. While the result we prove is much weaker, it does suffice for
the case of an excellent normal Cohen-Macaulay ring, and, hence, for excellent weakly
F-regular rings.

We first note:

Lemma. Let M and N be modules over a Noetherian ring R and let x be a nonzerodivisor
on N . Suppose that M is R-free or, much more generally, that Ext1

R(M, N) = 0. Then

(R/xR)⊗R HomR(M, N) ∼= HomR/xR(M/xM, N/xN).

Proof. The right hand module is evidently the same as HomR(M/xM, N/xN), and also the
same as HomR(M, N/xN), since any mapM → N/xN must kill xM . Apply HomR(M, )
to the short exact sequence

0 −→ N
x·−→ N −→ N/xN → 0.

This yields a long exact sequence which is, in part,

0 −→ HomR(M, N)
x·−→ HomR(M, N) −→ HomR(M, N/xN) −→ Ext1

R(M, N) = 0,

and the result follows. �
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Theorem. Let (R, m, K) be an excellent, normal, Cohen-Macaulay ring, or, more gener-
ally, any Cohen-Macaulay local ring whose completion is a Cohen-Macaulay local domain.
Then R is approximately Gorenstein.

Proof. We may replace R by its completion and then R is module-finite over a regular
local ring A ⊆ R. Because R is Cohen-Macaulay, it is free of some rank h as an A-module,
i.e., R ∼= Ah. Then ω = HomA(R, A) is also an R-module, and is also isomorphic to Ah

as an A-module. (We shall see later that ω is what is called a canonical module for R.
Up to isomorphism, it is independent of the choice of A.) Then ω is, evidently, also a
Cohen-Macaulay module over R. We want to see that it has type one. This only uses the
Cohen-Macaulay property of R: it does not use the fact that R is a domain.

From the Lemma above, we see that the calculation of ω commutes with killing a
parameter in A. We may choose a system of parameters for A (and R) that is a minimal
set of generators for the maximal ideal of A. By killing these one at a time, we reduce to
seeing this when A = K is a field and R is a zero-dimensional local ring with coefficient
field K. We claim that in this case, ω = HomK(R, K) is isomorphic with ER(K). In fact,
ω is injective because for any R-module M ,

HomR(M, ω) ∼= HomR(M, HomK(R, K)) ∼= HomK(M ⊗R R, K) ∼= HomK(M, K)

by the adjointness of tensor and Hom. This is, in fact, a natural isomorphism of functors.
Since HomK( , K) is exact, so is HomR( , ω). Thus, ω is a direct sum of copies of
ER(K). But its length is the same as its dimension as a K-vector space, and this is the
same as the dimension of R as a K-vector space, which is the length of R. Thus, ω has
the same length as ER(K), and it follows that ω ∼= ER(K).

We now return to the situation where R is a domain. Since every nonzero element of
R has a nonzero multiple in A, we have that ω is torsion-free as an R-module. Thus,
if w is any nonzero element of ω, we have an embedding R → ω sending 1 7→ w. Let
It = (xt1, . . . , x

t
n), where x1, . . . , xn is a system of parameters for R. Then Itω∩Rw must

have the form Jtw for some m-primary ideal Jt of R. Then

R/Jt ∼= Rw/(Itω ∩Rw) ⊆ ω/Itω.

Since ω/Itω is an injective hull of the residue class field for R/It, it is an essential extension
of its socle. Therefore, R/Jt is an essential extension of its socle as well. Consequently,
Jt ⊆ R is irreducible and m-primary. It will now suffice to show that the ideals Jt are
cofinal with the powers of m.

By the Artin-Rees Lemma there exists a constant integer a ∈ N such that

mN+aω ∩Rw ⊆ mN (Rw) = mNw

for all N . But then JN+a ⊆ mn, since IN+a ⊆ mN+a. �

We next want to prove some additional results on openness of loci, such as the Cohen-
Macaulay locus. The following fact is very useful.
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Lemma on openness of loci. Let X = Spec (R), where R is a Noetherian ring. Then
S ⊆ X is open if and only if the following two conditions hold:

(1) If P ⊆ Q and Q ∈ S then P ∈ S.

(2) For all P ∈ S, S ∩ V(P ) is open in V(P ).

The second condition can be weakened to:

(2◦) For all P ∈ S, S contains an open neighborhood of P in V(P ).

Proof. It is clear that (1), (2), and (2◦) are necessary for S to be open. Since (2◦) is weaker
than (2), and it suffices to show that (1) and (2◦) imply that S is open. Suppose otherwise.
Since R has DCC on prime ideals, if S is not open there exists a minimal element P of S
that has no open neighborhood entirely contained in S. For all primes Q strictly contained
in P , choose an open neighborhood UQ of Q contained entirely in S. Let U be the union
of these open sets: the U is an open set contained entirely in S, and contains all primes Q
strictly smaller than P .

Let Z = X − U , which is closed. It follows that Z has finitely many minimal elements,
one of which must be P . Call them P = P0, P1, . . . , Pk. Then

Z = V(P0) ∪ · · · V(Pk).

Finally, choose U ′ open in X such that P ∈ U ′ and U ′ ∩ V(P ) ⊆ S. We claim that

U ′′ = U ∪ U ′ −
(
V(P1) ∪ · · · ∪ V(Pk)

)
is the required neighborhood of P . It is evidently an open set that contains P . Suppose
that Q ∈ U ′′. If Q ∈ U then Q ∈ S. Otherwise, Q is in

X − U = V(P ) ∪ V(P1) ∪ · · · ∪ V(Pk),

and this implies that Q ∈ V(P ). But Q must also be in U ′, and U ′ ∩ V(P ) ⊆ S. �

We can use this to show:

Theorem. Let R be an excellent ring. Then the Cohen-Macaulay locus

{P ∈ Spec (R) : RP is Cohen-Macaulay}

is Zariski open.

Proof. It suffices to estabish (1) and (2) of the preceding Lemma. We know (1) because
if P ⊆ Q then RP is a localization of the Cohen-Macaulay ring RQ. Now suppose that
RP is Cohen-Macaulay. Choose a maximal regular sequence in PRP . After multiplying
by suitable units in RP , we may assume that this regular sequence consists of images of
elements x1, . . . , xd ∈ P . We can choose ci ∈ R − P that kills the annihilator of xi+1 in
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R/(x1, . . . , xi), 0 ≤ i ≤ d − 1. Let c be the product of the ci. Then we may replace R
by Rc (we may make finitely many such replacements, each of which amounts to taking a
smaller Zariski open neighborhood of P ).

Then x1, . . . , xd is a regular sequence in P , and is therefore a regular sequence in Q
and in QRQ for all primes Q ⊇ P . Hence, in considering property (2), it suffices to work
with R1 = R/(x1, . . . , xd)R: whether RQ is Cohen-Macaulay or not is not affected by
killing a regular sequence. Consequently, we need only show that if P is a minimal prime
of an excellent ring R, then there exists c /∈ P such that Rc is Cohen-Macaulay. We may
assume by localizing at one element in the other minimal primes but not in P that P is
the only minimal prime of R.

First, we may localize at one element c /∈ P such that (R/P )c is a regular domain,
because R/P is an excellent domain: the localization at the prime ideal (0) is a field, and,
hence, regular, and so (0) has a Zariski open neighborhood that is regular. Henceforth, we
assume that R/P is regular. It would suffice in the argument that follows to know that it
is Cohen-Macaulay.

Finally, choose a filtration P = P1 ⊇ · · · ⊇ Pn = (0) such that every Pi/Pi+1 is killed
by P . We can do this because P is nilpotent. (If Pn = 0, we may take Pi = P i, 1 ≤ i ≤ n.
Alternatively, we may take Pi = AnnPP

n−i.) Second, we can localize at one element
c ∈ R − P such that each of the (R/P )-modules Pi/Pi+1, 1 ≤ i ≤ n − 1, is free over
R/P . Here, we are writing R for the localized ring. We claim that the ring R is now
Cohen-Macaulay.

To see this, suppose that we take any local ring of R. Then we may assume that
(R, m, K) is local with unique minimal prime P , that R/P is Cohen-Macaulay, and that
P has a finite filtration whose factors are free (R/P )-modules: all this is preserved by
localization. Let x1, . . . , xh be a system of parameters for R. The images of these elements
form a system of parameters in R/P . Then x1, . . . , xd is a regular sequence on R/P . But
P has a finite filtration in which the factors are free (R/P )-modules, and so does R: one
additional factor, R/P , is needed. Since x1, . . . , xd is a regular sequence on every factor
of this filtration, by the Proposition near the bottom of the first page of the Lecture Notes
from October 8, it is a regular sequence on R. Hence, R is Cohen-Macaulay. �

|

Remark. It is also true that if M is a finitely generated module over an excellent ring R,
then

{P ∈ Spec (R) : MP is Cohen-Macaulay}

is Zariski open in Spec (R). This comes down to establishing property (2), and we may
make the same initial reduction as in the ring case, killing a regular sequence in P on M
whose image in PRP is a maximal regular sequence on MP . Therefore may assume that
P is minimal in the support of M , and, after one further localization, that P is the only
minimal prime in the support of M . We may assume as above that R/P is regular: again R



180

is Cohen-Macaulay suffices for the argument. We have PnM = 0 for some n, and we may
construct a filtration M = M0 ⊇M1 ⊇ · · · ⊇Mn = 0 such that evey Mi/Mi+1 is killed by
P . We may then localize once more such that every Mi/Mi+1 becomes (R/P )-free over
the localization. The rest of the argument is the same as in the case where M = R. �

There are several ways to prove that the type of a Cohen-Macaulay module cannot
increase when one localizes. In particular, a Gorenstein ring remains Gorenstein when one
localizes. One way is to make use of canonical modules. Here, we give a proof that is, in
some sense, more elementary. Part of the argument is left as an exercise.

Theorem. Let M be a module over a local ring (R, m, K), and let P be any prime of R.
Then the type of MP is at most the type of M .

Proof. We shall reduce to the case where R is a complete local domain of dimension one,
M is a finitely generated torsion-free module, and P = (0), so that the type of MP is its
dimension as a vector space over frac (R). We leave this case as an exercise: see Problem
5 of Problem Set #4.

Let S be the completion of R, and let Q be a minimal prime of PS, which will lie over
P . The closed fiber of RP → SQ is 0-dimensional because Q is minimal over PS, and so
MP ⊗RP SQ is Cohen-Macaulay and its type is the product of the type of MP and the
type of SQ/PSQ. This shows that the type of MP is at most the type of MP ⊗RP SQ ∼=
M ⊗R SQ = (M̂)Q. Since M and M̂ have the same type, it will suffice to show that type
can not increase under localization in the complete case.

Second, we can choose a saturated chain of primes joining P to Q, and successively
localize at each in turn. Thus, we can also reduce to the case where dim (R/Q) = 1. Third,
we can choose a maximal regular sequence on M in Q, and replace M by its quotient by
this sequence. Thus, there is no loss of generality in assuming the Q is minimal in the
support of M . We may also replace R by R/AnnRM and so assume that M is fatihful.
Let N = AnnMQ. Let x be a system of parameters for R: it only has one element. In
particular, x /∈ Q. Then x is not a zerodivisor on M , since M is Cohen-Macaulay, nor on
N , since N ⊆M . But x is also is not a zerodivisor on M/N , for if xu ∈ N , then xuQ = 0,
which implies that uQ = 0, and so u ∈ N . It follows that when we apply (R/xR) ⊗R
to the short exact sequence

0→ N →M →M/N → 0

we get an exact sequence. Hence, N/xN →M/xM is injective, which shows that the type
of N is at most the type of M . However, NQ ⊆ MQ is evidently the socle in MQ, and so
the type of MQ is the same as the type of NQ. It follows that is suffices to show that the
type of NQ is at most the type of N . Here, N is a torsion-free module over R/Q, and so
we have reduced to the case described in the first paragraph. �

|
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Math 711: Lecture of November 7, 2007

Our current theory of test elements permits the extension of many results proved under
other hypotheses, such as the condition that the ring under consideration be a homomor-
phic image of a Cohen-Macaulay ring, to the case of excellent local rings or, more generally,
rings for which we have completely stable test elements (or completely stable big test ele-
ments, depending on whether the result being proved is for finitely generated modules or
for arbitrary modules).

Here is one example:

Theorem (colon-capturing). Let (R, m, K) be an excellent reduced equidimensional
local ring of prime characteristic p > 0, and let x1, . . . , xk+1 be part of a system of
parameters. Let Ik = (x1, . . . , xk)R. Then I∗k :R xk+1 = I∗k . In particular, Ik :R xk+1 ⊆
I∗k .

Proof. Note that R has a completely stable test element c. Suppose that uxk+1 ∈ Ik but

u ∈ R − Ik. This is also true when we pass to R̂, which is a homomorphic image of a
regular ring and, hence, of a Cohen-Macaulay ring. Therefore, from the result on colon-

capturing from p. 9 of the Lecture Notes from October 5, we have that u ∈ (IkR̂)∗, whence

cuq ∈ (IR̂)[q] = I [q]R̂ for all q, and it follows that cuq ∈ I [q]R̂ ∩ R = I [q] for all q. Thus,
u ∈ I∗.

Now suppose that uxk+1 ∈ I∗k . Then uqxqk+1 ∈ (I∗k)[q] ⊆ (I
[q]
k )∗ for all q, and so

cuqxqk+1 ∈ I
[q]
k for all q, and cuq ∈ I [q]

k :R x
q
k+1 ⊆ (I

[q]
k )∗ by the result of the first paragraph

applied to xq1, . . . , x
q
k+1. Hence, c2uq ∈ (Ik)[q] for all q, so u ∈ I∗k . The opposite conclusion

is obvious. �

|

A Noetherian ring is called locally excellent if its localization at every maximal ideal
(equivalently, at every prime ideal) is excellent.

Corollary. If R is weakly F-regular and locally excellent, then R is Cohen-Macaulay.

Proof. Both weak F-regularity and the Cohen-Macaulay property are local on the maximal
ideals of R. Hence, we may assume that R is local. Since weakly F-regular rings are normal,
R is certainly equidimensional. Since colon-capturing holds for systems of parameters in
R, the result is immediate. �

We can also prove a global version of this Theorem above that is valid even in case the
ring is not equidimensional. We need one additional fact.
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Lemma. Let (R, m, K) be an excellent local ring and let I be an ideal of R that has height

at least k modulo every minimal prime of R. Then IR̂ has height at least k modulo every

minimal prime of R̂.

Proof. If pi is a minimal prime of R, piR̂ is a radical ideal and is the intersection of certain

minimal primes qij . The intersection of all qij is the same as the intersection of the piR̂.
Since finite intersection commutes with flat base change, this is 0. Thus, it will suffice to
show that the height of I is at least k modulo every qij . To this end, we can replace R
by R/pi. Thus, it is enough to show the result when R is an excellent local domain. In

this case, R̂ is reduced and equidimensional. Any prime Q of R̂ containing IR̂ lies over
a prime P of R containing I. The height of Q is at least the height of Q0 where Q0 is a

minimal prime of PR̂. Hence, it suffices to show that if Q is a minimal prime of PR̂ then

height (Q) = height (P ). Since R and R̂ are equidimensional and catenary,

heightP = dim (R)− dim (R/P ) = dim (R̂)− dim (R̂/P R̂).

Since the completion of R/P is equidimensional,

dim (R̂/P R̂) = dim
(
R̂/Q

)
.

Hence,

height (P ) = dim (R̂)− dim
(
R̂/Q

)
= height (Q),

as required. �

Theorem (colon-capturing). Let R be a reduced Noetherian ring of prime characteristic
p > 0 that is locally excellent and has a completely stable test element c . This holds, for
example, if R is reduced and essentially of finite type over an excellent semilocal ring. Let
x1, . . . , xk+1 be elements of R. Let It denote the ideal (x1, . . . , xt)R, 0 ≤ t ≤ k + 1.
Suppose that the image of the ideal Ik has height k modulo every minimal prime of R, and
that the image of the ideal Ik+1R has height k+1 modulo every minimal prime of R. Then
I∗k :R xk+1 = I∗k .

Proof. We first prove that Ik :R xk+1 ⊆ I∗k . The stronger conclusion then follows exactly
as in the Theorem above because c is a test element.

If xk+1u ∈ Ik but u /∈ I∗k , we can choose q so that cuq /∈ I [q]
k . This is preserved when we

localize at a maximal ideal in the support of (I
[q]
k +cuq)/I

[q]
k . We have therefore reduced to

the case of an excellent local ring Rm. By the Lemma above, the hypotheses are preserved

after completion, and we still have cuq /∈ I [q]
k S = (IkS)[q], where S is the completion of

Rm. Since c is a test element in S, we have that u /∈ (IkS)∗. Since S is a homomorphic
image of a Cohen-Macaulay ring, this contradicts the Theorem on colon-capturing from
p. 9 of the Lecture Notes from October 5. �

|
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We next want to use the theory of test elements to prove results on persistence of tight
closure.

Persistence

Let R (respectively, Rbig) denote the class of Noetherian rings S such that for every
domain R = S/P , the normalization R′ of R is module-finite over R and has the following
two properties:

(1) The singular locus in R′ is closed.

(2) For every element c ∈ R′ − {0} such that R′c is regular, c has a power that is a test
element (respectively, a big test element) in R′.

Of course, Rbig ⊆ R, and Rbig includes both the class of F-finite rings and the class of
rings essentially of finite type over an excellent semilocal ring.

Theorem (persistence of tight closure). Let R be in R (respectively,in Rbig). Let
R → S be a homomorphism of Noetherian rings and suppose that N ⊆ M are finitely
generated (respectively, arbitrary) R-modules. Let u ∈ N∗M . Then 1⊗u ∈ 〈S ⊗R N〉∗S⊗RM .

Proof. It suffices to prove the result after passing to S/qj as qj runs through the minimal
primes of S. Therefore, we may assume that S is a domain. Let P denote the kernel of
R → S. Then P contains a minimal prime p of R. Tight closure persists when we kill p
because the element c used in the tight closure test is not in p. Hence, we may make a
base change to R/p, and so we may assume that R → S is a map of domains with kernel
P . It suffices to prove that tight closure is preserved when we pass from R to R/P , since
the injective map of domains R/P ↪→ S always preserves tight closure. Henceforth we may
assume that S has the form R/P .

Choose a saturated chain of primes

(0) = P0 ⊆ P1 ⊆ · · · ⊆ Ph = P.

Then it suffices to show that tight closure persists as we make successive base changes to
R/P1, then to R/P2, and so forth, until we reach R/Ph = R/P . Therefore, we need only
prove the result when S = R/P and P has height one.

Let R′ be the normalization of R and let Q be a prime of R′ lying over P . We have a
commutative diagram

R/P −−−−→ R′/Qx x
R −−−−→ R′

where the horizontal arrows are module-finite extensions and the vertical arrows are quo-
tient maps. Tight closure is preserved by the base change from R to R′ because it is an
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inclusion of domains. If R′ is regular, then the element is in the image of the submodule,
and this is preserved when we pass to R′/Q. If not, because R′ is normal, the defining
ideal of the singular locus has depth at least two, and we can find a regular sequence b, c
in R′ such that R′b and R′c are both regular. Then b and c are not both in Q, and hence
at least one of them has nonzero image in R/Q: say that c has nonzero image. For some
s, cs is a test element (respectively, big test element) in R, and it has nonzero image in
R′/Q. It follows that the base change R′ → R′/Q preserves tight closure, and, hence, so
does the composite base change R→ R′/Q.

Now suppose that the base change R → R/P fails to preserve tight closure. By the
argument above, the further base change R/P ↪→ R′/Q restores the image of the element
to the tight closure. This contradicts the fourth problem in Problem Set #4. Hence,
R→ R/P preserves tight closure. �

Corolllary. Let R→ S be a homomorphism of Noetherian rings such that S has a com-
pletely stable (respectively, completely stable big) test element c and suppose that N ⊆ M
are finitely generated (respectively, arbitrary) R-modules. Let u ∈ N∗M . Then 1 ⊗ u ∈
〈S ⊗R N〉∗S⊗RM .

Proof. Suppose that we have a counterexample. Then for some q, c(1⊗u)q /∈ 〈S ⊗R N〉[q].
This continues to be the case after localization at a suitable maximal Q ideal of S, and after
completing the local ring SQ. Hence, we obtain a counterexample such that (S, n, L) is a
complete local ring. Let m be the contraction of n to R and let let R1 be the completion
of Rm. Then the initial instance of tight closure is preserved by the base change from R to
R1 but not by the base change R1 → S. This is a contradiction, since R1 is in Rbig. �

Although the theory of test elements that we have developed thus far is reasonably
satisfactory for theoretical purposes, it is useful to have theorems that assert that specific
elements of the ring are test elements: not only that some unknown power is a test element.

For example, the following result is very useful.

Theorem. Let R be a geometrically reduced, equidmensional algebra finitely generated
over a field K of prime characteristic p > 0. Then the elements of the Jacobian ideal
J (R/K) that are in R◦ are completely stable big test elements for R.

It will be a while before we can prove this. We shall discuss the definition and properties
of the Jacobian ideal in detail later. For the moment, we make only two comments.
First, the Jacobian ideal defines the geometrically regular locus in R. Second, if R =
K[x1, . . . , xn]/(f) is a hypersurface, then J (R/K) is simply the ideal generated by the
images of the partial derivatives ∂f/∂xi in R.

For example, suppose that K has characteristic p > 0 with p 6= 3. The Theorem above
tells us that if R = K[x, y, z]/(x3+y3+z3) then the elements x2, y2, and z2 are completely
stable big test elements (3 is iinvertible in K). This is not the best possible result: the test
ideal turns out to be all of m = (x, y, z). But it gives a good starting point for computing
τ(R).
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The situation is essentially the same in the local case, where we study Rm instead. In
this case, once we know that x2, y2 are test elements, we can calculate the test ideal as
(x2, y2) :R (x2, y2)∗, since this ring is Gorenstein and we may apply problem 4 of Problem
Set #3. The socle generator modulo I = (x2, y2) turns out to be xyz2, and the problem
of showing that the test ideal is mRm reduces to showing that the ideal (x2, y2, xyz2) is
tightly closed in Rm. The main point here is that the Theorem above can sometimes be
used to make the calculation of the test ideal completely down-to-earth.

The proof of the Theorem above involves several ingredients. One is the Lipman-Sathaye
Jacobian Theorem, which we will state but not prove. The Theorem is proved in [J. Lipman
and A. Sathaye, Jacobian ideals and a theorem of Briançon-Skoda, Michigan Math. J. 28
(1981) 199–222]. Moreover, a complete treatment of the Lipman-Sathaye argument is given
in the Lecture Notes from Math 711, Fall 2006. See specifically, the Lectures of September
25, 27, and 29, as well as the Lectures of October 2, 4, 6, 9, 11, and 13.

Another ingredient is the Theorem stated just below. We shall say that an extension
of a domain S of a field K is étale if S is a finite product of finite separable algebraic
extension fields of K. We shall say that an extension A→ R of a domain A is generically
étale if the generic fiber is étale, i.e., frac (A) ⊗A R is a finite product of finite separable
algebraic extension fields of frac (A).

Theorem. Let R be a module-finite and generically étale extension of a regular ring A of
prime characteristic p > 0. Let r ∈ R◦ be such that cR∞ ⊆ R[A∞]. Then c is a completely
stable big test element for R.

We shall see that elements c as above exist, and that the Lipman-Sathaye Theorem
can be used to find specific elements like this. The reason that it is very helpful that
cR∞ ⊆ R[A∞] is that it turns out that R[A∞] ∼= R ⊗A A∞ is faithfully flat over R, since
A∞ is faithfully flat over A. This makes it far easier to work with R[A∞] than it is to work
with R∞, and multiplication by c can be used to “correct” the error in replacing R∞ by
R[A∞].

We begin by proving the following preliminary result.

Lemma. Let (A, mA, K) be a normal local domain and let R be a module-finite extension
domain of A that is generically étale over A. Let ord be a Z-valued valuation on A that
is nonnegative on A and positive on mA. Then ord extends uniquely to A∞ by letting
ord (a1/q) = (1/q)ord (a) for all a ∈ A − {0}. The extended valuation takes values in
Z[1/p].

Let m be a proper ideal of R. Let d be the torsion-free rank of R as an A-module. Let
u ∈ mR[A∞] ∩A∞. Then ord (u) ≥ 1/d!.

Proof. We know that frac (R) is separable of degree d over frac (A) = K. Let θ be a
primitive element. The splitting field L of the minimal polynomial f of θ is generated
by the roots of f , and is Galois over K, with a Galois group that is a subgroup of the
permutations on d, the roots of f . We may replace R by the possibly larger ring which is
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the integral closure of A in L. Hence, we may assume that the extension of fraction fields
is Galois with Galois group G, and |G| = D ≤ d!. The action of G on R extends to R[A∞],
fixing A∞. Let x1, . . . , xn ∈ R generate m. We have an equation

u =
n∑
i=1

aixi

where the ai ∈ A∞. The action of G then yields |G| such equations:

(∗g) u =

n∑
i=1

aig(xi)

one for each element g ∈ G. Let ν = (ν1, . . . , νn) run through n-tuples in Nn such that
ν1 + · · ·+ νn = D, and let P run through ordered partitions (P1, . . . ,Pn) of G into n sets.
we use the notation |P| for

(|P1|, . . . , |Pn|) ∈ Nn.

Let

yν =
∑
|P|=ν

(∏
g∈Pj

g(xj)

)
.

Then multiplying the elements (∗g) together yields

uD =
∑
ν

aν1
1 · · · aνnn yν .

Each yν is invariant under the action of G, and is therefore in RG = A. Since each yν
is a sum of products involving at least one of the xi, each yj ∈ m ∩ A ⊆ mA, and every
ord (yν) ≥ 1. Hence,

D ord (u) = ord (uD) ≥ min
ν

ord (aν1
1 · · · aνnn yν) ≥ min

ν
ord (yν) ≥ 1,

and we have that

ord (u) ≥ 1

D
≥ 1

d!
,

as required. �
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Math 711, Fall 2007 Problem Set #4
Due: Wednesday, November 28

1. Let R → S be a homomorphism of rings of prime characteristic p > 0, let M be an
R-module, and let N be an S-module. Prove that FeS(M ⊗RN) ∼= FeR(M)⊗RFeS(N), and
that with this identification, (u⊗ v)q = uq ⊗ vq for u ∈M and v ∈ N .

2. Let R be a Noetherian ring and I a nilpotent ideal. Suppose that I has a filtration
I = I1 ⊇ I2 ⊇ · · · ⊇ In = 0 such that It/It+1 is (R/I)-free for 1 ≤ i ≤ n− 1.

(a) Show that x ∈ R is a nonzerodivisor if and only if it is a nonzerodivisor on R/I, in
which case I/xI ↪→ R/xR and there is a corresponding filtration of I/xI given by the
images if the It in which the factors are the modules (R/xR)⊗R (It/It+1).

(b) Prove that R is Cohen-Macaulay if and only if R/I is Cohen-Macaulay.

3. (a) Let R be a Noetherian ring and P a height 0 prime ideal of R. Show that we can
localize at one element c ∈ R − P such that Rc is Cohen-Macaulay if and only if (R/P )c
is Cohen-Macaulay. [Show that we may reduce to the case where P is the only minimal
prime. Consider a filtration of P by ideals Pi such that P = P1, Pi/Pi+1 is killed by P ,
and Pn = 0 for some n. (If Pn = 0, we may take Pi = P i. Alternatively, we may take
Pi = AnnPP

n−i.) Localize at one element c such that all of the factors Pi/Pi+1 are Rc
free. The “if” direction was done in class.]

(b) Let R be a local ring that is a homorphic image of a Cohen-Macaulay ring. Prove that
the Cohen-Macaulay locus in R is open.

4. Let R ↪→ S be a module-finite extension of Noetherian domains of prime characteristic
p > 0. Let N ⊆ M be R-modules and let u ∈ M . Show that if 1 ⊗ u ∈ 〈S ⊗R N〉∗S⊗RM
then u ∈ N∗M .

5. Let (R, m, K) be a complete one-dimensional local domain with fracR = L, and let
M be a finitely generated torsion free R-module. Show that the type of L⊗RM , which is
the same as its vector space dimension over L (this is also the torsion-free rank of M) is
at most the type of M . (The latter may be described as the K-vectcor space dimension of
M/xM , where x ∈ m is a parameter, or as the K-vector space dimension of Ext1

R(K, M).)

6. Let R be either an excellent ring or a local ring that is a homomorphic image of a
Gorenstein ring. Prove that the locus where R is Cohen-Macaulay of type at most t is
open. In particular, prove that the locus where R is Gorenstein is open.
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Math 711: Lecture of November 9, 2007

We note the following fact from field theory:

Proposition. Let K be a field of prime characteristic p > 0, let L be a separable algebraic
extension of K, and let F be a purely inseparable algebraic extension of K. Then the map
F⊗KL to the compositum L[F ] (which may be formed within a perfect closure or algebraic
closure of L) such that a⊗ b 7→ ab is an isomorphism.

Proof. The map is certainly onto. It suffices to show that F ⊗K L is a field: every element
has a q th power in L, and so if the ring is reduced it must be a field, and the injectivity
of the map follows. L is a direct limit of finite separable algebraic extensions of K, and
so there is no loss of generality in assuming that the L is fnite over K. The result now
follows from the second Corollary on p. 4 of the Lecture Notes from September 19, or the
argument given at the bottom of p. 6 of the Lecture Notes from October 19. �

This fact is referred to as the linear disjointness of separable and purely inseparable
field extensions.

In consequence:

Corollary. Let L be a separable algebraic extension of K, a field of prime characteristic
p > 0. Then for every q = pe, L[K1/q] = L1/q.

Proof. We need to show that every element of L has a q th root in L[K1/q]. Since L
is a directed union of finite separable algebraic extensions of K, it suffices to prove the
result when L is a finite separable algebraic field extension of K. Let [L : K] = d. The
field extension K1/q ⊆ L1/q is isomorphic with the field extension K ⊆ L. Consequently,
[L1/q : K1/q] = d also. Since K1/q ⊆ L[K1/q] ⊆ L1/q, to complete the proof it suffices to
show that [L[K1/q] : K1/q] = d as well. But L[K1/q] ∼= K1/q ⊗K L, and so its dimension as
a K1/q-vector space is the same as the dimension of L as a K-vector space, which is d. �

We next prove:

Proposition. Let R be module-finite, torsion-free, and generically étale over a regular
domain A of prime characteristic p > 0.

(a) R is reduced.

(b) For every q, then map A1/q⊗AR→ R[A1/q] is an isomorphism. Likewise, A∞⊗AR→
R[A∞] is an isomorphism.

(c) For every q, R[A1/q] is faithfully flat over R. Moreover, R[A∞] is faithfully flat over
R.
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Proof. Let K = frac (A). Then K ⊗A R =
∏h
i=1 Li, where every Li is a finite separable

algebraic extension of K.

(a) Since R is torsion-free as an A-module, R ⊆ K ⊗A R =
∏h
i=1 Li, from which the

result follows.

(b) We have an obvious surjection A1/q ⊗A R � R[A1/q]. Since R is torsion-free over
A, each nonzero element a ∈ A is a nonzerodivisor on R. Since A1/q is A-flat, this remains
true when we apply A1/q ⊗A . It follows that A1/q ⊗A R is a torsion-free A-module.
Hence, we need only check that the map is injective after applying K ⊗A : if there is a

kernel, it will not be killed. The left hand side becomes K1/q⊗K
∏h
i=1 Li and the right hand

side becomes
∏h
i=1 Li[K1/q]. The map is the product of the maps K1/q ⊗ Li → Li[K1/q],

each of which is an isomorphism by the Proposition at the top of p. 1.

(c) This is immediate from part (b), since A1/q is faithfully flat over A for every q: this
is equivalent to the flatness of F e : A→ A. Since A∞ is the directed union of the A1/q, it
is likewise flat over A, and since it is purely inseparable over A, it is faithfully flat. Hence,
R[A∞] is faithfully flat over R as well, by part (b). �

Theorem. Let R be module-finite, torsion-free, and generically étale over a regular do-
main A of prime characteristic p > 0. Then there exist nonzero elements c ∈ A such that
cR1/p ⊆ R[A1/p]. For such an element c, we have that c2R1/q ⊆ R[A1/q] for all q, and,
hence, also that c2R∞ ⊆ R[A∞].

Proof. Consider the inclusion R[A1/p] ⊆ R1/p, which is a module finite extension: even
A1/p ⊆ R1/p is module-finite, because it is isomorphic with A ⊆ R. If we apply K ⊗A ,

on the left hand side R becomes
∏h
i=1 Li and A1/p becomes K1/p. Hence, the left hand

side becomes

(

h∏
i=1

Li)[K1/p] ∼=
h∏
i=1

Li[K1/p] =

h∏
i=1

L1/p
i

by the Corollary on p. 1, and the right hand side also becomes
∏h
i=1 L

1/p
i . Hence, if we

take a finite set of generators for R1/p as an R[A1/p]-module, each generator is multiplied
into R[A1/p] by an element ci ∈ A◦. The product c of the ci is the required element.

Now suppose c ∈ A◦ is such that cR∞ ⊆ R[∞]. Let

ce = c1+ 1
p+···+ 1

pe

and note that
ce+1 = cc1/pe

for e ≥ 1. We shall show by induction on e that ceR
1/q ⊆ R[A1/q] for every e ∈ N. Note

that c0 = c, and this base case is given. Now suppose that ceR
1/q ⊆ R[A1/q]. Taking p th

roots, we have that c
1/p
e R1/pq ⊆ R1/p[A1/pq]. We multiply both sides by c to obtain

ce+1R
1/pq = cc1/pe R1/pq ⊆ cR1/p[A1/pq] ⊆ R[A1/p][A1/pq] = R[A1/pq],
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as required.

Since

1 +
1

p
+ · · ·+ 1

pe
≤ 1 +

1

2
+ · · ·+ 1

2e
< 2,

c2 is a multiple of ce in A1/q and in R[A1/q], and the stated result follows. �

Also note:

Lemma. Let R be module-finite, torsion-free, and generically étale over a domain A.

(a) If A ↪→ B is flat, injective homomorphism of domains, then B ⊗A R is module-finite,
torsion-free and generically étale over B.

In particular, if K → L is a field extension and F is an étale extension of K, then
L ⊗K F is an étale extension of L.

(b) With the same hypothesis as in the first assertion in part (a), if c ∈ R is such that
cR∞ ⊆ R[A∞], then c(B ⊗A R)∞ ⊆ (B ⊗A R)[B∞].

(c) If q is a minimal prime of R, then q does not meet A and A ↪→ R/q is again module-
finite, torsion-free, and generically étale over A.

Proof. (a) We prove the second statement first. Since F is a product of finite separable
algebraic extensions of K, we reduce at once to the case where F is a finite separable
algebraic field extension of K, and then F ∼= K[x]/(g), where x is an indeterminate and g
is an irreducible monic polynomial of positive degree over K whose roots in an algebraic
closure of K are mutually distinct. Let g = g1 · · · gs be the factorization of g into monic
irreducible polynomials over L. These are mutually distinct, and any two generate the
unit ideal. Hence, by the Chinese Remainder Theorem,

L ⊗K F ∼= L[x]/(g) ∼=
s∏
j=1

L[x]/(gj),

and every Lj [x]/gj) is a finite separable algebraic extension of L.

It is obvious that B ⊗A R is module-finite over A. By the Lemma on the first page of
the Lecture Notes from October 12, the fact that R is module-finite and torsion-free over
A implies that we have an embedding of R ↪→ A⊕h for some h. Because B is A-flat, we
have injection B ⊗A R ↪→ B⊕h, and so B ⊗A R is torsion-free over B. The fact that the
condition of being generically étale is preserved is immediate from the result of the first
paragraph above, with K = frac (A), L = frac (B), and F = K ⊗A R.

(b) Every element of B ⊗A R)1/q ∼= B1/q ⊗A1/q R1/q is a sum of elements of the form
b1/q ⊗ r1/q, while c(b1/q ⊗ r1/q) = b1/q ⊗ cr1/q. Since cr1/q ∈ R[A∞], it follows that
c(B ⊗A R)1/q ⊆ (B ⊗A R)[A∞][B1/q] ⊆ (B ⊗A R)[B∞].

(c) q cannot meet A◦ because R is torsion-free over A. Thus, q corresponds to one of
the primes of the generic fiber K ⊗A R, which is a product of finite algebraic separable
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field extensions of K. It follows that K ⊗A (R/p) is one of these finite algebraic separable
field extensions. �

We can now prove the result on test elements, which we state again.

Theorem. Let R be module-finite, torsion-free, and generically étale over a regular do-
main A. Let c ∈ R◦ be any element such that cR∞ ⊆ R[A∞]. Then c is a completely
stable big test element for R.

Proof. Let Q be any prime ideal of R, and let P be its contraction to A. Then AP → RP
satisfies the same hypothesis by parts (a) and (b) of the Lemma on p. 3, and so we may
assume that A is local and that Q is a maximal ideal of R. We may now apply B ⊗A ,

where B = Â. By the same Lemma, the hypotheses are preserved. B becomes a product of
complete local rings, one of which is the completion of RQ. The hypotheses hold for each
factor, and so we may assume without loss of generality that (A, m, K)→ (R, fracm, L)
is a local map of complete local rings as well. Now suppose that H ⊆ G are R-modules
and u ∈ H∗G. We may assume, as usual, that G is free. (This is not necessary, but may
help to make the argument more transparent.) We are not assuming, however, that G or
H is finitely generated.

We know that u ∈ H∗G. Hence, there is an element r of R◦, such that ruq
′ ∈ H [q′]

for all q′ � 0. Since r ∈ R◦, dim (R/rR) < dim (R). Since R/rR is a module finite
extension of A/(rR ∩ A), we must have that dim (A/(rR ∩ A) < dim (A), and it follows

that rR ∩ A 6= (0), i.e., that r has a nonzero multiple a ∈ A. Then auq
′ ∈ H [q′] for all

q′ � 0. We may take q′ th roots and obtain a1/q′ ∈ R1/q′H for all q′ � 0. We are using
the notation R1/q′H for the expansion of H to R1/q′ ⊗RG, i.e., for the image of R1/q′ ⊗H
to R1/q′ ⊗R G.

Let ord denote any valuation on A with values in Z that is nonnegative on A and
positive on m. Then ord extends uniquely to a valuattion on A∞ with values in Z[1/p]

such that ord (b1/q
′
) = (1/q′)ord (b) for all b ∈ A◦ and q′.

To complete the argument, we shall prove the following:

(#) Suppose that {δn}n is asequence of elements of A∞ − {0} such that δnu ∈ R∞H
for all n and ord (δn)→ 0 as n→∞. Then cuq ∈ H [q] for all q, and so u ∈ H∗G.

This not only proves that c is a big test element, it also gives a new characterization of
tight closure which is stated as a Corollary of this proof in the sequel.

Moreover, we will have proved that c is a completely stable big test element in every
completed local ring of R, and so it will follow that c is a completely stable big test element
for R.

If the statement (#) is false, fix q such that cuq /∈ H [q]. For every n, we have

δnu ∈ R∞H
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and, hence,
δqnu

q ∈ R∞H [q].

Let S = R[A∞], which we know is flat over R. We multiply by c ∈ R to obtain δqn(cuq) ∈
SH [q], i.e., that

δqn ∈ SH [q] :S cu
q = (H [q] :R cu

q)S,

by the second statement in part (a) of the Lemma on p. 1 of the Lecture Notes from
October 29 and the flatness of S over R. Since cuq /∈ H [q], H [q] :R cu

q is a proper ideal J
of R, amd so δqn ∈ JR[A∞] for all n. Now J is contained in some maximal ideal M of R.
M contains a minimal prime q of R. By part (c) of the Lemma on p. 3, A injects into R,
where R is module-finite domain extension of A generically étale over A, and m = JR is
a proper ideal of R. We can map R[A∞] onto R[A∞] Then for all n, δqn ∈ mR[A∞] ∩A∞.
Let d denote the torsion-free rank of R over A. By the Lemma at the bottom of p. 5 of
the Lecture Notes from November 7, we have that

q ord (δn) = ord (δqn) ≥ 1

d!

for all n, and so

ord δn ≥
1

qd!

for all n. Since q and d are both fixed and n → ∞, this contradicts the assumption that
ord (δn)→ 0 as n→∞. �

Remark. The Theorem also holds when the regular ring A is not assumed to be a domain,
if the hypothesis that R be torsion-free over A is taken to mean that every element of A◦

is a nonzero divisor on R, and the condition that R be generically étale over A is taken to
mean that Rp is étale over Ap for every minimal prime p of A. In this case, A is a finite
product of regular domains, there is a corresponding product decomposition of R, and
each factor of R is module-finite, torsion-free, and generically étale over the corresponding
factor of A. The result follows at once from the results for the individual factors. �

In the course of the proof of the Theorem we have demonstrated the following:

Corollary. Let (A, m, K) be a complete regular local ring, let R be module-finite, torsion-
free and generically étale over A, and let ord by a Z-valued valuation on A nonnegative
on A and positive on m. Extend ord to a Z[1/p]-valued valuation on A∞. Let N ⊆M by
R-modules and let u ∈M . Then the following two conditions are equivalent:

(1) u ∈ N∗M .

(2) There exists an infinite sequence of elements {δn}n of A∞−{0} such that ord (δn)→ 0
as n→∞ and for all n, δn ⊗ u is in the image of R∞ ⊗R N in R∞ ⊗RM . �

This result is surprising: in the standard definition of tight closure, the δn are all q th
roots of a single element c. Here, they are permitted to be entirely unrelated. We shall
soon prove a better result in this direction, in which the multipliers are allowed to be

arbitrary elements of R+ whose orders with respect to a valuation are approaching 0.
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Math 711: Lecture of November 12, 2007

Before proceeding further with our treatment of test elements, we note the following
consequence of the theory of approximately Gorenstein rings. We shall need similar split-
ting results in the proof of the generalization, stated in the first Theorem on p. 2, of the
Corollary near the bottom of p. 5 of the Lecture Notes from November 9.

Theorem. Let R be a weakly F-regular ring. Then R is a direct summand of every
module-finite extension ring S. Moreover, if R is a complete local ring as well, R is a

direct summand of R+. In particular, these results hold when R is regular.

Proof. Both weak F-regularity and the issue of whether R → S splits are local on the
maximal ideals of R. Therefore, we may assume that (R, m, K) is local. Since R is
approximately Gorenstein, there is a descending chain {It}t of m-primary irreducible ideals
cofinal with the powers of m. By the splitting criterion in the Theorem at bottom of p. 4

and top of p. 5 of the Lecture Notes from October 24, R is a direct summand of S (or R+

in case R is complete local) if and only if It is contracted for all t. In fact, ItS ∩ R ⊆ I∗t
by the Theorem near the bottom of p. 1 of the Lecture Notes of October 12, and, by
hypothesis, I∗t = It. �

It is an open question whether a locally excellent Noetherian domain R of prime char-
acteristic p > 0 is weakly F-regular if and only if (∗) R is a direct summand of every
module-finite extension ring. The issue is local on the maximal ideals of R, and reduces to
the excellent local case. By the main result of [K. E. Smith, Tight Closure of Parameter
Ideals, Inventiones Math. 115 (1994) 41–60], the tight closure of an ideal generated by
part of a system of parameters is the same as its plus closure. From this result, it is easy
to see that (∗) implies that R is F-rational. In the Gorenstein case, F-rational is equivalent
to F-regular, so that the equivalence of the two conditions holds in the locally excellent
Gorenstein case. We shall prove Smith’s result that tight closure is the same as plus clo-
sure for parameter ideals. The argument depends on the use of local cohomology, and
also utiliuzes general Néron desingularization. We shall also need the main result of [M.
Hochster and C. Huneke, Infinite integral extensions and big Cohen-Macaulay algebras,

Annals of Math. bf 135 (1992) 53–89], that if R is an excellent local domain, then R+

is a big Cohen-Macaulay algebra over R. We shall prove this using a recent idea method
of Huneke and Lyubeznik: cf. [C. Huneke and G. Lyubeznik, Absolute integral closure in
positive characteristic, Advances in Math. 210 (2007) 498–504].

Our next immediate goal is to prove a strengthened version of the Corollary on p. 5 of
the Lecture Notes from November 9. First note that if A is a regular local ring, we can
choose a Z-valued valuation ord that is nonnegative on A and positive on m. For example,
if a 6= 0 we can let ord (a) be the largest integer k such that a ∈ mk. We thus have an
inclusion A ⊆ V where V is a Noetherian discrete valuation ring. Now assume that A is
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complete, and complete V as well. That is, we have a local injection A ↪→ V . We also

have an injection A+ ↪→ V +

For every module-finite extension domain R of A, where we think of R as a subring of

A+, we may form V [R] within V +. V [R] is a complete local domain of dimension one that

contains V . Its normalization, which we may form within V +, is a complete local normal
domain of dimension one, and is therefore a discrete valuation ring VR. The generator of
the maximal ideal of V is a unit times a power of the generator of the maximal ideal of
VR. Hence, ord extends to a valuation on R with values in the abelian group generated

by
1

h
, where h is the order of the generator of the maximal ideal of V in VR. Since A+

is the union of all of these rings R, ord extends to a Q-valued valuation on R+ that is

nonnegative on R+ and postive on the maximal ideal of R+.

If R is any complete local domain, we can represent R as a module-finite extension of
a complete regular local ring A. Hence, we can choose a complete discrete valuation ring
VR and a local injection R → VR, and extend the corresponding Z-valued valuation to a

Q-valued valuation that is nonnegative on R+ and positive on the maximal ideal of R+.

Theorem (valuation test for tight closure). Let (R, m, K) be a complete local do-

main of prime characteristic p > 0 and let ord be a Q-valued valuation on R+ that is

nonnegative on R+ and positive on the maximal ideal of R+. Let N ⊆ M be arbitary
R-modules and u ∈M . Then the following two conditions are equivalent:

(1) u ∈ N∗M .

(2) There exists a sequence {vn} of elements of R+ − {0} such that ord (vn) → 0 as

n→∞ and vn ⊗ u is in the image of R+ ⊗R N in R+ ⊗RM for all n.

We need several preliminary results in order to prove this.

The following generalization of colon-capturing can be further generalized in several
ways. We only give a version sufficient for our needs here.

Theorem. Let (R, m, K) be a reduced excellent local ring of prime characteristic p > 0.
Let x1, . . . , xk ∈ m be part of a system of parameters modulo every minimal prime of R.
Let a1, . . . , ak, b1, . . . , bk ∈ N, and assume that ai < bi for all i. Then

(xb11 , . . . , x
bk
k )∗ :R x

a1
1 · · · x

ak
k = (xb1−a1

1 , . . . , xbi−aik )∗.

Proof. Let di = bi − ai. It is easy to see that each xdii multiplies xa1
1 · · · x

ak
k into

(xb11 , . . . , x
bk
k ) ⊆ (xb11 , . . . , x

bk
k )∗,

since di + ai = bi for every i. But if I is tightly closed, so is any ideal of the form I :R y.
(This is equivalent to the statement that if 0 is tightly closed in R/I, then it is also tightly
closed in the smaller module y(R/I) ∼= R/(I :R y).) Since

(xd1
1 , . . . , x

d
k) ⊆ (xb11 , . . . , x

bk
k )∗ :R x

a1
1 · · · x

ak
k ,
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we also have

(xd1
1 , . . . , x

dk
k )∗ ⊆ (xb11 , . . . , x

bk
k )∗ :R x

a1
1 · · · x

ak
k

Thus, it suffices to prove the opposite inclusion. By induction on the number of ai that
are not 0, we reduce at once to the case where only one of the ai is not 0, because, quite
generally,

I :R (yz) = (I :R y) :R z.

By symmetry, we may assume that only ak 6= 0. We write xk = x, ak = a, bk = b

and dk = d. Let J = (xb11 , . . . , x
bk−1

k−1 ). Suppose xau ∈ (J + xbR)∗. Let c ∈ R◦ be a

test element. Then cxqauq ∈ J [q] + xqbR for all q � 0, and for such q, we can write
cxqauq = jq + xqbrq, where jq ∈ J [q] and rq ∈ R. Then xqa(cuq − rqxqd) ∈ J∗, and by

the form of colon-capturing already established, we have that cuq − rqxqd ∈ (J [q])∗, and,
hence,

c2uq − crqxqd ∈ J [q].

Consequently,

c2uq ∈ J [q] + xqdR = (J + xdR)q

for all q � 0, and so u ∈ (J + xdR)∗, as required. �

Theorem. Let (A, m, K) be a complete regular local ring of characteristic p and let ord

be a Q-valued valuation nonnegative on A+, and positive on the maximal ideal of A+.

Let v ∈ A+−{0} be an element such that ord (v) is strictly smaller than the order of any

element of m (it suffices to check the generators of m). Then the map A→ A+ such that

1 7→ v splits, i.e., there is A-linear map θ : A+ → A such that θ(v) = 1.

Proof. Let x1, . . . , xn be minimal generators of m. Since A is complete and Gorenstein, it
suffices, by the Theorem at the top of p. 3 of the Lecture Notes from October 24 to check
that for all t,

xt1 · · ·xtnv /∈ (xt+1
1 , . . . , xt+1

n )A+.

Suppose that

xt1 · · ·xtnv =

n∑
i=1

six
t+!
i .

Let S = A[v, s1, . . . , si]. In S we have

v ∈ (xt+1
1 , . . . , xt+1

n )S :S x
t
1 · · · xtk,

and so v ∈
(
(x1, . . . , xn)S

)∗
, by the preceding Theorem on colon-capturing. But then v is

in the integral closure of (x1, . . . , xn)S, and this contradicts ord (v) < mini ord (xi). �
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Theorem. Let (R, m, K) be a complete local domain of prime characteristic p > 0 and let
N ⊆M be R-modules (not necessarily finitely generated). Let u ∈M . Then the following
conditions are equivalent:

(1) u ∈ N∗M .

(2) There exist a fixed integer s ∈ N and arbitrarily large integers q such that N [q] :R u
q

meets R−ms.

(3) There exist a fixed integer s ∈ N such that N [q] :R u
q meets R−ms for all q.

The following two conditons are also equivalent:

(1′) u /∈ N∗M .

(2′) For all s, N [q] :R u
q ⊆ ms for all q � 0.

Proof. Let Jq = (N [q])∗ :R uq, where (N [q])∗ = (N [q])∗Fe(M). Then the sequence of ideals

Jq is descending. To see this, suppose that r ∈ Jpq. Then rupq ∈ (N [pq])∗. Let c be a big
test element for R. Then for all q′ � 0,

crq
′
upqq

′
∈ N [pqq′],

from which we have c(ruq)pq
′ ∈ (N [q])[pq′] since rpq” is a multiple of rq

′
. This shows that

ruq ∈ (N [q])∗ as well, and so Jpq ⊆ Jq for every q.

Let J =
⋂
q Jq. We shall show that whether J 6= (0) or J = (0) governs whether u /∈ N∗M

or u ∈ N∗M .

If J 6= 0 let d ∈ J − {0}. Then duq ∈ (N [q])∗ for all q, and then (cd)uq ∈ N [q] for all q,
and so u ∈ N∗M .

If J = (0), then by Chevalley’s Lemma (see p. 6. of the Lecture Notes from October
24) we have that for all s the ideal J :[q]⊆ ms for al q � 0, and it follows as well that
N [q] :R u

q ⊆ ms for all q � 0,

If u ∈ J we have that c ∈ N [q] :R u
q for all q. (3) obviously holds, since we can choose s

such that c /∈ ms, and (3)⇒ (2). Now suppose (2) holds. If u /∈ N∗M , we have contradicted
the result of the preceding paragraph. Hence, (1), (2), and (3) are equivalent.

The equivalence of (1′) and (2′) is the contrapositive of the equivalence of (1) and
(2). �
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Math 711: Lecture of November 14, 2007

We continue to develop the preliminary results needed to prove the Theorem stated on
p. 2 of the Lecture Notes from November 12. Only one more is needed.

Theorem. Let (R, m, K) be a complete local domain of prime characteristic p > 0, and

let ord be a Q-valued valuation nonnegative R+ and positive on the maximal ideal of R+.

Then there exist an integer s ≥ 1 and a positive rational number δ such that if v ∈ R+

and ord (v) < δ, then there exists an R-linear map φ : R+ → R such that φ(v) ∈ R−ms.

Proof. R is module-finite over a complete regular local ring A. Note that we may identify

R+ = A+. Let δ be the minimum value of ord on a finite set of generators of the maximal
mA of A.

The module ω = HomA(R, A) is a finitely generated A-module, but also has the struc-
ture of an R-module. Evidently, it is a finitely generated R-module. ω is torsion-free over
A since its elements are functions with values in A. Since every nonzero element of R has
a nonzero multiple in A, it is also torsion-free over R. Let K = frac (A). Then K⊗AR = L
is the fraction field of R: let h be its degree, i.e., the torsion-free rank of R over A. Then

K ⊗A ω ∼= HomK(K ⊗A R, K) ∼= HomcK(L,K)

also has dimension d as a K-vector space. Hence, as an L-vector space, it must have
dimension 1. Therefore, ω is a rank one torsion-free R-module, and so there exists an
isomorphism ω ∼= J ⊆ R, where J is a nonzero ideal of R. Now mAR is primary to m, and
so mk ⊆ mAR for some k. We may apply the Artin-Rees Lemma to J ⊆ R to conclude
that

ms ∩ J = msR ∩ J ⊆ mkJ

for s sufficiently large. Choose one such value of s. Then

ms ∩ J ⊆ mkJ ⊆ (mAR)J = mAJ.

We shall prove that the desired conclusion holds for the values of δ and s that we have

chosen. We may think of R+ as A+ and apply the Theorem on p. 3 of the Lecture Notes

from November 12 to choose an A-linear map θ : R+ → A such that θ(v) = 1. We then
have an induced map

HomA(R, R+)
θ∗−→ HomA(R, A)

which is R-linear, and hence a composite map

R+ µ−→ HomA(R, R+)
θ∗−→ HomA(R, A)

∼=−→ J
⊆−→ R
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where the first map µ is the map that takes u ∈ R+ to the map fu : R → R+ such
that fu(r) = ur for all r ∈ R. Note that µ is R-linear using the R-module structure on

HomA(R, R+) that comes from R, since r′u maps to fr′u and

fr′u(r) = r′ur = u(r′r) = fu(r′r) = (r′fu)(r).

Call the composite map φ.

We shall prove that φ has the required property. First note that (θ∗◦µ)(v) ∈ HomA(R, A)
is very special: its value on 1 is θ(v·1) = θ(v) = 1. Thus, it is a splitting of the inclusion map
A ↪→ R. But this means that (θ∗◦µ)(v) /∈ mAHom(R, A), for maps in mAHomA(R, A) can
only take on values that are in mA. It follows that φ(v) /∈ mAJ ⊆ R. Since ms∩J ⊆ mAJ ,
it also follows that φ(v) /∈ ms, as required. �

We are now ready to prove the first Theorem stated on p. 2 of the Lecture Notes from
November 12.

Proof of the valuation test for tight closure. We may assume without loss of generality
that M = G is free, that N = H ⊆ G, and that u ∈ G. We fix a basis for G, and identify

Fe(G) ∼= G. We identify H with its image 1 ⊗ H ⊆ R+ ⊗R G, and write R+H for

〈R+ ⊗R H〉 which we may think of as all R+-linear combinations of elements of H in

R+ ⊗R G. We shall simply write wg for w ⊗ g when w ∈ R+ and g ∈ G.

Suppose that we have vnu ∈ R+H for all n and ord (vn)→ 0. Choose s and δ as in the
preceding Theorem. Fix q, and choose n so large that ord (vn) < δ/q, so that ord (vqn) < δ.

Choose an R-linear map φ : R+ → R such that φ(vqn) ∈ R −ms. Then tensoring with

G yields an R-linear map R+ ⊗R G → G such that wg 7→ φ(w)g for every w ∈ R+ and
g ∈ G.

Since vnu ∈ R+H, we may apply Fe to obtain that

vqnu
q ∈ R+H [q].

We may now apply φ⊗ 1G and conclude that

φ(vqn)uq ∈ H [q],

where φ(vqn) ∈ R −ms. Hence, for every q, H [q] :R u
q meets R −ms. By the Theorem at

the top of p. 4 of the Lecture Notes from November 12, u ∈ H∗G, as required. �

Capturing normalizations using discriminants

Consider A→ R where A is a normal or possibly even regular Noetherian domain and
R is module-finite, torsion-free, and generically étale over A. In this situation, we know
that R is reduced. It has a normalization R′ in its total quotient ring T . Under these
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hypotheses, T may be identified with K⊗A R, which is a finite product of finite separable
algebraic field extensions L1× · · ·×Lh of K. R′ is the product of the normalizations R′i of
the domains Ri = R/pi obtained by killing a minimal prime pi of R. There is one minimal
prime for each Li, namely, the kernel of the composite homomorphism

R→ K⊗A R ∼=
h∏
i=1

Li � Li,

and Li is the fraction field of the domain Ri.

We want to develop methods of finding elements c ∈ R◦ that “capture” the normaliza-
tion R′ in the sense that cR′ ⊆ R. Moreover, we want a construction such that c continues
to have this property after a flat injective base change A ↪→ B of regular domains. We
shall see that whenever we have such an element c ∈ R◦, it is a big completely stable test
element.

There are two methods for constructing such elements c. One is to take c to be a
discriminant for R over A: we explain this idea in the immediate sequel. The other is to
use the Lipman-Sathaye Jacobian Theorem.

The use of discriminants is much more elementary, and we explore this method first.

Discussion: discriminants. Let A be a normal Noetherian domain and let R be a
module-finite torsion-free generically étale extension of A. Let K = frac (A) and

T = K ⊗A R ∼=
h∏
i=1

Li,

where the Li are finite separable algebraic field extensions of K. We first note that we
have a trace map TraceT /K : T → K that is K linear. Such a map is defined whenever T is
a K-algebra that is finite-dimensional as as K-vector space. The trace of λ ∈ T is defined
to be the trace of the linear transformation fλ : T → T that sends α 7→ λα. To calculate
the trace, one takes a basis for T over K, finds the matrix of multiplication by λ, and then
takes the sum of the diagonal entries of the matrix. The trace is independent of how one
chooses the K-basis for T . We summarize thes properties as follows.

Proposition. Let T be a K-algebra that is finite-dimensional as a K-vector space. Then
TraceT /K : T → K is a K-linear map.

If K′ is any field extension of K and T ′ = K′ ⊗K T , then

TraceT ′/K′ = 1K′ ⊗K TraceT /K,

i.e., if β ∈ K′ and λ ∈ T , then

TraceT ′/K′(β ⊗ λ) = β TraceT /K(λ).
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Proof. The previous discussion established the first statement, while the second statement
is a consequence of the following two observations. First, if θ1, . . . , θn is a basis for T over
K, then the images 1⊗θ1, . . . , 1⊗θn of these elements in K′⊗KT form a basis for K′⊗KT
over K′. Second, If the matrix for multiplication by λ with respect to the basis θ1, . . . , θn
is M, the matrix for multiplication by β ⊗ λ with respect to the basis 1⊗ θ1, . . . , 1⊗ θn
is βM, from which the stated result is immediate. �

Because A is normal, the restriction of the trace map to R takes values in A, not just
in K. One may argue as follows: a normal Noetherian domain is the intersecftion of the
discrete valuation domains V of the form AP ⊆ K, where P is a height one prime of A.
Thus, we may make a base change from A to such a ring V , and it suffices to prove the
result when A = V is a Noetherian discrete valuation ring. In this case, because R is
torsion-free, it is free, and we may choose a free basis for R over V . This will also be a
basis for L over K. If we compute trace using this basis, all entries of the matrix are in V ,
and so it is obvious that the trace is in V .

We note that when T =
∏h
i=1 Li is a finite product of finite separable algebraic field

extensions, the map B : T ×T → K that sends (λ, λ′) 7→ TraceT /K(λλ′) is a nondegenerate
symmetric bilinear form. This is a well known characterization of separability of finite
algebraic field extensions if there is only one Li. See the Lecture Notes from December 3
from Math 614, Fall 2003, pp. 4–6. In the general case, choose a basis for each Li and use
the union as a basis for T . It follows at once that

TraceT /K(λ1, . . . , λh) =
h∑
i=1

TraceTi/K(λi),

since the matrix of multiplication by (λ1, . . . , λh) is the direct sum of the matrices of
multiplciation by the individual λi. To show non-degeneracy, consider a nonzero element
λ = (λ1, . . . , λh). Then some λi is not 0: by renumbering, we may assume that λ1 6= 0.
Since TraceL1/K yields a nondegenerate bilinear form on L1, we can choose λ′1 ∈ L1 such
that

TraceL1/K(λ′1λ1) 6= 0.

Let λ′ ∈ L be the element (λ′1, 0, . . . , 0). Then

TraceT /K(λ′λ) = TraceL1/K(λ′1λ1) 6= 0.

By a discriminant for R over A we mean an element of A obtained as follows: choose
θ = θ1, . . . , θn ∈ R whose images in L are a basis for T over K, and let

D = Dθ = det
(
TraceL/K(θiθj)

)
.

Since every θiθj ∈ R, the matrix has entries in A, and the determinant is in A. Since the
corresponding bilinear form is nondegenerate, D is a nonzero element of A. The following
result is very easy.
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Proposition. Let R be module-finite, torsion-free, and generically étale over a normal
Noetherian domain A. Let A ↪→ B be a flat injective map of normal Noetherian domains.

(a) B → B ⊗A R is module-finite, torsion-free, and generically étale.

(b) If the images of θ1, . . . , θn ∈ R in K⊗AR are a K basis for K⊗AR, then their images
θ′ = 1⊗ θ1, . . . , 1⊗ θn in B⊗AR are a basis for frac (B)⊗B (B⊗AR) over frac (B).

(c) The image of the discriminant Dθ in B is the discriminant Dθ′ of the basis θ′ =
1⊗ θ1, . . . , 1⊗ θn for the extension B → B ⊗A R.

Proof. We have already proved part (a): this is part (a) of the Lemma on p. 3 of the
Lecture Notes from November 9. Part (b) is obvious, and part (c) follows from part (b),
the definition of the discriminant, and the second statement of the Proposition on p. 3. �

The key property of discriminants for us is:

Theorem. Let R be module-finite, torsion-free, and generically étale over a normal Noe-
therian doman A with fraction field K. Let θ1, . . . , θn ∈ R give a K-vector space basis for
T = K ⊗A R. Let R′ denote the normalization of R in its total quotient ring A ⊗A R.
Then Dθ, the discriminant of θ1, . . . , θn, is a nonzero element of A such that DθR

′ ⊆ R.
In consequence, R′ is module-finite over R.

Proof. Let s ∈ R′. Then s ∈ K ⊗R, and so we can write s uniquely in the form

(#) s =
n∑
j=1

αjθj ,

where the αi ∈ K. For every θi we have that

θis =
n∑
j=1

αiθiθj .

Let Trace denote TraceT /K, and apply the K-linear operator Trace to both sides of the
equation. Since θis is integral over R, its trace ai is in A. This gives n equations

ai =
n∑
j=1

αjTrace(θiθj), 1 ≤ i ≤ n.

LetM denote the matrix
(
Trace(θiθj)

)
, which has entries in A. Then these equations give

a matrix equation  a1
...
an

 =M

 α1
...
αn

 .
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Let adj(M) denote the classical adjoint of M, the transpose of the matrix of cofactors.
Then adj (M)M = DIn where D = det(M) = Dθ, and In is the size n identity matrix.
Note that adj(M) has entries in A. ThenDα1

...
Dαn

 = DIn

 α1
...
αn

 = adj (M)M

 α1
...
αn

 = adj (M)

 a1
...
an

 ,

and the rightmost column matrix clearly has entries in A. Hence, every Dαi ∈ A, and it
follows from the displayed formula (#) on the preceding page that Ds ∈ R. Since s ∈ R′
was arbitrary, we have proved that DR′ ⊆ R, as requried.

The final statement follows because R′ ∼= DR′ ⊆ R as A-modules, and so R′ is finitely
generated over A and, hence, over R. �
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Math 711: Lecture of November 16, 2007

We next observe:

Lemma. Let A be a regular Noetherian domain of prime characteristic p > 0, and let
A → R be module-finite, torsion-free, and generically étale. Then for every q, R1/q is
contained in the normalization of R[A1/q].

Proof. Fix q = pe, and let
S = R[A1/q] ∼= A1/q ⊗A R.

Since every element of R1/q has its q th power in R ⊆ S, the extension is integral. Let
K = frac (A). We can write

K ⊗A R =
h∏
i=1

Li

where every Li is finite separable algebraic extension field frac (A) = K. Then

K ⊗A R1/q = K1/q ⊗A1/q R1/q,

since R1/q contains A1/q and inverting every element of A − {0} makes every element of
A1/q − {0} invertible. Hence,

K ⊗A R1/q ∼=
h∏
i=1

L1/q
i .

This is the total quotient ring of R1/q. On the other hand,

K ⊗A (A1/q ⊗A R) ∼= K1/q ⊗K (K ⊗A R) ∼= K1/q ⊗K
h∏
i=1

Li ∼=
h∏
i=1

(K1/q ⊗K Li) ∼=
h∏
i=1

L1/q
i

where the rightmost isomorphism follows from the Corollary on p. 1 of the Lecture Notes
from November 9. Thus, R1/q is contained in the total quotient ring of R[A1/q]. �

We can now show that discriminants yield test elements.

Theorem. Let A be a regular Noetherian domain of prime characteristic p > 0, and
let A → R be module-finite, torsion-free, and generically étale. Let K = frac (A), let
θ = θ1, . . . , θn be elements of R that form a basis for T = K ⊗K R, and let D = Dθ ∈ A◦
be the discriminant. Then D is a competely stable big test element for R.

Moreover, if A → B is an injective flat homomorphism of regular domains, then the
image of D in B ⊗A R is a completely stable big test element for B ⊗A R.
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Proof. It follows from the Lemma above and the Theorem on p. 5 of the Lecture Notes
of November 14 that DR1/q ⊆ R[A1/q] for all q, Hence, by the Theorem on p. 4 of the
Lecture Notes of November 9, D is a completely stable big test element for R.

The final statement now follows because, by parts (a) and (b) of the Lemma on p. 3 of
the Lecture Notes from November 9 and the Proposition at the top of p. 5 of the Lecture
Notes from November 14, the hypotheses are preserved by the base change from A to
B. �

We next want to show that the Lipman-Sathaye Jacobian Theorem produces test ele-
ments in an entirely similar way: it also provides elements that “capture” the normalization
of an extension of A and are stable under suitable base change.

Test elements using the Lipman-Sathaye Jacobian Theorem

Until further notice, A denotes a Noetherian domain with fraction field K, and R denotes
an algebra essentially of finite type over A such that R is torsion-free and generically étale
over A, by which we mean that T = K⊗R S is a finite product of finite separable algebraic
field extensions of K. Note that T may also be described as the total quotient ring of S.
We shall denote by R′ the integral closure of R in T .

We shall write JR/A for the Jacobian ideal of R over A. If R is a finitely generated
A-algebra, so that we may think of R as

A[X1, . . . , Xn]/(f1, . . . , fh),

then JR/A is the ideal of R generated by the images of the size n minors of the Jacobian
matrix (∂fj/∂xi) under the surjection A[X] → R. This turns out to be independent of
the presentation, as we shall show below. Moreover, if u ∈ R, then JRu/A = JR/ARu.
From this one sees that when R is essentially of finite type over A and one defines JS/R
by choosing a finitely generated subalgebra R0 of R such that R = W−1R0 for some
multiplicative system W of R0, if one takes JR/A to be JR0/AR, then JR/A is independent
of the choices made. We shall consider the definition in greater detail later. We use
Jacobian ideals to state the following result, which we shall use without proof here.

Theorem (Lipman-Sathaye Jacobian theorem). Let A be regular domain with frac-
tion field K and let R be an extension algebra essentially of finite type over A such that
R is torsion-free and generically étale over A. Let T = K ⊗A R and let R′ be the integral
closure1 of R in L. If θ ∈ T is such that θJR′/A ⊆ R′ then θJR/AR′ ⊆ R.

In particular, we may take θ = 1. Thus, if c ∈ JR/A, then cR′ ⊆ R.

In other words, elements of JR/A “capture” the integral closure of R: as in the case
of discriminants, this will enable us to prove the existence of completely stable big test
elements.

1One can show that R′ is module-finite over R.



205

In constructing test elements, we shall only use the Theorem in the case where R
is module-finite over A as well. In this case, we already know from our treatment of
discriminants that R′ is module-finite over R. The result that R′ is module-finite over R
in the more general situation is considerably more difficult: see the Theorem at the bottom
of p. 1 of the Lecture Notes from October 4 from Math 711, Fall 2006.

The Lipman-Sathaye Theorem is proved in [J. Lipman and A. Sathaye, Jacobian ideals
and a theorem of Briançon-Skoda, Michigan Math. J. 28 (1981) 199–222], although it is
assumed that R is a domain in that paper. The argument works without essential change
in the generality stated here. See also [M. Hochster, Presentation depth and the Lipman-
Sathaye Jacobian theorem, Homology, Homotopy and Applications (International Press,
Cambridge, MA) 4 (2002) 295–314] for this and further generalizations. As mentioned
earlier, the proof of the Jacobian Theorem is given in the Lecture Notes from Math 711,
Fall 2006, especially the Lecture Notes from September 25, 27, and 29, as well as the
Lectures of October 2, 4, 6, 9, 11, and 13.

We note that the hypotheses of the Lipman-Sathaye are stable under flat base change.

Proposition. Let R be essentially of finite type, torsion-free, and generically étale over
the regular domain A, and let A ↪→ B be a flat injective homomorphism to a regular domain
B. Then B ⊗A R is essentially of finite type, torsion-free, and generically étale over B.

Morever, J(B⊗AR)/B = JR/A(B ⊗A R).

Proof. The proof that B⊗AR is essentially of finite type over B is completely straightfor-
ward. The proof that the extension remains generically étale is the same as in the Lemma
on p. 3 of the Lecture Notes from Novermber 9. The proof that B⊗AR is torsion-free over
B needs to be modified slightly. R is a directed union of finitely generated torsion-free
A-modules N . Each such N is a submodule of a finitely generated free A-module. Hence,
each B ⊗A N is a submodule of a finitely generated free B-module. Since B ⊗A R is the
directed union of these, it is torsion-free over B.

The proof of the last statement reduces at once to the case where R is finitely generated
over A. Suppose that

R = A[x1, . . . , xn]/(f1, . . . , fm).

Then
B ⊗A R ∼= B[x1, . . . , xn]/(f1, . . . , fm)

(the ideal in the denominator now an ideal of a larger ring, but it has the same generators).
The result is now immediate form the definition. �
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Why the Jacobian ideal is well-defined

We next want to explain why the Jacobian ideal is well-defined. We assume first that R
is finitely generated over A. Suppose that R = A[x1, . . . , xn]/I. To establish independence
of the presentation we first show that the Jacobian ideal is independent of the choice of
generators for the ideal I. Obviously, it can only increase as we use more generators. By
enlarging the set of generators still further we may assume that the new generators are
obtained from the orginal ones by operations of two kinds: multiplying one of the original
generators by an element of the ring, or adding two of the original generators together. Let
us denote by ∇f the column vector consisting of the partial derivatives of f with respect to
the variables. Since ∇(gf) = g∇f+f∇g and the image of a generator f in R is 0, it follows
that the image of ∇(gf) in R is the same as the image of g∇f when f ∈ I. Therefore, the
minors formed using ∇(gf) as a column are multiples of corresponding minors using ∇f
instead, once we take images in R. Since ∇(f1 + f2) = ∇f1 +∇f2, minors formed using
∇(f1 + f2) as a column are sums of minors from the original matrix. Thus, independence
from the choice of generators of I follows.

Now consider two different sets of generators for R over A. We may compare the
Jacobian ideals obtained from each with that obtained from their union. This, it suffices
to check that the Jacobian ideal does not change when we enlarge the set of generators
f1, . . . , fs of the algebra. By induction, it suffices to consider what happens when we
increase the number of generators by one. If the new generator is f = fs+1 then we may
choose a polynomial h ∈ A[X1, . . . , Xs] such that f = h(f1, . . . , fs), and if g1, . . . , gh
are generators of the original ideal then g1, . . . , gh, Xs+1−h(X1, . . . , Xs) give generators
of the new ideal. Both dimensions of the Jacobian matrix increase by one: the original
matrix is in the upper left corner, and the new bottom row is (0 0 . . . 0 1). The result is
then immediate from

Lemma. Consider an h + 1 by s + 1 matrix M over a ring R such that the last row is
(0 0 . . . 0 u), where u is a unit of R. Let M0 be the h by s matrix in the upper left corner
of M obtained by omitting the last row and the last column. Then Is(M0) = Is+1(M).

Proof. If we expand a size s+ 1 minor with respect to its last column, we get an R-linear
combination of size s minors of M0. Therefore, Is+1(M) ⊆ Is(M0). To prove the other
inclusion, consider any s by s submatrix ∆0 ofM0. We get an s+ 1 by s+ 1 submatrix ∆
ofM by using as well the last row ofM and the appropriate entries from the last column
of M. If we calculate det(∆) by expanding with respect to the last row, we get, up to
sign, udet(∆0). This shows that Is(M0) ⊆ Is+1(M). �
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This completes the argument that the Jacobian ideal JR/A is independent of the pre-
sentation of R over A.

We next want to observe what happens to the Jacobian ideal when we localize S at one
(or, equivalently, at finitely many) elements. Consider what happens when we localize at
u ∈ R, where u is the image of h(X1, . . . , Xs) ∈ A[X1, . . . , Xs], where we have chosen an
A-algebra surjection A[X1, . . . , Xs] � R. We may use 1/u as an additional generator, and
introduce a new variable Xs+1 that maps to 1/u. We only need one additional equation,
Xs+1h(X1, . . . , Xs) − 1, as a generator. The original Jacobian matrix is in the upper
left corner of the new Jacobian matrix, and the new bottom row consists of all zeroes
except for the last entry, which is h(X1, . . . , Xs). Since the image of this entry is u and
so invertible in R[u−1], the Lemma above shows that the new Jacobian ideal is generated
by the original Jacobian ideal. We have proved:

Proposition. If R is a finitely presented A-algebra and S is a localization of R at one
(or finitely many) elements, JS/A = JR/AS. �

If R is essentially of finite type over A, and R0 ⊆ R, R1 ⊆ R are two finitely generated
A-subalgebras such that R = W−1

0 R0 and R = W−1
1 R1, then JR0/AR = JR1/AR. Thus,

we may define JR/A to be JR0/AR for any choice of such an R0.

To see why JRi/AR does not depend on the choice of i = 0, 1, first note that each
generator of R1 is in (R0)w for some w ∈ W1. Hence, we can choose w ∈ W1 such that
R1 ⊆ (R0)w. Replacing R0 by (R0)w does not affect JR0/AR, by the Proposition above.
Therefore, we can assume that R1 ⊆ R0. Similarly, we can choose y in W1 such that each
generator of R0 is in (R1)y. Then (R0)y = (R1)y and replacing Ri by (Ri)y does not affect
JRi/AR. �

|

We now obtain the existence of test elements.

Theorem (existence of test elements via the Lipman-Sathaye theorem). Let R be
a domain module-finite and generically smooth over the regular domain A of characteristic
p. Then every element c of J = J (R/A) is such that cR1/q ⊆ A1/q[R] for all q, and, in
particular, cR∞ ⊆ A∞[R]. Thus, if c ∈ J ∩R◦, it is a completely stable big test element.

Moreover, if A ↪→ B is a flat injective homomorphism of A into a regular domain B,
the image of c is a completely stable big test element for B ⊗A R.

Proof. Since A1/q[R] ∼= A1/q ⊗A R, the image of c is in J (A1/q[R]/A1/q), and so the
Lipman-Sathaye theorem implies that c multiplies the normalization S′ of S = A1/q[R]
into A1/q[R]. But R1/q ⊆ S′ by the Lemma on p. 1. �
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Geometrically reduced K-algebras

Let K be a field, and let R be a K-algebra. For the purpose of this discussion, we do
not need to impose any finiteness condition on R.

Proposition. The following conditions on R are equivalent.

(1) For every finite purely inseparable extension L of K, L⊗K R is reduced.

(2) K∞ ⊗K R is reduced, where K∞ is the perfect closure of K.

(3) K ⊗K R is reduced, where K is an algebraic closure of K.

(4) For some field L containing K∞, L⊗K R is reduced.

(5) For every field extension L of K, L⊗K R is reduced.

Proof. If K ⊆ L ⊆ L′ are field extensions, then L′ ⊗K R = L′ ⊗L (L ⊗K R) is free and,
in particular, faithfully flat over R. Hence, L⊗K R ⊆ L′ ⊗K R, and L⊗K R is reduced if
L′ ⊗K R is reduced. Hence (5) ⇒ (3) ⇒ (2) ⇒ (4) ⇒ (2) ⇒ (1), while (1) ⇒ (2) because
K∞⊗K R is the directed union of the rings L⊗K R as L runs though the subfields of K∞

that are finite algebraic over R. Thus, it will suffice to show that (2)⇒ (5).

For a fixed field extension L of K, L⊗K R is reduced if and only if L⊗K R0 is reduced
for every finitely generated K-subalgebra R0 of R. Hence, to prove the equivalence of (2)
and (5), it suffices to consider the case where R is finitely generated over K. In either case,
R itself is reduced. Let W be the multiplicative system of all nonzerodivisors in R. These
are also nonzerodivisors in L ⊗K R, and W−1(L ⊗K R) ∼= L ⊗K (W−1R). Therefore, in
proving the equivalence of (2) and (5), we may replace R by its total quotient ring, which
is a product of fields finitely generated as fields over K. Thus, we may assume without
loss of generality that R is a field finitely generated over K. In this case, L ⊗K R is a
zero-dimensional Noetherian ring, and so L⊗KR is reduced if and only if it is regular, and
the result follows from our treatment of geometric regularity: see page 2 of the Lecture
Notes from September 19. �

We define R to be geometrically reduced over K if it satisfies the equivalent conditions
of this Proposition. If R is essentially of finite type over K or if R is Noetherian and L is
a finitely generated field extension of K, L⊗K R will be Noetherian. Our main interest is
in the case where R is finitely generated over K.

|
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The Jacobian ideal of a finitely generated K-algebra

Let R be a finitely generated K-algebra such that the quotient by every minimal prime
has dimension d. Suppose that R = K[x1, . . . , xn]/I. Then we define the Jacobian ideal
JR/K as the ideal generated by the images of the n−d size minors of the matrix

(
∂fi/∂xj)

in R. This ideal is independent of the choice of presentation: the argument is the same
as in the treatment of JR/A on p. 3. If K is algebraically closed, this ideal defines the
singular locus. We give the argument.

Theorem. Let K be an algebraically closed field. Let R be a finitely generated K-algebra
such that the quotient by every minimal prime has dimension d. For a given prime ideal
P of R, RP is regular if and only if P does not contain JR/K .

Proof. We first consider the case where P = m is maximal. By adjusting the constant
terms, we can pick generators for R that are in m. Then we can write R = K[x1, . . . , xn]/I
and assume without loss of generality that m = (x1, . . . , xn)R. Let f1, . . . , fm generate
I. Then Rm is regular if and only if Rm/m

2Rm has K-vector space dimension d. Since
R/m2 is already local, R/m2 ∼= Rm/m

2Rm, and m/m2 ∼= mRm/m
2Rm. The K-vector

space dimension of m/m2 is n− r, where r is the K-vector space dimension of the K-span
V of the linear forms that occur in the fj : in fact, m/m2 is the quotient of Kx1 + · · ·+Kxn
by V . The K-vector space V is isomorphic with the column space of the matrix(

∂fj
∂xi

)
|(0,... ,0) ,

where the partial derivative entries are evaluated at the origin: the j th column corresponds
to the vector of coefficients of the linear form occurring in fj . Thus, the ring Rm is regular
if and only if the evaluated matrix has rank n− d: the rank cannot be larger than n− d,
since Rm has dimension d. This will be the case if and only if some n− d size minor does
not vanish at the origin, and this is equivalent to the statement that JR/K is not contained
in m.

In the general case, if P does not contain J , let f ∈ J − P . Choose a maximal ideal of
Rf that contains PRf . The quotient Rf/PRf is K, and so this maximal ideal corresponds
to a maximal ideal m of R containing P and not containing f . Since Rm is regular, so is
its localization RP .

Now suppose that P contains JR/K but RP is regular. Then PRP is generated by
height (P ) elements, and we can choose f ∈ R−P such that PRf is generated by height (P )
elements. Choose a maximal ideal of (R/P )f such that the localization at this maximal
ideal is regular. This will correspond to a maximal ideal m of R containing P and not f .
Since PRm is generated by height (P ) elements (f is inverted in this ring) and m(R/P )m
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is generated by by dim
(
(R/P )m

)
elements, mRm is generated by dim (Rm) elements, and

so Rm is regular. But this contradicts JR/K ⊆ P ⊆ m. �

|

We want to use the Lipman-Sathaye Theorem to produce specific test elements for
finitely generated algebras over a field. We need some preliminary results.

Lemma. Let X → Y be a morphism of affine varities over an algebraically closed field
K such that the image of X is dense in Y . Then the image of every Zariski dense open
subset U of X contains a dense Zariski open subset of Y .

Proof. The morphism corresponds to a map of domains finitely generated over K. If the
map has a kernel P , the image of the morphism would be contained in V(P ), a proper
closed set. Hence, we have an injection of domains A→ B, and B is finitely generated over
K and, hence, over A. U contains an open subset of X of the form X−V(f), where f 6= 0,
and so we might as well assume that U = X −V(f). This amounts to replacing B by Bf ,
which is still finitely generated over A. After localizing A at one element a ∈ A − {0},
we have that Ba is a module-finite extension of a polynomial ring C over Aa, by Noether
normalization over a domain. Then Spec (Ba) → Spec (C) and Spec (C) → Spec (Aa) are
both surjective, so that the image of the morphism contains Y − V(a). �

Theorem. Let K be an algebraically closed field and R a finitely generated K-algebra of
dimension d. Let x = x1, . . . , xn be generators of R over K, and let GL(n,K) act so that
γ replaces these generators by the entries of the column

γ

 x1
...
xn

 .

We use γ(x) to denote this sequence of n elements of R, which also generates R over K,
and use γi(x) to denote its i th entry.

(a) There is a dense Zariski open subset U of GL(n, K) such that for all γ ∈ U , R is
module-finite over the ring generated over K by γi1(x), . . . , γid(x) for every choice
of d mutually distinct indices i1, . . . , id in {1, . . . , n}. Moreover, for every choice of
the d elements, γi1(x), . . . , γid(x) are algebraically independent over K.

(b) Assume in, addition, that R is reduced, and that the quotient of R by every minimal
prime has dimension d. Then there is a dense Zariski open subset U0 of GL(n, K)
such that, in addition, R is torsion-free and generically étale over the polynomial ring
K[γi1(x), . . . , γid(x)] for every choice of i1, . . . , id in {1, . . . , n}.

Proof. (a) This is a variant of Noether normalization. It suffices to show that there is
a dense Zariski open subset such that R is module-finite over K[γ1(x), . . . , γd(x)]. By
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symmetry, we obtain a dense open subset for each of the

(
n

d

)
possible choices of i1, . . . , id,

and we may intersect them all.

In this paragraph we allow K to be any infinite field, not necessarily algebraically closed.
Note that if n > d there is a nontrivial polynomial relation F (X1, . . . , Xn) on x1, . . . , xn
over K, i.e., F (x1, . . . , xn) = 0. Let y = y1, . . . , yn be the image of x under γ. Then

δ = γ−1 maps y to x, and the elements y have the relation F
(
δ(Y )

)
= 0. Let h = deg(F )

and let G be the degree h > 0 form in F . The key point is that for δ in a dense open set
of GL(n, K) (γ = δ−1 will also vary in a dense open set), G

(
δ(Y )

)
will be monic in every

Yi. To see this for, for example, Yn, it suffices to see that G does not become 0 when we
specialize all the Yj for j < n to 0. But this yields a power of Yn times the value of G
on the n th column of δ, and the polynomial G obviously vanishes only on a proper closed
subset of GL(n, K). Hence, for every j, yj is integral over the subring generated by the
other yi.

From now on we assume that K itself is algebraically closed. If we enlarge K by

adjoining n2 algebraically indeterminates t
(1)
ij , and let K1 = K(t

(1)
ij : i, j), we may carry

through the procedure of the preceding paragraph over K1, letting the matrix
(
t
(1)
ij

)−1
act,

so that δ =
(
t
(1)
ij

)
. It is clear that G does not vanish on the n th column of δ, which is a

matrix of indeterminates. Let y(1) denote the image of x.

If n− 1 > d, we continue in this way, next adjoining (n− 1)2 indeterminates t
(2)
ij to K1

to produce a field K2, and letting the matrix
(
t
(2)
ij

)−1
act. This matrix is in GL(n−1, K2),

but we view it as an element of GL(n, K2) by taking its direct sum with a 1× 1 identity
matrix. Thus, it acts on y(1) to produce a new sequence of generators y(2) for K2 ⊗K R

over K2. We now have that y
(2)
n−1 and y

(2)
n are integral over the ring K2[y

(2)
1 , . . . , y

(2)
n−2].

We iterate this procedure to produce a sequence of fields Kh and sets of generators
y(h), 1 ≤ h ≤ n − d. Once Kh and y(h) have been constructed so that Kh ⊗K R is

integral over K[yh1 , . . . , y
h
n−h], we construct the next field and set of generators as follows.

Enlarge the field Kh to Kh+1 by introducing (n − h + 1)2 new indeterminates t
(h+1)
ij ,

view the matrix
(
t
(h+1)
ij

)−1
, which is a priori in GL(n − h + 1, Kh+1), as an element of

GL(n, Kh+1) by taking its direct sum with an identity matrix of size h − 1, and let its
inverse act on y(h) to produce y(h+1). We will then have that Kh+1 ⊗K R is integral

over Kh+1[y
(h+1)
1 , . . . , y

(h+1)
n−h−1]. Thus, we eventually construct a field Kn−d such that

Kn−d⊗KR is module-finite over Kn−d[y
(n−d)
1 , . . . , y

(n−d)
d ]. Let K[t] denote the polynomial

ring in all the indeterimates t
(h)
ij that we have adjoined to K in forming Kn−d. Thus, Kn−d

is the fraction field K(t) of the polynomial ring K[t]. It follows that each of the original

generators xj satisfies a monic polynomial with coefficients in K(t)[y
(n−d)
1 , . . . , y

(n−d)
d ].

We can choose a single polynomial H = H(t) ∈ K[t]−{0} that is a common denominator
for all of the coefficients in K(t) occurring in these monic equations of integral dependence

for the various xj , and such that all the y
(h)
i are elements of K[t][1/H] ⊗K R. It follows
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that K[t][1/H]⊗K R is module-finite over K[t][1/H][y
(n−d)
1 , . . . , y

(n−d)
d ].

We want to specialize the variables t
(h)
ij to elements of K in such a way that, first, the

matrices
(
t
(h)
ij

)
specialize to invertible matrices, and, second, H does not vanish. Such

values of t
(h)
ij correspond to points over K of the open set in

G = GL(n− d+ 1, K)× · · · ×GL(n, K)

where H does not vanish. (Here, each GL(s, K) for s ≤ n is thought of a subgroup of
GL(n, K) by identifying η ∈ GL(s, K) with the direct sum of η and a size n− s identity
matrix.) Call this point (γ(n−d+1), . . . , γ(n)). For any such point, the result of specializing

all of the t
(h)
ij in the equations of integral dependence for the xj shows that R is module-

finite over the ring generated over K by the images of yn−d1 , . . . , yn−dd . These images are

the first d coordinates of γ(x), where γ = γ(n−d+1) · · · γ(n). The map of G→ GL(n, K) is
surjective. By the preceding Lemma, the image of G−V(H) contains a dense open subset
U of GL(n, K), which completes the proof of part (a).

(b) Since R has pure dimension d, when it is represented as a finite module over a
polynomial ring of dimension d, it must be torsion-free: if there were a torsion element u,
Ru would be a submodule of R of dimension strictly smaller than d, and R would have an
associated prime Q with dim (R/Q) < d. But R is reduced, so that all associated primes
are minimal, and these have quotients of dimension d.

To show that there is an open set U0 such that R is generically étale over every
K[γi1(x), . . . , γid(x)] it suffices to show this for R/p for each minimal prime p of R:
we can then intersect the finitely many open sets for the various minimal primes. Thus,
we may assume that R is a domain of dimension d.

We want each d element subset of the image of x1, . . . , xn, call it y1, . . . , yn, to be
such that R is generically étale over every polynomial ring in the d elements of the chosen
subset. It suffices to get such an open set for y1, . . . , yd: by symmetry, there will be
an open set of every d element subset of y1, . . . , yn, and we may intersect these. This
condition is precisely that y1, . . . , yd be a separating transcendence basis for the fraction
field L of R over K. The fact that K is algebraically closed implies that L has some
separating transcendence basis over K, by the Theorem on p. 4 of the Lecture Notes from
September 19. There are now several ways to argue. To give a specific one, we may
apply, for example, Theorem 5.10 (d) of [E. Kunz, Kähler differentials, Friedr. Vieweg
& Sohn, Braunschweig, 1986], which asserts that a necessary and sufficient condition for
y1, . . . , yd to be a separating transcendence basis is that the differentials of these elements
dy1, . . . , dyd in the module of Kähler differentials ΩL/K ∼= Ld be a basis for ΩL/K as an
L-vector space. Since the differentials of the original variables span ΩL/K over L, it is clear
that the set of elements of GL(n, K) for which all d element subsets of the new variables
have differentials that span ΩL/K contains a Zariski dense open set. �
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Theorem (test elements for affine K-algebras via the Lipman-Sathaye theo-
rem). Let K be a field of characteristic p and let R be a finitely generated d-dimensional
geometrically reduced K-algebra such that the quotient by every minimal prime has di-
mension d. Then JR/K is generated by its intersection with R◦, and the elements in this
intersection are completely stable big test elements for R.

Proof. Let L be an algebraic closure of K. From the definition, JR/K expands to give
J(L⊗KR)/L. Since L⊗K R is reduced, its localization at any minimal prime is a field and,
in particular, is regular. It follows that JR/K expands to an ideal of L ⊗K R that is not
contained in any minimal prime of L⊗KR, and so JR/K cannot be contained in a minimal
prime of R. It follows from the Lemma on p. 10 of the Lecture Notes from September 17
that it is generated by its intersection with R◦. To show that the specified elements are
completely stable big test elements, it suffices to prove this after making a base change to
L ⊗K R, by part (b) of the Proposition at the bottom of p. 8 of the Lecture Notes from
September 17. Hence, we may assume without loss of generality that K is algebraically
closed.

The calculation of the Jacobian ideal is independent of the choice of indeterminates. We
are therefore free to make a linear change of coordinates, which corresponds to choosing

an element of G = GL(n,K) ⊆ Kn2

to act on the one-forms of K[x1, . . . , xn]. For a dense

Zariski open set U of G ⊆ Kn2

, if we make a change of coordinates corresponding to an
element γ ∈ U ⊆ G then, for every choice of d of the (new) indeterminates, if A denotes
the K-subalgebra of R that these d new indeterminates generate, by parts (a) and (b) of
the Theorem above, the two conditions listed below will hold:

(1) R is module-finite over A (and the d chosen indeterminates will then, per force, be
algebraically independent) and

(2) R is torsion-free and generically étale over A.

Now suppose that a suitable change of coordinates has been made, and, as above, let A
be the ring generated over K by some set of d of the elements xi. Then the n−d size minors
of (∂fj/∂xi) involving the n−d columns of (∂fj/∂xi) that correspond to the variables not
chosen as generators of A precisely generate JR/A. The result is now immediate from the
Theorem on p. 8: as we vary the set of d variables, so that A varies as well, every n − d
size minor occurs as a generator of some J (R/A) �
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Math 711: Lecture of November 19, 2007

|

Summary of Local Cohomology Theory

The following material and more was discussed in seminar but not in class. We give a
summary here.

Let I be an ideal of a Noetherian ring R and let M be any R-module, not necessarily
finitely generated. We define

Hj
I (M) = lim

−→ t ExtjR(R/It, M).

This is called the i th local cohomology module of M with support in I.

H0
I (M) = lim

−→ t HomR(R/It, M)

which may be identified with
⋃
t AnnMI

t ⊆ M . Every element of Hj
I (M) is killed by a

power of I. Evidently, if M is injective then Hj
I (M) = 0 for j ≥ 1. By a taking a direct

limit over t of long exact sequences for Ext, we see that if

0→M ′ →M →M ′′ → 0

is exact there is a functorial long exact sequence for local cohomology:

0→ H0
I (M ′)→ H0

I (M)→ H0
I (M ′′)→ · · · → Hj

I (M ′)→ Hj
I (M)→ Hj

I (M ′′)→ · · · .

It follows that Hj
I ( ) is the j th right derived functor of H0

I ( ). In the definition we may
use instead of the ideals It any decreasing sequence of ideals cofinal with the powers of I.
It follows that if I and J have the same radical, then Hi

I(M) ∼= Hi
J(M) for all i.

Theorem. Let M be a finitely generated module over the Noetherian ring R, and I and
ideal of R. Then Hi

I(M) 6= 0 for some i if and only if IM 6= M , in which case the least
integer i such that Hi

I(M) 6= 0 is depthIM .

Proof. IM = M iff I + AnnRM = R, and every element of every Hj
I (M) is killed by some

power IN of I and by AnnRM : their sum must be the unit ideal, and so all the local
cohomology vanishes in this case.
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Now suppose that IM 6= M , so that the depth d is a well-defined integer in N. We use
induction on d. If d = 0, some nonzero element of M is killed by I, and so H0

I (M) 6= 0. If
d > 0 choose an element x ∈ I that is not a zerodivisor on M , and consider the long exact
sequence for local cohomology arising from the short exact sequence

0 −→M
x−→M −→M/xM → 0.

From the induction hypothesis, Hj
I (M/xM) = 0 for j < d − 1 and Hd−1

I (M/xM) 6= 0.
The long exact sequence therefore yields the injectivity of the map

Hj+1
I (M)

x−→ Hj+1
I (M)

for j < d− 1. But every element of Hj+1
I (M) is killed by a power of I and, in particular,

by a power of x. This implies that Hj+1
I (M) = 0 for j < d− 1. Since

0 = Hd−1
I (M)→ Hd−1

I (M/xM)→ Hd
I (M)

is exact, Hd−1
I (M/xM), which we know from the induction hypothesis is not 0, injects

into Hd
I (M). �

If A• and B• are two right complexes of R-modules with differentials d and d′, the total
tensor product is the right complex whose n th term is⊕

i+j=n

Ai ⊗R Bj

and whose differential d′′ is such that d′′(ai ⊗ bj) = d(ai)⊗ bj + (−1)iai ⊗ d′(bj).

Now let f = f1, . . . , fn generate an ideal with the same radical as I. Let C•(f∞; R)
denote the total tensor product of the complexes 0→ R→ Rfj → 0, which gives a complex
of flat R-modules:

0→ R→
⊕
j

Rfj →
⊕
j1<j2

Rfj1fj2 → · · · →
⊕

j1<···<jt

Rfj1 ···fjt → · · · → Rf1···fn → 0.

The differential restricted to Rg where g = fj1 · · · fjt takes u to the direct sum of its images,
each with a certain sign, in the rings Rgfjt+1

, where jt+1 is distinct from j1, . . . , jt.

Let

C•(f∞; M) = C•(f∞; R)⊗RM,

which looks like this:

0→M →
⊕
j

Mfj →
⊕
j1<j2

Mfj1fj2
→ · · · →

⊕
j1<···<jt

Mfj1 ···fjt → · · · →Mf1···fn → 0.
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We temporarily denote the cohomology of this complex as H•f (M). It turns out to be the

same, functorially, as H•I (M). We shall not give a complete argument here but we note
several key points. First,

H0
f (M) = Ker (M →

⊕
j

Mfj )

is the same as the submodule of M consisting of all elements killed by a power of fj for
every j, and this is easily seen to be the same as H0

I (M). Second, by tensoring a short
exact sequence of modules

0→M ′ →M →M ′′ → 0

with the complex C•(f∞; R) we get a short exact sequence of complexes. This leads to a
functorial long exact sequence for H•f ( ). These two facts imply an isomorphism of the

functors H•I ( ) and H•f ( ) provided that we can show that Hjf (M) = 0 for j ≥ 1 when

M is injective. We indicate how the argument goes, but we shall assume some basic facts
about the structure of injective modules over Noetherian rings.

First note that if one has a map R→ S and an S-module M , then if g is the image of f
in S, we have H•f (M) = H•g (M). This has an important consequence for local cohomology

once we establish that the two theories are the same: see the Corollary below.

Every injective module over a Noetherian ringR is a direct sum of injective hulls E(R/P )
for various primes P . E(R/P ) is the same as the injective hull of the reisdue class field of
the local ring RP . This, we may assume without loss of generality that (R, m, K) is local
and that M is the injective hull of K. This enables to reduce to the case where M has
finite length over R, and then, using the long exact sequence, to the case where M = K,
since M has a finite filtration such that all the factors are K. Thus, we may assume that
M = K. The complex C•(f∞; R) is then a tensor product of complexs of the the form
0 → R → R → 0 and 0 → R → 0 → 0. If we have only the latter the complex has no
terms in higher degree, while if there are some of the former we get a cohomogical Koszul
complex K•(g1, . . . , gn;K) where at least one gj 6= 0. But then (g1, . . . , gn)K = K kills
all the Koszul cohomology. Thus, we get vanishing of higher cohomology in either case. It
follows that H•f ( ) and H•I ( ) are isomorphic functors, and we drop the first notation,

except in the proof of the Corollary just below.

Corollary. If R → S is a homomorphism of Noetherian rings, M is an S-module, and

RM denotes M viewed as an R-module via restriction of scalars, then for every ideal I of
R, H•I (RM) ∼= H•IS(M).

Proof. Let f1, . . . , fn generate I, and let g1, . . . , gn be the images of these elements in S:
they generate IS. Then we have

H•I (RM) ∼= H•f (RM) ∼= H•g(M) ∼= H•IS(M) . �
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We note that the complex 0 → R → Rf → 0 is isomorphic to the direct limit of the
cohomological Koszul complexesK•(f t;R), where the maps between consecutive complexes
are given by the identity on the degree 0 copy of R and by multiplication by f on the degree
1 copy of R — note the commutativity of the diagram:

0 −−−−→ R
ft+1

−−−−→ R −−−−→ 0

id

x xf
0 −−−−→ R

ft−−−−→ R −−−−→ 0

.

Tensoring these Koszul complexes together as f runs through f1, . . . , fn, we see that

C•(f∞; M) = lim
−→ tK•(f t1, . . . , f tn; M).

Hence, whenever f1, . . . , fn generate I up to radicals, taking cohomology yields

H•I (M) ∼= lim
−→ tH

•(f t1, . . . , f
t
n; M).

When R is a local ring of Krull dimension d and x1, . . . , xd is a system of parameters,
this yields

Hd
m(R) = lim

−→ tR/(x
t
1, . . . , x

t
d)R.

Likiewise, for every R-module M ,

Hd
m(M) = lim

−→ tM/(xt1, . . . , x
t
d)M

∼= Hd
m(R)⊗RM.

We next recall that when (R, m, K) is a complete local ring and E = ER(K) is an
injective hull of the residue class field (this means that K ⊆ E, where E is injective, and
every nonzero submodule of E meets K), there is duality between modules with ACC
over R and modules with DCC: if M satsifies one of the chain conditions then M∨ =
HomR(M, E) satisfies the other, and the canonical map M →M∨∨ is an isomorphism in
either case. In particular, when R is complete local, the obvious map R → HomR(E,E)
is an isomorphism. An Artin local ring R with a one-dimensional socle is injective as a
module over itself, and, in this case, ER(K) = R. If R is Gorenstein and x1, . . . , xd is
a system of parameters, one has that each Rt = R/(xt1, . . . , x

t
d)R is Artin with a one-

dimensional socle, and one can show that in this case ER(K) ∼= Hd
M (R). When R is local

but not complete, if M has ACC then M∨ has DCC, and M∨∨ is canonically isomorphic

with M̂ . If M has DCC, M∨ is a module with ACC over R̂, and M∨∨ is canonically
isomorphic with M .

We can make use of this duality theory to gain a deeper underrstanding of the behavior
of local cohomology over a Gorenstein local ring.
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Theorem (local duality over Gorenstein rings). Let (R, m, K) be a Gorenstein local
ring of Krull dimension d, and let E = Hd

m(R), which is also an injective hull for K. Let

M be a finitely generated R-module. Then for every integer j, Hj
m(M) = Extd−jR (M, R)∨.

Proof. Let x1, . . . , xd be a system of parameters for R. In the Cohen-Macaulay case, the
local cohomology of R vanishes for i < d, and so C•(x∞;R), numbered backwards, is a flat
resolution of E. Thus,

Hj
m(M) ∼= TorRd−j(M, E).

Let G• be a projective resoultion of M by finitely generated projective R-modules. Then

Extd−jR (M, R)∨ ∼= Hd−j(HomR(G•, R), E
)

(since E is injective, HomR( , E) commutes with the calculation of cohomology). The
functor HomR

(
HomR( , R), E

)
is isomorphic with the functor ⊗ E when restricted

to finitely generated projective modules G. To see this, observe that for every G there is
an R-bilinear map G×E → HomR

(
HomR(G, R), E

)
that sends (g, u) (where g ∈ G and

u ∈ E) to the map whose value on f : G→ R is f(g)u. This map is an isomorphism when
G = R, and commutes with direct sum, so that it is also an isomorphism when G is finitely
generated and free, and, likewise, when G is a direct summand of a finitely generated free
module. But then

Extd−jR (M, R)∨ ∼= Hd−j(G• ⊗ E) ∼= TorRd−j(M, E),

which is ∼= Hj
m(M), as already observed. �

Corollary. Let M be a finitely generated module over a local ring (R, m, K). Then the
modules Hi

m(M) have DCC.

Proof. The issues are unchanged if we complete R and M . Then R is a homomorphic image
of a complete regular local ring, which is Gorenstein. The problem therefore reduces to the
case where the ring is Gorenstein. By local duality, Hi

m(M) is the dual of the Noetherian
module Extn−iR (M, R), where n = dim (R). �

|

|

The action of the Frobenius endomorphism on local cohomolgy

Let R be a ring of prime characteristic p > 0, and let I = (f1, . . . , fn)R. Consider the
complex C• = C•(f∞; R), which is

0→ R→
⊕
j

Rfj →
⊕
j1<j2

Rfj1fj2 → · · · →
⊕

j1<···<jt

Rfj1 ···fjt → · · · → Rf1···fn → 0.
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This complex is a direct sum of rings of the form Rg each of which has a Frobenius
endomorphism FRg : Rg → Rg. Given any homomorphism h : S → T of rings of prime
characteristic p > 0, there is a commutative diagram:

S
h−−−−→ T

FS

x xFT
S

h−−−−→ T

The commutativity of the diagram follows simply because h(s)p = h(sp) for all s ∈ S.
Since every Ci is a direct sum of R-algebras, each of which has a Frobenius endomor-
phism, collectively these endomorphism yield an endomorphism of Ci that stabilizes every
summand and is, at least, Z-linear. This gives an endomorphism of C• that commutes
with differentials δi : Ci → Ci+1 in the complex. The point is that the restriction of the
differential to a term Rg may be viewed as a map to a product of rings of the form Rgf .
Each component map is either h or −h, where h : Rg → Rgf is the natural localization
map, and is a ring homomorphism. The homomorphism h commutes with the actions of
the Frobenius endomorphisms, and it follows that −h does as well.

This yields an action of F on the complex and, consequently, on its cohomology, i.e.,
an action of F on the local cohomology modules Hi

I(R). It is not difficult to verify that
this action is independent of the choice of generators for I. This action of F is more than
Z-linear. It is easy to check that for all r ∈ R, F (ru) = rpF (u). This is, in fact, true for
the action on C• as well as for the action on H•I (R).

If R→ S is any ring homomorphism, there is an induced map of complexes

C•(f∞; R)→ C•(f∞; S).

It is immediate that the actions of F are compatible with the induced maps of local
cohomology, i.e., that the diagrams

Hi
I(R) −−−−→ Hi

I(S)

F

x xF
Hi
I(R) −−−−→ Hi

I(S)

commute.

|

We now want to use our understanding of local cohomology to prove the Theorem of
Huneke and Lyubeznik.

Discussion. We are primarily interested in studying R+ when (R, m, K) is a local do-
main that is a homomorphic image of a Gorenstein ring A. If M is the inverse image of
m in A, we may replace A by AM and so assume that A is local.
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Note, however, that when we take a module-finte extension domain of R, the ring that
we obtain is no longer local: it is only semilocal. Therefore, we shall frequently have the
hypothesis that R is a semilocal domain that is a module-finite extension of a homomorphic
image of a Gorenstein local ring.

Let (A, m, K) denote a Gorenstein local ring, p a prime ideal of this ring, and R a local
domain that is a module-finite extension of B = A/p. R is semilocal in this situation.
The maximal ideals of R are the same as the prime ideals m that lie over m/p, since R/m
is a module finite extension of B/(m ∩ B), and so R/m has dimension 0 if and only if
B/(m∩B) has dimension 0, which occurs only when m∩B is the maximal ideal m/p of B.
Note that since A is Gorenstein, it is Cohen-Macaulay, and therefore universally catenary.
Hence, so is R. The Jacobson radical A of R will be the same as the radical of mR.

By the dimension formula, which is stated on p. 3 of the Lecture Notes from September
18 for Math 711, Fall 2006, and proved in the Lecture Notes from September 20 from the
same course on pp. 3–5, we have that height (m) = height (m/p) for every maximal ideal
m of R: thus, the height of every maximal ideal is the same as dim (R) = dim (A/p).

We next observe the following fact:

Proposition. Let R be a domain and let W be a multiplicative system of R that does not
contain 0.

(a) If T is an extension domain of W−1R and u ∈ T is integral over W−1R, then there
exists w ∈W such that wu is integral over R.

(b) If T is module-finite (respectviely, integral) extension domain of R then there exists
a module-finite (respectively, integral) extension domain S of R within T such that
T = W−1S.

(c) If W−1(R+) is an absolute integral closure for W−1R, i.e., we may write W−1(R+) ∼=
(W−1R)+.

(d) If I is any ideal of R, I(W−1R)+ ∩W−1R = W−1(IR+ ∩R). That is, plus closure
commutes with localization.

Proof. (a) Consider an equation of integral dependence for u on T . We may multiply by
a common denominator w ∈W for the coefficients that occur to obtain an equation

wuk + r1u
k−1 + · · · + riu

k−i + · · · + rk−1u+ rk = 0,

where the ri ∈ R. Multiply by wk−1. The resulting equation can be rewritten as

(wu)k + r1(wu)k−1 + · · · + wi−1ri(wu)k−i + · · · + wk−2rk−1(wu) + wk−1rk = 0,

which shows that wu is integral over R, as required.

(b) If T is module-finite over R, choose a finite set of generators for T over R. In the
case where T is integral, choose an arbitrary set of generators for T over R. For each
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generator ti, choose wi ∈ W such that witi is integral over R. Let S be the extension of
R generated by all the witi.

(c) We have thatW−1R+ is integral overW−1R and so can be enlarged to a plus closure
T . But each element u ∈ T is integral over W−1R, and so has there exists w ∈W such thtat

wu is integral over R, which means that wu ∈ R+. But then u = w−1(wu) ∈ W−1R+,

and it follows that T = W−1R+.

(d) Note that ⊇ is obvious. Now suppose that u ∈ I(W−1R)+ = IW−1(R+) by part

(c). Then we can choose w ∈W such that wu ∈ IR+, and the result follows. �

Remark. Part (d) may be paraphrased as asserting that plus closure for ideals commutes
with arbitrary localization. I.e., (IW−1R)+ = W−1(I+). Here, whenever J is an ideal of

a domain S, J+ = (JS+) ∩ S.

Remark: plus closure for modules. If R is a domain we can define the plus closure of

N ⊆ M as the set of elements of M that are in 〈R+ ⊗R N〉 in R+ ⊗R M . It is easy to
check that the analogue of (d) holds for modules as well.

We are now ready to begin the proof of the following result.

Theorem (Huneke-Lyubeznik). Let R be a semilocal domain of prime characteristic
p > 0 that is a module-finite extension of a homomorphic image of a Gorenstein local ring
(A, m, K). Let A denote the Jacobson radical in R, which is the same as the radical of
mR. Let d be the Krull dimension of R. Then there is a module-finite extension domain S
of R such that for all i < d, the map Hi

mR(R)→ Hi
mS(S) is 0. If B denotes the Jacobson

radical of S, we may rephrase this by saying that Hi
A(R)→ Hi

B(S) is 0 for all i < d.

Proof. Let n denote the Krull dimension of the local Gorenstein ring (A, m, K). Since R
is a module-finite extension of A/p, we have that the height of p is n− d.

Recall from the discussion above that A (respectively, B) is the radical of mR (respec-
tively, mS). This justifies the rephrasing. We may think of the local cohomology modules
as Hi

m(R) and Hi
m(S).

It suffices to solve the problem for one value of i. The new ring S satisfies the same
hypotheses as R. We may therefore repeat the process d times, if needed, to obtain a
module-finite extension such that all local cohomology maps to 0: once it maps to 0 for a
given S, it also maps to 0 for any further module-finite extension. In the remainder of the
proof, i is fixed.

It follows from local duality over A that is suffices to choose a module-finite extension
S of R such that the map

(∗) Extn−iA (S, A)→ Extn−iA (R, A)

is 0, since the map of local cohomology is the dual of this map. Note that both of the
modules in (∗) are finitely generated as A-modules. We shall use induction on dim (R) to
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reduce to the case where the image of the map has finite length over A: we then prove a
theorem to handle that case. Let VS denote the image of the map.

Let P1, . . . , Ph denote the associated primes over A of the image of this map that are
not the maximal ideal of A. Note that as S is taken successively larger, the image VS
cannot increase. Also note that since since VS is a submodule of N = Extn−iA (R, A), any
associated prime of VS is an associated prime of N . We show that for each Pi, we can
choose a module-finite extension Si of R such that P is not an associated prime of VSi .
This will remain true when we enlarge Si further. By taking S so large that it contains
all the Si, we obtain VS which, if it is not 0, can only have the associated prime m. This
implies that VS has finite length over A, as required.

We write P for Pi. Let W = A − P . Then W−1R = RP is module-finite over the
Gorenstein local ring AP . Let P have height s in A, where s < n. By local duality over

AP , we have that the dual of Extn−iAP
(MP , AP ) is, functorially, H

s−(n−i)
PAP

(MP ) for every
finitely generated A-module M . Since i < d,

s− (n− i) < s− (n− d) = s− height (p) = s− height (pAP ) = dim (AP /pAP ).

By the induction hypothesis we can choose a module-finite extension T of RP such that

H
s−(n−i)
PAP

(T )→ H
s−(n−i)
PAP

(RP )

is 0. By part (b) of the Proposition on p. 7, we can choose a module-finite extension S of
R such that T = SP . Then we have the dual statement that

Extn−iAP
(SP , AP )→ NP

is 0, which shows that (VS)P = 0. But then P is not an associated prime of VS , as required.

Thus, we can choose a module-finite extension S of R such that VS has finite length
as an A-module. Taking duals, we find that the image of Hi

m(R) → Hi
m(S) has finite

length as an A-module, Since Frobenius acts on both of these local cohomology modules
so that the action is compatible with this map, it follows that the image W of the map is
stable under the action of Frobenius. Moreover, W is a finitely generated A-module, and,
consequently, a finitely generated S-module. It suffices to show that we can take a further
module-finite extension T of S so as to kill the image of W in Hi

m(T ). This follows from
the Theorem below. �

Theorem. Let I ⊆ S be an ideal of a Noetherian domain S of prime characteristic p > 0,
and let W be a finitely generated submodule of Hi

I(S) that is stable under the action of the
Frobenius endomorphism F . Then there is a module-finite extension T of S such that the
image of W in Hi

I(T ) is 0.

Notice that there is no restriction on i in this Theorem. We shall, in fact, prove a
somewhat stronger fact of this type.
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Math 711: Lecture of November 21, 2007

We are aiming to prove the Theorem stated at the bottom of the last page of the
Lecture Notes from November 19, which will complete the proof of the Huneke-Lyubeznik
Theorem. We first want to make an observation about local cohomology when the ring is
not Noetherian, and then we prove a Lemma that does most of the work.

Discussion. Let R be a ring that is not necessarily Noetherian and let I be an ideal of
R that is the radical of a finitely generated ideal. Let M be any R-module. We shall still
use the notation Hi

I(M) for

Hi
(
C•(f∞; M)

)
,

where f = f1, . . . , fn are elements of R that generate an ideal whose radical is the same
as the radical of I. Tht is, we are relaxing the restriction that the base ring be Noetherian.

Note that if R0 is any subring of R that is finitely generated over the prime ring and
contains f1, . . . , fn, then we may view M as an R0-module, and

Hi
(
C•(f∞; M)

) ∼= Hi
(f)R0

(M).

If g = g1, . . . , gs is another set of elements generating an ideal whose radical is the same
as Rad(I), then every fi has a power in (g1, . . . , gs)R, say

fhii =
s∑
j=1

rijgj

and every gj has a power in (f1, . . . , fn)R, say

g
kj
j =

n∑
i=1

r′jifi.

These equations will evidnetly hold in any subring R0 of R finitely generated over the
prime ring that is sufficiently large to contain f, g and all of the rij and r′ji. With such

a choice of R0, we see that Hi
(f)R0

(M) = Hi
(g)R0

(M) for all i. Thus, even when R is not

Noetherian, this cohomology is independent of the choice of f .

However, when R is not Noetherian, we do not have available the result that this is the
same cohomology theory one gets using Ext.

Notation: polynommial operators in the Frobenius endomorphism. Let R be
a ring of prime characteristic p > 0, and let G = G(Z) be a monic polynomial in one
indeterminate Z with coefficients in R, say

G = Ze + r1Z
e−1 + · · ·+ re−1Z + re.
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Then we may view

GF = F e + · · ·+ r1F
e−1 + · · ·+ re−1F + re1

as an operator on every R-algebra S whose value on s ∈ S is

sp
e

+ rsp
e−1

+ · · ·+ r1s
p + r0s.

GF acts on the complexes C•(f∞;S) just as F does: it stabilizes every component summand
Sg, and is value on u is

F e(u) + r1F
e−1(u) + · · ·+ re−1F (u) + r0u.

Both F and multiplication by an element r of R act on C•(f∞; S) so that:

(1) The action is Z-linear.

(2) The action stabilizes every component summand Sg, where g is a product fi1 · · · fih .

(3) The action commutes with the differential.

The operators on the complex with these three properties are closed under addition
and composition, from which it follows that GF is a Z-linear endomorphism of C•(f∞; S)
that stabilizes every component summand and commutes with the differential. Hence, this
operator also acts on the cohomology of the complex.

Lemma. Let S be a domain of prime characteristic p > 0 and f1, . . . , fn ∈ S. Let
I = (f1, . . . , fh)S. Let G = G(Z) be a monic polynomial in one indeterminate Z with
coefficients in S. Let u ∈ Hi

I(S) be such that GF kills u. Then S has a module-finite
extension domain T such that the image of u under the map Hi

I(S)→ Hi
I(T ) is 0.

Proof. Let v ∈ Ci(f∞; S) be a cycle that represents u. Then GF (v) is a coboundary, say
GF (v) = δ(w), where δ is the diffferential in the complex. Let w0 be one component of w:
it is an element of a ring of the form Sg. The equation

GF (Y )− w0 = 0

is monic in Y , and so has a solution in a module-finite extension domain of Sg. By part
(b) of the Lemma on p. 7 of the Lecture Notes from November 19, there is a module-finite
extension domain T0 of S such that this equation has a solution in (T0)g. We can find
such a module-finite extension for every component summand of C•(f∞; S). Since there
are only finitely many, we can find a module-finite extension T1 of S sufficiently large that
there is an element w′ of Ci−1(f∞; T1) such that GF (w′) = w. We then have that

GF (v) = δ(w) = δ
(
GF (w′)

)
= GF

(
δ(w′)

)
and so

GF
(
v − δ(w′)

)
= 0.
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It follows that every component of v − δ(w′) is a fraction in some (T1)g that satisfies a
monic polynomial over T1. Therefore, we may choose a module-finite extension T of T1

within its fraction field such that all components of v′ = v − δ(w′) are in T . It will now
suffice to show that v′ is a coboundary in Ci(f∞; T ).

Each component Tg of the complex C•(f∞; T ) contains a copy of T . These copies of T
form a subcomplex, and this subcomplex contains v′. It will therefore suffice to show that
this subcomplex is exact. But this subcomplex is the complex

C•(1∞; T )

where 1 denotes a string 1, 1, . . . , 1 of n elements all of which are 1. Hence, its cohomology
is H•T (T ), which is killed by T and, consequently, is 0. �

We now restate the Theorem we are trying to prove, in a slightly generalized form, and
give the argument. In the earlier version, R and S were the same.

Theorem. Let I ⊆ S be a finitely generated ideal of a domain S of prime characteristic
p > 0, let R ⊆ S be a Noetherian ring, and and let M be a finitely generated R-submodule
of Hi

I(S) that is stable under the action of the Frobenius endomorphism F on Hi
I(S). Then

there is a module-finite extension T of S such that the image of M in Hi
I(T ) is 0.

Proof. Let u ∈ M . Consider the ascending chain of R-submodules of M spanned by the
initial segments of the sequence

u, F (u), F 2(u), · · · , F k(u), ldots.

Since M is Noetherian, these submodules stabilize, and so some F e(u) is an R-linear
combination of its predecessors. This yields an equation

F e(u) + s1F
e−1u+ · · ·+ seu = 0,

where the si ∈ R. However, the argument makes no further use of this fact.

We may apply the preceding Lemma with

G = Ze + s1Z
e−1 + · · ·+ se.

This shows that there is a module-finite extension T0 of S such that u maps to 0 in Hi
I(T0).

We can choose such a module-finite extension for every uj in a finite set of generators
u1, . . . , uh for M over R. We may then choose a module-finite extension T that contains
all of these. Then M maps to 0 in Hi

I(T ). �

Corollary. Let R be a semilocal domain of Krull dimension d with Jacobson radical A

that is module-finite over a Gorenstein local ring. Then Hi
A(R+) = 0, 0 ≤ i ≤ d− 1.

Proof. Hi
A(R+) is the direct limit of the modules Hi

A(S) as S runs through all module-
finite extensions of R. But each Hi

A(S) maps to 0 in Hi
A(T ) for some further module-finite

extension domain T of S, by the Huneke-Lyubeznik Theorem, and so each Hi
A(S) maps

to 0 in Hi
A(R+). �
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Corollary. Let (R, m, K) be a local domain of Krull dimension d that is module-finite

over a Gorenstein local ring. Then Hi
m(R+) = 0, 0 ≤ i ≤ d− 1. �

Theorem. Let (R, m, K) be a local domain of Krull dimension d that is module-finite

over a Gorenstein local ring. Then R+ is a big Cohen-Macaulay algebra. That is, every

system of parameters for R is a regular sequence in R+.

Proof. It is clear that mR+ 6= R+: since R+ is integral over R, it has a prime ideal that
lies over m.

Let x1, . . . , xd be part of a system of parameters: we must show that it is a regular

sequence on R+. We use induction on dim (R), and also on d. The result is trivial if

d = 1, since R+ is a domain. Assume that d > 1 and that we have a counterexample.

Then x1, . . . , xd−1 is a regular sequence but we can choose u ∈ R+ such that uxd ∈
(x1, . . . , xd−1)R+ while u /∈ (x1, . . . , xd−1)R+ = J . Choose a minimal prime P of R
in the support of (J + Ru)/J . Then we still have a counterexample when we pass to RP
and (RP )+ ∼= (R+)P . By the induction hypothesis we may assume that P = m. Then

H0
m(R+/J) = 0.

We can get a contradiction by proving that for every integer h with 0 ≤ h ≤ d− 1,

Hi
m(R+/(x1, . . . , xh)R+) = 0

when x1, . . . , xh is part of a system of parameters and i < d − h. We then have a
contradiction, taking h = d− 1 in the paragraph just above.

We use induction on h. We already know this when h = 0. Now suppose that S =

R+/(x1, . . . , xh)R+ and that we know that Hi
m(S) = 0 for i < d − h. Let x = xh+1.

We want to show that Hi(S/xS) = 0 for i < d− h− 1. From the short exact sequence

0 −→ S
x·−→ S −→ S/xS −→ 0,

we obtain a long exact sequence part of which is

Hi
m(S)→ Hi

m(S/xS)→ Hi+1
m (S).

For i < d−h−1 we also have i+1 < d−h, and so both the leftmost term and the rightmost
term vanish, which implies that the middle term vanishes as well, as required. �

We shall next expend a considerable effort proving the following Theorem of K. E.
Smith:

Theorem. Let R be a locally excellent Noetherian domain of prime characteristic p > 0,
and let x1, . . . , xd ∈ R be such that I = (x1, . . . , xd)R has height d. Then I∗ = I+.

We give, in outline, the steps of the proof.
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(1) Work with a counterexample with d minimum.

(2) Reduce to the case where R is local, normal, and x1, . . . , xd is a system of parameters.

This requires the theorem that R+ is a big Cohen-Macaulay algebra.

(3) Show that if R is normal local excellent domain, u ∈ R, I ⊆ R, and u ∈ IT for a

module-finite extension domain T of R̂, then u ∈ IS for a module-finite extension
domain S of R. This permits a reduction to the case where R is complete. This
requires a generalization of Artin approximation that may be deduced from a very
difficult Theorem of Popescu.

(4) Reduce to the case where R is Gorenstein.

(5) Let It = (xt1, . . . , x
t
d)R. Consider lim

−→ t I
∗
t /It, which may be thought of as 0∗ in Hd

mR),

as well as lim
−→ t I

+
t /It, which may be thought of as 0+ in Hd

m(R). Also consider the

respective annihilators J∗ and J+ of these submodules of Hd
m(R). Show that it suffices

to prove that 0∗/0+ is 0, and that this module is the Matlis dual of J+/J∗.

(6) Show that J+/J∗ has finite length. This involves proving that J∗ is the test ideal for
R, and that formation of the test ideal in an excellent Gorenstein local ring commutes
with localization. Then use the induction hypothesis: in proper localizations of R at
primes, one knows that tight closure of parameter ideals is the same as plus closure.

(7) Once it is known that J+/J∗ has finite length, it follows that 0∗/0+ has finite length,

and this module may be identified with the image M of 0∗ in Hd
m(R+). It then

follows from the Theorem on p. 3 that M is 0, from which the desired result follows.

Needless to say, it will take quite some time to fill in the details.
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Math 711: Lecture of November 26, 2007

Étale and pointed étale homomorphisms and a

generalization of Artin approximation

Let R be a Noetherian ring. We shall say that R→ S is étale if S is essentially of finite
type over R, flat, and the fibers are étale field extensions, so that for all P ∈ Spec (R),
κP ⊗RS is a finite product of finite separable field extensions of κP . An equivalent conditi-
ions is that S is essentially of finite type over R and flat with 0-dimensional geometrically
regular fibers. There are many other characterizations: a detailed treatment is given in
the Lecture Notes from Math 711, Fall 2004.

A local homomorphism if local rings (R, m, K)→ (S, n, L) is called pointed étale if it
is étale and the induced map of residue class fields K → L is an isomorphism. There is a
structure theorem for pointed étale extensions:

Theorem. Let (R, m, K) be a local ring. S is a pointed étale extension of R if and only
if there is a monic polynomial f ∈ R[X] in one variable such that the image f of f in
K[X] has a simple root λ ∈ K, and

S ∼=
R[X]M

(f)
,

where M is the kernel of the composite map R[X] � K[X] � K and the right hand
surjection is the evaluation map g(X) 7→ g(λ).

If r in R is such that r ≡ λ modulo m, then the maximal ideal M may alternatively
be described as mR[X] + (x − r)R[X]. Note that the image of the formal derivative f ′

of the polynomial f with respect to X is inveritble in S: because λ is a simple root of f ,

f
′
(λ) 6= 0, i.e., f ′(r) ∈ R−m.

The Theorem above and many other results about the structure of étale, smooth, and
umramified homomorphisms may be found in the Lecture Notes from Math 711, Fall 2004.

Here, we shall not use much more than the fact that a pointed étale extension is a
localization at a maximal ideal of a module-finite extension. But we do mention a few
properties to help give the reader some feeling for what may be expected from such an
extension.

Let (R, m, K) be local and let (S,n, L) be a pointed étale extension.

(1) S is fatihfully flat over R.

(2) n = mS, so that the closed fiber is S/mS = S/n = L ∼= K.
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(3) There is a unique local R-algebra embedding of S into R̂, and R̂ is also the completion
of S.

(4) If R is excellent and normal, so is S.

(5) If R → R′ is local, then S′ = R′ → R′ ⊗R S is a pointed étale extension of R′. In
particular, for every proper ideal I of R, S/IS is a pointed étale extension of S/I.

Propertiers (1), (2), and (5) are immediate from the Theorem above. The proof of (3)
uses Hensel’s Lemma, which implies that the factorization f = (X − λ)g, where x− λ and

g are relatively prime, lifts uniquely to a factorization f = (x− ρ)G over R̂; here, ρ ∈ R̂.
The embedding maps the image of X in S to ρ. Since S is essentially of finite type over

R it is excellent, while the normality of S follows, for example, from the normality of R̂,
which is faithfully flat over S.

We shall need the following generalization of the Artin approximation theorem.

Theorem. Let Fi(Z1, . . . , Zn) = 0, 1 ≤ i ≤ k, be a finite system of polynomial equations
with coefficients in an excellent local ring (R, m, K). Let N be a positive integer. Sup-

pose that the equations have a solution ẑ1, . . . , ẑn in R̂. Then they also have a solution

s1, . . . , sn in a pointed étale extension S of R such that si ≡ ẑi mod mN R̂, 0 ≤ i ≤ n.

If one states the theorem without the congruence condition mod mN R̂, one can still
deduce that condition easily. Let u1, . . . , ut be generators of mN in R. Choose ri ∈ R
such that ri ∼= ẑi mod mN R̂ for every i. Then the congruence condition can be expressed
equationally by introducing auxiliary variables Zij and auxiliary equations

Zi − ri −
t∑

j=1

ujZij = 0

for 1 ≤ i ≤ n.

The theorem was first proved by M. Artin in the case of a local ring essentially of finite
type over a field or over an excellent DVR, and also in the case of an analytic local ring (i.e.,
for a quotient of the ring of convergent power series in n variables over the complex numbers
— analytic local rings are Henselian). The more general result follows from a theorem of D.
Popescu called General Néron Desingularization: for a considerable time there was some
disagreement about whether Popescu’s argument, which certainly had gaps, was essentially
correct. The conflict was resolved in an expository paper by R. Swan which gave all details
of a complete and correct proof. Swan’s version was based in turn on a paper by T. Ogoma
which also gave an exposition of the proof of Popescu’s theorem. We refer the reader to [M.
Artin, On the solutions of analytic equations, Invent. Math. 5 (1968) 277–291], [M. Artin,
Algebraic approximation of structures over complete local rings, Publ. Math. I.H.E.S.
(Paris) 3

¯
6 (1969) 23–56], [T. Ogoma,General Néron desingularization based on the idea

of Popescu, J. Algebra 167 (1994) 57–84], [D. Popescu, General Néron desingularization
Nagoya Math. J. 100 (1985) 97–126], [D. Popescu, General Néron desingularization and
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approximation, Nagoya Math. J. 104 (1986) 85–115], and, especially, [Swan, R. G. Néron-
Popescu desingularization, in Algebra and geometry (Taipei, 1995), 135–192, Lect. Algebra
Geom. 2 Int. Press, Cambridge, MA, 1998].

We next want to observe the following:

Lemma. Let R be a normal Noetherian ring, and let S be the integral closure of R in
a finite normal algebraic extension L of the fraction field K of R. Then the group G =
Aut(L/K) stabilizes S, fixes R, and acts transitively on the set of prime ideals of S lying
over a given prime P of R. If (R, m, K) is local, G acts transitively on the maximal ideals
of S.

Proof. If we replace R by R1/q, which is a normal local ring isomorphic with R, for suf-
ficiently large q, and L by L[K1/q], then S is replaced by a ring purely inseparable over
S, which will have the same spectrum. Now the extension of fraction fields is separable,
and so Galois, and the group of field automorphisms is unaffected. Hence, we may assume
without loss of generality that the extension of fraction fields is Galois, and then S is
module-finite over R. We may replace R by RP and so assume that (R, m, K) is local.

G fixes R and therefore stabilizes the set of elements of L integral over R, which is
S. The fixed ring SG must consist of elements of K that are integral over R. Since R is
normal, SG = R. Let m1, . . . ,mk be the maximal ideals of S. They all lie over m. Choose

s ∈ m1−
⋃k
j=2mj . Consider r =

∏
g∈G g(s). Since it is fixed by G, it is in R. In fact, it is

in m1 ∩ R = m. But then, for every i, r ∈ mi. It follows that at leat one of the elements
g(s) is in mi, since their product is. Since s is contained in exactly one maximal ideal,
m1, of S, and g is an automorphism of S, g(s) is contained in exactly one maximal ideal,
g(m1), of s. But g(s) ∈ mi, and so we must have that g(m1) = mi, as required. �

The following result will enable us to reduce the problem of proving that tight closure
is the same as plus closure for parameter ideals to the complete case.

Theorem. Let (R, m, K) be an excellent, normal local ring. Let u ∈ R, and let x1, . . . , xd
be generators of an ideal I of R. Suppose that there is a module-finite extension domain T

of R̂ such that u ∈ IT . Then there is a module-finite extension domain S of R such that
u ∈ IS.

Proof. It suffices to construct a module-finite extension S1 of R such that u ∈ IS1. We
may then get a domain S by killing a minimal prime of S1 disjoint from R− {{0}.

The idea of the argument is to encode the problem of giving a module-finite extension T

of a ring R1 with R ⊆ R1 ⊆ R̂ such that u ∈ IT into solving a finite system of polynomial
equations in finitely many variables with coefficients in R (but whose solutions we think of
as in R1). Once we have such a system, from the fact that the equations have a solution

in R̂, we can deduce that they have a solution in a pointed étale extension of R. We then
need to do some further work to show that R itself has a module-finite extension S such
that u ∈ IS.
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Fix generators for the module-finite extension T of R1: call them θ1, . . . , θh. We choose

h from the module-finite extension domain of R̂ such that u is in the expansion of I. We
may assume without loss of generality that θ1 is taken to be 1. The structure of T as a
module-finite R1-algebra, the fact that u ∈ IT , and the condition that T is an extension of
R1 provided that R1 is a domain are consequences of the equational conditions described
in the following seven paragraphs.

(1) We keep track of the relations on the θk over R1: think of these as given by an h× s
unknowns

(
Zij
)
. The values zij of these coefficients determine the structure of T as an

R1-module: we assume that
∑
i zijθi = 0 for every j, so that the module is the cokernel

of the matrix
(
zij
)
.

(2) For each θi and θj , we keep track of the coefficients needed to write θiθj as an
R1-linear combination of θ1, . . . , θh. Specifically,

(#) θiθj =

h∑
k=1

zijkθk.

Think of the Zijk as h3 additional unknowns whose values zijk determine the multiplica-
tion.

(3) We require that Zijk = Zjik for all i, j, so that the multiplication will be commuta-
tive, and that Z1ik = Z1ki be 1 if i = k and 0 otherwise, which will imply the θ1 will be
the identity element.

(4) In order for the multiplication to be well-defined, we also need equations which
assert that for every column of the matrix of relations on θ1, . . . , θh, when we multiply
the relation the column gives by θν , and then rewrite each θνθk as a linear combination
of θ1, . . . , θ1k using the equations (#) displayed in (2), the resulting linear combination
of θ1, . . . , θh is 0, i.e., the vector of coefficients is in the column space of the matrix of
relations. It should be clear that we can formulate a system of equations in auxiliary
variables which does exactly this. Solving the equations we have specified so far in an R-
algebra R1 gives just the information we need to construct a symmetric R1-bilinear form
(i.e., a multiplication) from the cokernel of the relation matrix, call it T , to T , such that
θ1, . . . , θh is a set of generators for T and θ1 is an identity element.

(5) We next want to address the problem of using equational conditions to guarantee
that we have an associative multiplication. We can use the values of the Zijk in (2) to work
out (θµθν)θρ. We first use the equations given in (2) to write θµθν as a linear combination
of the θk. We then multiply by θρ and use several applications of the equations in (2) to
write this as a linear combination of the θk. We proceed similarly to expand θµ(θνθρ).
We get two different expressions, each of which is a linear combination of the θk, whose
coefficients are polynomials in the variables Zijk. The difference should be a relation on the
θk. The vector of coefficients from such a difference must therefore be a linear combination
of the relations on the θk specified in (1). Thus, for each choice of µ, ν, and ρ, we write
down equations that represent the difference vector of coefficients described above as a



232

linear combination, using new unknowns for coefficients, of the column vectors given in
(1).

(6) Recall that x1, . . . , xd generate I. The fact that u ∈ IT can be expressed as follows.
Consider uθ1 minus a linear combination of the θk, where each of the coefficients in the
subtrahend is a linear combination of x1, . . . , xd with new unknown coefficients. Write the
vector of coefficients of the θk arising in this difference as an unknown linear combination
of the relation vectors from (1) using new unknowns again.

(7) One can express the condition that the map R1 → T be injective (in the case where,
as here, circumstances are forcing R1 to be a domain) by requiring that there exist a map
T → R1 whose value on θ1 (the identity) is not 0. The map is determined by its values
on the θk. Use new unknowns Z ′k for those values. The Z ′k must satisfy the same relations
imposed on the θk in (1), which leads to a new system of equations. In the case we are

considering, the original solution of the equations will be in R̂ and the new solution in

a pointed étale extension of R. We get a linear map from T to R̂ that is nonzero on 1

because T is a finitely generated torsion-free module over R̂: it can be embedded in a

finitely generated free R̂-module, the value of 1 will have a nonzero coordinate, and the

projection map to R̂ corresponding to this coordinate will be the required map. Suppose

that this map has nonzero value z′1 on 1. Then we can choose N so large that z′1 /∈ mN R̂.
When we apply the generalized Artin approximation theorem, we can require that the

value of Z ′1 be congruent to z′1 modulo mN R̂.

A module-finite extension domain T of R̂ such that u ∈ IT gives a solution of the

equations and congruence condition specified in (1) – (7) in R̂. By the Artin-Popescu
approximation theorem, there is a solution in a pointed étale extension R1 of R. Then

R1 ⊆ R̂. Since R is excellent and normal, R1 is excellent and normal. In particular, R1 is
a domain. The solution in R1 gives a ring S1 module-finite over R1 in which u ∈ IS1. It
is an extension ring because there is an R1-linear map f to R1 whose value on 1 is not 0.
If c ∈ R◦1 were mapped to 0 in S1, i.e., if cθ1 = 0, then we would have

0 = f(0) = f(c · θ1) = cf(θ1) = cz′1 6= 0,

a contradiction.

It is not clear that S1 is a domain. But we may kill a minimal prime disjoint from
S1 − {0} and so we get a module-finite extension domain S2 of R1 such that u ∈ IS2.

Now, S2 is a domain module-finite over a localization at a maximal ideal of a module-
finite extension domain of R. We can replace S2 by its localization at a maximal ideal. The
resulting ring can be obtained as the localization at a maximal ideal m3 of a module-finite
extension domain S3 of R. There is no harm in replacing S3 by a larger domain that is
integral over it. Choose a finite algebraic field extension L of K = frac (R) containing
frac (S3) that is normal. Let S be the integral closure of R in this field. We know that
u ∈ ISM for a maximal ideal M of S lying over m3 in S3. We claim that u ∈ IS.

To prove this, it suffices to show that it is true after localization at every maximal ideal
of S. By the Lemma near the bottom of p. 2, the Galois group G of the extension of
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fraction fields between R and S acts transitively on the maximal ideals of S, while fixing
R. But for every g ∈ G, we have that u ∈ ISg(M), since g fixes u and I. �

In consequence, we can extend the Theorem that R+ is a big Cohen-Macaulay algebra
to the excellent case.

Theorem (Hochster-Huneke). Let R be an excellent semi-local domain of prime char-
acteristic p > 0 such that all maximal ideals of R have height d = dim (R). Let A be
the Jacobson radical of R, and x1, . . . , xd elements of A such that A = Rad (x1, . . . , xd).

Then x1, . . . , xd is a regular sequence in R+.

In particular, if R is an excellent local domain of prime characteristic p > 0, then R+

is a big Cohen-Macaulay algebra for R.

Proof. Suppose that uxk+1 ∈ (x1, . . . , xk)R+. We must show that u ∈ (x1, . . . , xk)R+.
We may replace R by a module-finite extension domain. Thus, we may assume that

u ∈ (x1, . . . , xk)R and that R is normal. If u /∈ (x1, . . . , xk)R+, this remains true

when we localize at a suitable maximal ideal M of R+: suppose that M lies over m in
R. Then Rm is a normal excellent local domain, x1, . . . , xd is a system of parameters,

uxk+1 ∈ (x1, . . . , xk)R, and u /∈ (x1, . . . , xk)R+. The completion whR is again a normal
local domain in which x1, . . . , xd is a system of parameters. Since whR is a homomorphic

image of a regular local ring, we know that R̂+ is a big Cohen-Macaulay algebra for R̂. It

follows that there is a module-finite extension domain T of R̂ such that u ∈ (x1, . . . , xd)T .
We may now apply the preceding Theorem to replace T by a module-finite extension
domain S of R. �

We can now begin our treatment of the proof the Theorem stated at the bottom of p. 4
of the Lecture Notes of November 21. We follows the steps listed on p. 5 of those Lecture
Notes.

Step 1.. Choose a counterexample in which d is minimum.

Step 2.: reduction to the case where R is excellent, local, normal, of Krull dimension d,
and x1, . . . , xd is a system of parameters. First, we may replace R by its normalization.

(x1, . . . , xd) still has height height d, and R+ does not change. The element u remains in

(x1, . . . , xd)
∗ and it is still true that u /∈ (x1, . . . , xd)R

+ = A. Choose a minimal prime
P in R of the support of (A + Ru)/A. We can replace u by a multiple ru in Ru whose

image in (A+Ru)/A has annihilator P . We still have that ru /∈
(
(x1, . . . , xd)RP

)+
, since

plus closure commutes with localization. Now RP is excellent, local, and normal. We have,
moreover, Pu ⊆ (x1, . . . , xd)

+. We claim that P must be a minimal prime of (x1, . . . , xd).
If not, P is not contained in the union of the minimal primes of (x1, . . . , xd). Then we
can choose xd+1 ∈ P such that x1, . . . , xd, xd+1 is part of a system of parameters for RP .

Then xd+1ru ∈ (x1, . . . , xd)R
+ = fA. Since R+ is a big Cohen-Macaulay algebra, we

have that ru ∈ A after all, a contradiction. Thus, P is a minimal prime of (x1, . . . , xd)R.
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We have now reduced to the case where R is excellent, local, normal, of Krull dimension
d, and x1, . . . , xd is a system of parameters.
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Math 711: Lecture of November 28, 2007

Step 3. Reduction to the complete local case. Now suppose that the result holds for ideals
of height k of the form (x1, . . . , xk)R whenever k < d. Also suppose that (R, m, K)
is a normal excellent local ring of prime characteristic p > 0 of dimension d, that I =
(x1, . . . , xd)R where x1, . . . , xd is a system of parameters for R, and that u ∈ I∗ − I+.
We next want to show that there is a counterexample such that R is also complete. Over

R̂, we still have that u ∈ (IR̂)∗. If

u ∈ (IR̂)+,

then there is a module-finite extension domain T of R̂ such that u ∈ IT . By the Theorem
at the bottom of p. 3 of the Lecture Notes from November 26, there is also a module-finite
extension S of R such that u ∈ IS, a contradiction. Henceforth, we may assume that our
minimal counterexample is such that R is complete. �

For the next reduction, we need the following fact.

Lemma. Let A be a normal domain, and let S be a domain extension of A generated by
one element u that is integral over A, so that S = A[u]. Let f = f(X) be the minimal
polynomial of u over K = frac (A). Then f has coefficients in A, and S ∼= A[x]/(f).

Proof. Let deg(f) = n. Let L be a splitting field for f over K. Let g be a monic polynomial
over A such that g(u) = 0. Then f |g working in K[X]. It follows that every root ρ of f
satisfies g(ρ) = 0. Hence, all of the roots of f in L are integral over A. We can write

f =
n∏
i=1

(X − ρi)

where the ρi are the roots of f . The coefficients of f are elementary symmetric functions
of ρ1, . . . , ρn, and so are integral over A. Since they are also in K and A is normal, the
coefficients of f are in A, i.e., f ∈ A[x].

Now suppose that h ∈ A[X] is any polynomial such that h(u) = 0. Then h|f working
over K[X]. Because f is monic, we can carry out the division algorithm, dividing h by
f and obtaining a remainder of degree strictly less than n, entirely over A[X], and the
result will be the same as if we had carried out the dvision algorithm over K[X]. Since the
remainder is 0 when we carry out the division over K[X], the remainder is also 0 when we
carry out the division over A[X]. Consequently, h ∈ fA[X]. It follows that the kernel of
the A-algebra surjection A[X] � A[u] = S such that X 7→ u is precisely fA[X], and the
stated result follows. �

Step 4. Reducction the case where R is complete and Gorenstein. Choose a coeffiicient
field K for the complete counterexample R. Then R is module-finite over its subring
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A = K[[x1, . . . , xd]], which is regular, and, in paritcular, normal. Let S = A[u]. A
domain module-finite over a complete local domain is again local. In S, we still have that

u ∈
(
(x1, . . . , xn)S

)∗
,

since this becomes true when we make the module-finite extension to R: cf. Problem 4 of
Problem Set #4. Moreover, since R is module-finite over S, we may identify R+ = S+,
so that we still have

u /∈ (x1, . . . , xd)S
+.

Thus, S also gives a counterexample. By the preceding Lemma, S ∼= A[X]/f where f
is monic polynomial. Since u is not a unit, the constant term of f is in the maximal
ideal of A. It follows that S ∼= A[[X]]/(f) as well. Since A[[X]] is regular, A[[X]]/(f) is
Gorenstein. We therefore have a minimal counterexample to the Theorem in which the
ring is a complete local Gorenstein domain. �

Remark. Until this point in the proof, we have been concerned with keeping R normal.
In doing the reduction just above, normality is typically lost. But the remainder of the
proof will be carried through for the Gorenstein case, without any further refernce to or
need of normality.

We shall soon carry through an investigation that requires the study of the tight closure
of 0 in the injective hull of the residue class field of a Gorenstein local ring (R, m, K),
which may also be thought of as the highest nonvanishing local cohomology module of the
ring with support in m. We shall therefore digress briefly to study some aspects of the
behavior 0∗Hdm(R).

Comparison of finitistic tight closure and tight closure

Let R be a Noetherian ring of prime characteristic p > 0. When N ⊆ M are modules
that are not necessarily finitely generated, we have a notion of tight closure N∗M .

There is an alternative notion, N∗fgM , defined as follows:

N∗fgM =
⋃

N⊆M0⊆M with M0/N finitely generated

N∗M0
.

As with tight closure, studying this notion can be reduced to the case where N = 0, and
in this case

0∗fgM =
⋃

M0⊆M with M0 finitely generated

0∗M0

It is not known whether, under mild conditions on R, these two notions are always
the same. There has been particularly great interest in the case where the module M is



237

Artinian, for reasons that we shall discuss in the sequel. The result that 0∗fgM = 0∗M is
known in the following cases:

(1) M = Hd
m(R), where (R, m, K) is a reduced, equidimensional excellent local ring and

d = dim (R).

(2) R is N-graded with R0 = K and M is a graded Artinian module.

(3) R is excellent, equidimensional reduced local with an isolated singularity, and M is
an arbitrary Artinian module.

(4) (R, m, K) is excellent, local, RP is Gorenstein if P 6= m, and M is the injective hull
of the residue class field.

(5) R is excellent local, W is a finitely generated R-module such that WP has finite
injective dimension if P 6= m, and M is the Matlis dual of W .

(1) was proved by K. E. Smith, and (2), (3), and (4) by G. Lyubeznik and K. E. Smith.
See [G. Lyubeznik and K. E. Smith, Strong and weak F -regularity are equivalent for graded
rings, Amer. J. Math. 121 (1999), 1279–1290] and [G. Lyubeznik and K. E. Smith, On
the commutation of the test ideal with localization and completion Trans. Amer. Math.
Soc. 353 (2001) 3149–3180]. (5) is a recent result of J. Stubbs in his thesis (University of
Michigan, expected May, 2008), whose full results greatly extend (2), (3), and (4), as well
as related results in [H. Eltizur, Tight closure in Artinian modules, Thesis, University of
Michigan, 2003].

We shall prove (1), shortly. We first want to note that the following questions are all
open:

Let (R, m, K) be an excellent local reduced ring of prime characteristic p > 0.

(a) Does 0∗fgM = 0∗M in every Artinian R-module M?

(b) Does 0∗fgE = 0∗E in the injective hull E of the residue class field of R?

(c) If R is weakly F-regular, does 0∗fgE = 0∗E in the injective hull of the residue class field?
Equivalently, if R is weakly F-regular, is 0∗E = 0 in the injective hull E of the residue
class field?

(d) If R is weakly F-regular, is R strongly F-regular?

Obviously, an affirmative answer to each of (a), (b), or (c) implies an affirmative answer
to the next on the list. Note that in (c), the two formulations are equivalent because in
a weakly F-regular ring, 0∗fg = 0 in every module M , since 0 is tightly closed in every
finitely generated module.

What is more, (c) and (d) are equivalent, by the Proposition on p. 3 of the Lecture
Notes from October 22.

Hence, an affirmative answer to any one of the statements (a), (b), (c) and (d) implies an
affirmative answer to all of the questions following it on the list, while affirmative answers
for (c) and (d) are equivalent.
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Math 711, Fall 2007 Problem Set #5
Due: Wednesday, December 12

1. Let K be a field of characteristic p > 0 with p 6= 3. Let X, Y , and Z be indeterminates
over K, and let R = K[X, Y, Z]/(X3 + Y 3 + Z3) = K[x, y, z].

(a) Show that R is module-finite, torsion-free, and generically étale over A = K[x, y], and
find the discriminant D of R over A with respect to the basis 1, z, z2.

(b) Use the Jacobian ideal to show that (x2, y2, z2) ⊆ τ b(R).

2. Continue the notation of problem 1. Show that xyz2 is a socle generator modulo
I = (x2, y2)R. Show that I∗ = (x2, y2, xyz2)R. Conclude using problem 4. of Problem
Set #3 that the test ideal of R is m.

3. Let x1, . . . , xk be part of a system of parameters in an excellent local domain (R, m, K)
of prime characteristic p > 0, and let I = (x1, . . . , xk)R. Prove that for every multi-
plicative system W in R, (IW−1R)∗ = I∗W−1R. That is, tight closure commutes with
localization for such an ideal I.

4. Let R be a locally excellent domain of prime characteristic p > 0 that is a direct sum-
mand of every module-finite extension domain. Prove that R is F-rational. In particular,
it follows that R is Cohen-Macaulay.

5. Let (R, m, K) be a complete weakly F-regular local ring of Krull dimension d of prime
characteristic p > 0. Let S be a Noetherian R-algebra such that the height of mS in S is
d. Prove that R is a direct summand of S.

6. Let R be an N-graded domain over an algebraically closed field K of prime characteristic
p > 0, where R0 = K, and let I be an ideal generated by forms of degree ≥ d ≥ 1. Let G
be a form of degree d that is not in I. Prove that G /∈ I∗.
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Math 711: Lecture of November 30, 2007

Theorem (K. E. Smith). Let (R, m, K) be an excellent, reduced, equidimensional local

ring of Krull dimension d, and let H = Hd
m(R). Then 0∗H = 0∗fgH . If x1, . . . , xd is a system

of parameters for R, It = (xt1, . . . , x
t
d)R, and y = x1 · · · xd, then y(I∗t ) ⊆ I∗t+1, and both

0∗H and 0∗fgH may be thought of as

lim
−→ t

I∗t
It
,

where the map between consecutive terms is induced by multiplication by y on the numer-
ators.

Hence, if (R, m, K) is an excellent, reduced Gorenstein local ring and E is the injective

hull of its residue class field, 0∗E = 0∗fgE .

Proof. Note that yIt ⊆ It+1, and so (yIt)
∗ ⊆ I∗t+1. In general, for any ideal J , y(J∗) ⊆

(yJ)∗, since if cjq ∈ J [q], then c(yj)q ⊆ yqJ [q] = (yJ)[q]. Thus, y(It)
∗ ⊆ I∗t+1 for all t.

To prove that 0∗H = 0∗fgH , we need only show ⊆. Let v ∈ 0∗H . The for some t, v is
represented by the class of an element u ∈ R in R/It. We then have that for some c ∈ R◦
and for all q � 0, cvq is 0 in

Fe(H) ∼= lim
−→ t

R

(It)[q]
∼= Hd

m(R)

and this means that for all q � 0, the element of H represented by the class of cuq in
R/Itq maps to 0 in H. In the generality in which we are working, the maps R/Itq → H
are not necessarily injective. However, this means that for all q � 0, there exists kq such
that

ykqcuq ∈ Itq+kq ,

and so for all q � 0,

cuq ∈ Itq+kq : ykq .

By the Theorem near the bottom of p. 2 of the Lecture Notes from November 12, the colon
ideal on the right is contained in the tight closure of Itq. Note that if x1, . . . , xd were a
regular sequence, this colon ideal would be equal to Itq. Hence, for all q � 0,

cuq ∈ I∗tq.

We may multiply by a test element c′ ∈ R◦ to obtain that for all q � 0,

c′cuq ∈ Itq = (It)
[q],
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and so u ∈ I∗t . This means that the image of u is in the tight closure of 0 in R/It, and hence

v is in the tight closure of 0 in the image M of R/It in H. Hence, v ∈ 0∗fgH , as required.
We have also established the assertion in the final statement of the first paragraph of the
Theorem. The assertion in the second paragraph is immediate. �

Remark. Of course, we have a commutative diagram:

· · · −−−−→ R

It

y·−−−−→ R

It+1
−−−−→ · · · Hd

m(R)x x x
· · · −−−−→ I∗t

It

y·−−−−→
I∗t+1

It
−−−−→ · · · 0∗Hdm(R)

where the vertical arrows are inclusions. Note that if R is Cohen-Macaulay, then all of
the arrows, both horizontal and vertical, are inclusions, and so we may think of 0∗Hdm(R)

as the ascending union of the modules
I∗t
It

. In particular, these remarks apply when R is

Gorenstein.

Discussion: the plus closure of 0 in local cohomology. . Let (R, m, K) be a local
domain of prime characteristic p > 0, and let d = dim(R). Let H = Hd

m(R). The 0+
H is,

by definition, the kernel of the map

Hd
m(R)→ R+ ⊗R Hd

m(R)

and the latter is Hd
m(R+). Let x1, . . . , xd be a system of parameters for R, let It =

(xt1, . . . , x
t
d)R, and let y = x1 · · · xd. Then y(I+

t ) ⊆ (yIt)
+ for all t, simply because

y(ItR
+) = (yIt)R

+, and since yIt ⊆ It+1 we have as well that y(It)
+ ⊆ I+

t+1. Hence, we
can consider

lim
−→ t

I+
t

It

where the maps are induced by multiplication by y on numerators, and the direct limit is
a submodule of Hd

m(R). This submodule is the same as 0+
H .

To see this, first note that because R+ is a big Cohen-Macaulay algebra over R,

x1, . . . , xd is a regular sequence on R+, and so the maps in the direct limit system

lim
−→ t

R+

ItR+

are injective, and each R+/ItR
+ injects into Hd

m(R+). It follows that if v ∈ Hd
m(R) is

represented by the class of u ∈ R in R/It, then v maps to 0 in Hd
m(R+) if and only if

u ∈ ItR+ if and only if u ∈ ItR+ ∩R = I+
t , from which the result follows.
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Moreover, we have a commutative diagram

· · · −−−−→ R+

ItR+
y·−−−−→ R+

It+1R+
−−−−→ · · · Hd

m(R+)x x x
· · · −−−−→ R

It

y·−−−−→ R

It+1
−−−−→ · · · Hd

m(R)x x x
· · · −−−−→ I∗t

It

y·−−−−→
I∗t+1

It
−−−−→ · · · 0∗Hdm(R)x x x

· · · −−−−→ I+
t

It

y·−−−−→
I+
t+1

It
−−−−→ · · · 0+

Hdm(R)

where the vertical maps, except those to the top row, are injective, and so 0+
H ⊆ 0∗H ⊆ H.

It also follows that
0∗H
0+
H

= lim
−→ t

I∗t
I+
t

for every choice of system of parameters x1, . . . , xd for R.

When R is Cohen-Macaulay and, in particular, when R is Gorenstein, all of the hori-
zontal maps in the commutative diagram just above are injective, as well as the vertical
maps other than those to the top row.

Step 5. Reformulation of the problem in terms of 0∗Hdm(R)/0
+
Hdm(R)

and its dual. In conse-

quence of the discussion above, we can assert the following:

Proposition. The following three conditions on an excellent Gorenstein domain (R, m, K)
of prime characteristic p > 0 of Krull dimension d are equivalent.

(1) For every system of parameters x1, . . . , xd ∈ m, if I = (x1, . . . , xd)R, then I∗ = I+.

(2) For some system of parameters x1, . . . , xd ∈ m, if It = (xt1, . . . , x
t
d)R, then I∗t = I+

t

for all t ≥ 1.

(3) If H = Hd
m(R), then 0∗H/0

+
H = 0, i.e., 0∗H = 0+

H .

Proof. It is obvious that (1) ⇒ (2) ⇒ (3). We need only show that (3) ⇒ (1). Assume
(3). If x1, . . . , xd is a system of parameters and It is defined as in (2), we may use this
system to calculate

0∗H
0+
H

= lim
−→ t

I∗t
I+
t

.

The maps in the direct limit system are all injective. Hence, if I∗ 6= I+, we cannot have
0∗H = 0+

H . This contradiction proves that (3)⇒ (1). �

We next note the following easy consequence of Matlis duality.
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Proposition. Let (R, m, K) be a local ring, and let E = ER(K) be an injective hull of
the residue class field. Let ∨ denote the functor HomR( , E).

(a) If R is complete, there is a bijective order-reversing correspondence between submodules
N ⊆ E and ideals of R under which N ⊆ E corresponds to AnnRN and J ⊆ R
corresponds to AnnEJ . In particular, if N ⊆ E, AnnE(AnnRN) = N , and if J ⊆ R,
then AnnR(AnnEJ) = J . N corresponds to J if and only if N is the Matlis dual
(R/J)∨ of R/J , in which case N ∼= ER/J(K).

(b) Whether R is complete or not, if J ⊆ R is any ideal, AnnR(AnnJE) = J .

Proof. (a) Note that if M has ACC or DCC, we have that AnnR(M) ⊆ AnnR(M∨), and
AnnR(M∨) ⊆ AnnR(M∨∨) = AnnRM in turn, since M∨∨ ∼= M . Thus, M and M∨ have
the same annihilator.

There is a bijection between injections N ↪→ E and surjections N∨ � R obtained by
applying ∨ (this is used in both directions). Thus, N ↪→ E is dual to R/J � R for
some ideal of J of R that is uniquely determined by N . Since N and R/J have the same
annihilator, J = AnnRN . The dual of R/J is evidently HomR(R/J, E) ∼= AnnEJ .

(b) Let AnnEJ = AnnE(JR̂), and so the annihilator of Ann
R̂

(AnnJE) = JR̂. It follows

that the annihilator of AnnEJ in R is JR̂∩R = J , since whR is faithfully flat over R. �

For the rest of the proof of Theorem that plus closure and tight closure agree for ideals
generated by a system of parameters, if R is a complete local Gorenstein domain of prime
characteristic p > 0 of Krull dimension d, we shall write write H = Hd

m((R), and we shall
write J∗ for AnnR(0∗H) and J+ for AnnR(0+

H). We shall see that J∗ = τ(R) = τ b(R) in the

Gorenstein case. Our objective is to show that 0∗H = 0+
H . We make use of the following

fact.

Corollary. With notation as above, 0∗H/0
+
H is the Matlis dual of J+/J∗.

Proof. Since R is Gorenstein, H = E is an injective hull for R and we may take the Matlis
dual to of a given module M to be M∨ = HomR(M, H). We have a short exact sequence

0→ 0+
H → 0∗H → 0∗H/0

+
H → 0

whose dual is

0← R/J+ ← R/J∗ ← (0∗H/0
∗
H)∨ ← 0.

The kernel of the map on the left is evidently J+/J∗, from which the result follows at
once. �

We next want to establish the connection between J∗ and the test ideal of R. Part (d)
of the result just below was also discussed in the solution of problem 4. in Problem Set
#3.
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Theorem. Let R be a reduced Noetherian ring of prime characteristic p > 0. Let ER(M)
denote an injective hull of M over R. Note that if m is a maximal ideal, ER(R/m) ∼=
ERm(Rm/MRm).

(a) τ(R) =
⋂

m∈MaxSpec(R)

AnnR(0∗fgER(R/m)).

(b) τ b(R) =
⋂

m∈MaxSpec(R)

AnnR(0∗ER(R/m)).

(c) Hence, if (R, m, K) is local and E = ER(K), then τ(R) = AnnR(0∗fgE ) and τ b(R) =
AnnR(0∗E).

(d) If R is local and approximately Gorenstein with It a descending sequence of m-primary
irreducible ideals cofinal with the powers of m, then

τ(R) =
⋂
t

It :R I
∗
t .

(e) If R is local, excellent, and Gorenstein, then τ(R) = τ b(R) = Ann(0∗H), where H =
Hd
m(R).

Proof. Part (c) is just a restatement of (a) and (b) in the local case.

In all of (a), (b), and (d), ⊆ is clear. Suppose that c is in the specified intersection
but that we have modules N ⊆ M such that u ∈ N∗M and cu /∈ N , and assume as well
that these modules are finitely generated in cases (a) and (d). We are free to replace N
with a submodule of M containing N and maximal with respect to not containing cu, and
we ma then kill N . The image of cu is then killed by some maximal ideal m of R, and
generates a module V ∼= R/m = K in a module M that is an essential extension of V .
In case (a), M is a finitely generated submodule of E = ER(R/m), with u ∈ 0∗, and so

u ∈ 0∗fgE , which implies that cu = 0, a contradiction. In case (d), M is killed by It for some
t, and so may be viewed as an essential extension of K over the Gorenstein Artin local
ring R/It. But then M injects into R/It. The image v of u is in the tight closure of 0 in
R/It, but cv is not 0. If we represent v by an element r ∈ R, we have that r ∈ I∗t but that
cr /∈ It, a contradiction. Finally, in case (b), M embeds in E, and u ∈ 0∗E while cu 6= 0, a
contradiction.

Part (e) is then immediate from the fact that in the local, excellent, Gorenstein case,

H = E and 0∗E = 0∗fgE . �

We shall now complete the proof by showing that J+/J∗ and, hence, 0∗H/0
+
H , has finite

length in the case of a minimal counterexample, and then applying the Theorem on p. 3
of the Lecture Notes from November 21 on killing finitely generated submodules of local
cohomology by making a suitable module-finite extension. A key point is that information
about J+/J∗ can be obtained by localizing at a proper prime ideal P of R, which is not
directly true for 0∗H/0

+
H .
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Step 6. Proof that J+/J∗ has finite length when d is minimum. We first prove that the
test ideal commutes with localization for a reduced excellent Gorenstein local ring of prime
characteristic p > 0. In order to do so, we introduce a new notion. Let (R, m, K) be a
reduced excellent Gorenstein local ring of prime characteristic p > 0. We say that an ideal
J ⊆ R is F-stable provided that J is the annihilator of a submodule N of H = Hd

m(R)
that is stable under the action of F on H. We first note:

Lemma. Let notation be as above.

(a) J ⊆ R is F-stable if and only if for every ideal I of R generated by a system of
parameters x1, . . . , xd, (∗) if Ju ⊆ I then Jup ⊆ I [p]. Moreover, for J to be F-
stable, it suffices that for a single system of parameters x1, . . . , xd for R, with It =

(xt1, . . . , x
t
d)R we have that Ju ⊆ It implies that Jup ⊆ I [p]

t for all t.

(b) If J is F-stable and P is any prime ideal of R, then JRP is F-stable.

(c) If J is an F-stable ideal of R that contains a nonzerodivisor, then τ(R) ⊆ J .

Proof. (a) Each element of H is represented by the class v of u ∈ R in R/It ↪→ H for
some t. The maps in the direct limit system for H are injective, and so J kills the class

of u if and only if Ju ⊆ It. Then F (v) is represented by vp in R/Ipt, and Ipt = I
[p]
t . It is

immediate both that condition (∗) for all It is necessary and sufficient for J to be F-stable,
and since we may choose I to be any ideal generated by a system of parameters, we must
have (∗) for all parameter ideals.

(b) Let h = height (P ) and choose a system of parameters x1, . . . , xd ∈ m such
that x1, . . . , xh ∈ P , and such that the images of x1, . . . , xh form a system of param-
eters in RP . It suffices to check that if u/w ∈ RP , where u ∈ R and w ∈ R − P ,
and J(u/w)p ∈ (x1, . . . , xh)RP , then J(u/w) ∈ (xp1, . . . , x

p
h)RP . From the first condi-

tion we can choose w′ ∈ R − P such that w′Ju ⊆ (x1, . . . , xh)R, and the latter ideal
is contained in (x1, . . . , xh, x

N
h+1, . . . , x

N
d )R for all N ≥ 1. Since J is F-stable, and

J(w′u) ⊆ (x1, . . . , xh, x
N
h+1, . . . , x

N
d )R, we have that

J(w′u)p ⊆ (xp1, . . . , x
p
h, x

pN
h+1, . . . . , x

pN
d )R

for all N . Intersecting the ideals on the right as N varies, we obtain that

(w′)pJup ⊆ (xp1, . . . , x
p
h),

which implies that J(u/w)p ∈ (xp1, . . . , x
p
h)RP , as required.

(c) Let c ∈ J ∩R◦. Since c kills N = AnnHJ if v ∈ N we have that vq ∈ N for all e, and
so cvq = 0 for all q. It follows that v ∈ 0∗H . Hence, N ⊆ 0∗H , and so τ(R) = AnnR0∗H ⊆
Ann(N) = AnnR(AnnH(J)) = J . �

We shall need the following fact:
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Proposition. Let (R, m, K) be an excellent reduced equidimensional local ring of prime
characteristic p > 0, and let d = dim (R). Let H = Hd

m(R). Then 0∗H is stable under the
action of F . If R is a domain, 0+

H is stable under the action of F .

Proof. Let x1, . . . , xd be a system of parameters. The first statement follows from the
fact that if u ∈ I∗t for some t, then up ∈

(
(It)

[p]
)∗

. In fact, if u ∈ I∗ then up ∈ (I [p])∗

in complete generality. The second assertion follows from the fact that if u ∈ I+
t , then

up ∈
(
I

[p]
t

)+
. The corresponding fact for any ideal I in any domain R follows from the

fact that the Frobenius endomorphism on R+ sends u to up and IR+ to I [p]R+ while

stabilizing R: hence, up ∈ I [p]R+ ∩R. �

We next note:

Lemma. Let R be a Noetherian ring of prime characteristic p > 0. Let A be an ideal
whose radical is contained only in maximal ideals of R, and let m be one maximal ideal of
R. Then (ARm)∗ in Rm is the same as A∗Rm.

Proof. It suffices to prove ⊆. Let m = m1, . . . ,mk be the maximal ideals of R. If any
mi is also minimal, then {mi} is an isolated point of Spec (R), and the ring is a product.
Every ideal is a product, and tight closure may be calculated separately in each factor.
We can reduce to studying a factor where tthere are fewer maximal ideals. Therefore, we
may assume that no mi is minimal.

Then A has primary decomposition A = A1∩· · ·∩Ak where Ai is primary to mi. Choose
an element w of A2 ∩ · · · ∩Ak that is not in P , and not in any minimal prime of the ring.

Now suppose that u/1 ∈ (IRP )∗ (we may clear denominators to assume the element has
this form). By the Proposition on p. 2 of the Lecture Notes from September 17, we can
choose c ∈ R◦ such that cu[q]/1 ∈ (ARm)[q] for all q � 0. Then (∗) wc ∈ R◦ ∩ (R −m),
and c(wu)q ∈ A[q] for all q � 0. To see this, note that

A[q] = (A1 ∩ · · · ∩ Ak)[q] = (A1 · · ·Ak)[q]

(since the ideals A1, . . . ,Ak are pairwise comaximal). This becomes A
[q]
1 ∩ · · · ∩ A

[q]
k and,

since the ideal mi is maximal, the ideal A
[q]
i is primary to mi. Then cuq is in the contraction

of (ARm)[q] to R, and this is A
[q]
1 , while wq ∈ A

[q]
i for i > 1. This proves (∗), and, hence,

wu ∈ I∗ and u ∈W−1I∗. �

Theorem (K. E. Smith). Let (R, m, K) be an excellent reduced Gorenstein local ring
of prime characteristic p > 0. Let P be a prime ideal of R. Then τ(RP ) = τ(R)P .

Proof. We know that both ideals are generated by nonzerodivisors. We first show that
τ(R)P ⊆ τ(RP ). Let c ∈ τ(R). Let height (P ) = h and let x1, . . . , xh be part of a
system of parameters for R whose images in RP give a system of parameters for RP .
Let At = (xt1, . . . , x

t
h)R. By part (d) of the Theorem on p. 5 of the Lecture Notes
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from November 30, it suffices to show that for every t, c(AtRP )∗RP ⊆ AtRP . We claim
that (AtRP )∗ = A∗tRP . By Problem 2(a) of Problem Set #3, we can localize at the
multiplicative system W which is the complement of the union of the minimal primes of
A, since elements of W are nonzerodivisors on every A[q]. In the resulting semilocal ring,
the expansion of P is maximal, and we may apply the preceding Lemma to obtain that
(AtRP )∗ = A∗tRP . But then cA∗t ⊆ At, and so c(AtRP )∗ = cA∗tRP ⊆ AtRP , as required.

To prove the other direction, let d be the Krull dimension of R and let H = Hd
mR).

Then the annihilator of 0∗H in R is τ(R). Hence, by the Proposition above, τ(R) is an
F-stable ideal. It follows that τ(R)RP is an F-stable ideal of RP by part (b) of the Lemma
on p. 1. It contains a nonzerodivisor, since τ(R) does. By part (c) of the Lemma on p. 1,
τ(RP ) ⊆ τ(R)RP . �

We can now prove:

Lemma. Let (R, m, K) be a complete local Gorenstein domain of Krull dimension d of
prime characteristic p > 0 such that, for h < d, tight closure is the same as plus closure
for ideals generated by h elements that are part of a system of parameters. Then J+/J∗
has finite length. Hence, 0∗/0+ has finite length.

Proof. Since J+/J∗ is finitely generated, it suffices to prove that it becomes 0 when we
localize at a prime ideal P of R strictly contained in m. Since J∗ = τ(R), we have that
(J∗)P = J∗RP = τ(RP ), by the Theorem above. Hence, it suffices to prove that every
element of J+ maps to a test element in RP . Let c ∈ J+. Let h = height (P ). Let
x1, . . . , xd be a system of parameters for R such that x1, . . . , xh ∈ P and their images in
RP are a system of parameters for RP . Then it suffices to show that

c
(
(xt1, . . . , x

t
h)RP

)∗ ⊆ (xt1, . . . , x
t
h)RP

for all t. We have that (
(xt1, . . . , x

t
h)RP

)∗
= (xt1, . . . , x

t
h)∗RP

and (
(xt1, . . . , x

t
h)R

)∗
=
(
(xt1, . . . , x

t
h)R

)+ ⊆ ((xt1, . . . , xth, xNh+1, . . . , x
N
d )R

)+
for all N ≥ 1. Since c ∈ J+, this yields

c
(
(xt1, . . . , x

t
h)RP

)∗ ⊆ (xt1, . . . , x
t
h, x

N
h+1, . . . , x

N
d )R

for all N ≥ 1. We may intersect the ideals on the right as N varies to obtain

c
(
(xt1, . . . , x

t
h)RP

)∗ ⊆ (xt1, . . . , x
t
h)R,

and localizing at P then gives the result that we require. �
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Step 7. The dénouement: applying the Theorem on killing local cohomology in a module-
finite extension. We can now complete the proof that plus closure is the same as tight

closure for parameter ideals. We know that the kernel of the map H = Hd
m(R)→ Hd

m(R+)
is 0+

H , by the Discussion on p. 2 of the Lecture Notes from November 30. Hence, we may

view M = 0∗H/0
+
H as an R-submodule of Hd

m(R+). It is stable under F , since this is

true for both 0∗H and 0+
H in Hd

m(R), by the Proposition at the top of p. 2, and the map

Hd
m(R) → Hd

m(R+) commutes with the action of F . Hence, by the Theorem on p. 3 of

the Lecture Notes of November 21, there is a module finite extension domain T of R+

such that the map Hd
m(R+) → Hd

m(T ) kills m. However, R+ does not have such an

extension, unless it is an isomorphism. Hence, M must already be 0 in Hd
m(R+), which

shows that 0∗H = 0+
H . This completes the proof of the Theorem stated at the bottom of

p. 4 of the Lecture Notes of November 21, as sketched on p. 5 of those Lecture Notes. �

Characterizing tight closure using solid algebras

and big Cohen-Macaulay algebras

We next want to prove the results on characterizing tight closure over complete local
domains using solid algebras and big Cohen-Macaulay algebras that were stated on p. 12
of the Lecture Notes of September 7.

We recall that an R-module M over a domain R is solid if HomR(M, R) 6= 0. That is,
there is a nonzero R-linear map θ : M → R.

Nonzero finitely generated torsion-free modules are solid if and only if they are not
torison modules: the quotient by the torsion submodule is finitely generated, nonzero, and
torsion free. It can be embedded in a finitely generated free R-module, and one of the
coordinate projections will give a nonzero map to R. However,we will be primarily inter-
ested in the case where M is an R-algebra. Solidity is much more difficult to understand
in this case.

Note that if S is an R-algebra, then S is solid if and only if there is an R-linear module
homomorphism θ : S → R such that θ(1) 6= 0. For if θ1 : S → R is an R-linear module
homomorphism such that θ1(s0) 6= 0, we can define θ to be the composition of this map
with multiplication by s0, i.e., define θ(s) = θ(s0s) for all s ∈ S.

The following is a slight generalization of Problem 1 of Problem Set #1.

Proposition. Let R be a Noetherian domain of prime characteristic p > 0, and let N ⊆M
be R-modules. If u ∈M is such that 1⊗ u ∈ 〈S ⊗R N〉 in S ⊗RM , then u ∈ N∗M .

Proof. Let θ : S → R be an R-linear map such that θ(1) = c 6= 0. Then uq ∈ 〈(S ⊗N)[q]〉
in

FeS(S ⊗RM) ∼= S ⊗R FeR(M),

and we may identify 〈(S ⊗R N)[q]〉 with 〈S ⊗R N [q]〉. Apply θ ⊗R 1Fe(M) to obtain that

cuq ∈ N [q] in FeR(M) for all q. �
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Our objective is to prove a converse for finitely generated modules over complete local
domains.

Theorem. Let (R, m, K) be a complete local domain of prime characteristic p > 0. Let
N ⊆ M be finitely generated R-modules, and let u ∈ M . The following conditions are
equivalent.

(a) u ∈ N∗M .

(b) There exists a solid R-algebra S such that 1⊗ u ∈ 〈S ⊗R N〉 in S ⊗RM .

(c) There exists a big Cohen-Macaulay R-algebra S such that 1⊗u ∈ 〈S ⊗R N〉 in S⊗RM .

It will be some time before we can prove this. We shall actually prove that there is an

R+-algebra B that is a big Cohen-Macaulay algebra for every module-finite extension R1

of R within R+, and the B can be used to test all instances of tight closure in finitely
generated modules over such rings R1.

Before beginning the argument, we want to give quite a different characterization of solid
modules over a complete local domain R. In the following result, there is no restriction on
the characteristic.

Theorem. Let (R, m, K) be a complete local domain of Krull dimension d, and let M be
any R-module. Then M is solid if and only if Hd

m(M) 6= 0.

Proof. We know that R is a module-finite extension of a regular local ring (A, mA, K),
and for any R-module N , Hd

m(N) ∼= Hd
mA(N). First suppose that M is solid, and admits

a nonzero map M → R. The long exact sequence for local cohomology yields

· · · → Hd
mA(M)→ Hd

mA(J)→ 0,

where J 6= (0) is some ideal of R, since Hd+1
mA vanishes on all A-modules (mA is generated

by d elements). Hence, it suffices to see that Hd
mA(J) 6= 0. Since J is a torsion-free A-

module, it contains a nonzero free A-submodule, Ah whose quotient is a torsion A-module
(take h as large as possible). Then we have 0 → Ah → J → C → 0 where C is killed by
some element x ∈ mA−{{0}. Then we also have J ∼= xJ ⊆ Ah → C ′ → 0, and C ′ is killed
by x since xAh ⊆ xJ . Since C ′ is a module over A/xA, whose maximal ideal is the radical
of an ideal with d − 1 generators, we have that Hd

mA(C ′) = Hd
mA/xA

(C ′) = 0, and so the

long exact sequence for local cohomology yields

· · · → Hd
mA(J)→ Hd

mA(Ah)→ 0.

Since Hd
mA(Ah) ∼= Hd

mA(A)⊕h and Hd
mA(A) ∼= EA(A/mA) 6= 0, we have that Hd

mA(J) 6= 0

and, hence, Hd
m(M) 6= 0, as claimed.

Now suppose that Hd
m(M) 6= 0. Let x1, . . . , xd be a system of parameters for A. Let

It = (xt1, . . . , x
t
d)A. Let E = Hd

mA(A), which is also an injective hull for A/mA over
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A. Then Hd
m(R) = Hd

mA(M) = lim
−→ tM/ItM ∼= M ⊗A lim

−→ tA/It ∼= M ⊗A E 6= 0. Now

HomA( , E) is a faithfully exact functor on A-modules. (To see that it does not vanish
on N 6= 0, choose a nonzero element v ∈ N . The Av ∼= A/A for some proper ideal A,
which yields a map Av � K ↪→ E. This nonzero map from Av to E extends to N because
E is injective over A.) Hence,

HomA(M ⊗A E, E) 6= 0.

By the adjointness of ⊗ and Hom, we have that

HomA

(
M, HomA(E, E)

)
6= 0,

and since A is complete, we have that HomA(E, E) ∼= A. Thus, HomA(M, A) 6= 0, i.e.,
M is solid over A.

We have a nonzero A-linear map η : M → A. Exactly as in the argument that begins
near the bottom of p. 1 in the Lecture Notes from November 14, we have an induced map
η∗ : HomA(R, M) → HomA(R,A), and HomA(R, A) is a torsion-free R-module of rank
one and, hence, isomorphic with a nonzero ideal J ⊆ R. As in the Lecture Notes from
November 14, we consequenctly have a composite R-module map

M
µ−→ HomA(R, M)

η∗−→ HomA(R, A)
∼=−→ J

⊆−→ R

where the first map µ is the map that takes u ∈ M to the map fu : R → M such that
fu(r) = ru for all r ∈ R. Call the composite map θ. Let v ∈ M be such that η(v) 6= 0.
Then θ(v) ∈ R is the image under an injection of a map g : R → A whose value on 1 is
η(v) 6= 0, and so θ(v) 6= 0 and, hence, θ 6= 0. �

Remark. The argument in the last paragraph shows that, in general, if R is a domain
that is a module-finite extension of A and M is an R-module that is solid when viewed as
an A-module, then M is also solid as an R-module.
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From the local cohomology criterion for solidity we obtain:

Corollary. A big Cohen-Macaulay algebra (or module) B over a complete local domain
R is solid.

Proof. Let d = dim (R) and let x1, . . . , xd be a system of parameters for R. This is a
regular sequnece on B, and so the maps in the direct limit system

B/(x1, . . . , xd)B → · · · → B/(xt1, . . . , x
t
d)B → · · ·

are injective. Since 0 6= B/(x1, . . . , xd)B ↪→ Hd
(x)(B) = Hd

m(B), B is solid. �

Our next objective is to prove:

Theorem. Let R be a complete local domain. Then there exists an R+-algebra B such

that for every ring R1 with R ⊆ R1 ⊆ R+ such that R1 is module-finite over R the
following two conditions hold:

(1) B is a big Cohen-Macaulay algebra for R1.

(2) For every pair of finitely generated R1-modules N ⊆M and u ∈ N∗M , 1⊗u ∈ 〈B ⊗R N〉
in B ⊗RM .

The proof will take a considerable effort. The basic idea is to construct an algebra B
with the required properties by introducing many indeterminates and killing the relations
we need to hold. The difficulty will be to prove that in the resulting algebra, we have that
mB 6= B.

Forcing algebras

Let T ba ring, u an h× 1 column vector over T , and let α be an h× k matrix over T .
Let Z1, . . . , Zk be indeterminates over T and let I be the ideal generated by the entries
of the matrix

u− α

Z1
...
Zk


By the forcing algebra, which we denote Forceσ(T ), of the pair σ = (u, α) over T we
mean the T -algebra T [Z1, . . . , Zk]/I. In this algebra, we have “forced” u to be a linear
combination (the coefficients are the images of the Zi) of the columns of α. If M is the
cokernel of the matrix α, we have that 1 ⊗ u = 0 in Forceσ(T ) ⊗T M . Given any other
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T -algebra T ′ such that 1 ⊗ u = 0 in T ′ ⊗M (equivalently, such that the image of u is
a T ′-linear combination of the images of the columns of α), we have a T -homomorphism
Forceσ(T )→ T ′ that sends the Zi to the corresponding coeffiicients in T ′ used to express
the image of u as a linear combination of the images of the columns of α. We shall say
that Forceσ(T ) is obtained from T by forcing σ.

It will be technically convenient to allow the matrix α to have size h×0, i.e., to have no
columns. In this case, the forcing algebra is formed by killing the entries of u. (Typically,
we are forcing u to be in the span of the columns of α. When k = 0, the span of the empty
set is the 0 submodule in Th.)

Now suppose that we are given a set Σ of pairs of the form (u, α) where u is a column
vector over T and α is a matrix over T whose columns have the same size as u. We call
the set Σ forcing data for T . The size of u and of the matrix may vary. By the forcing
algebra ForceΣ(T ) we mean the coproduct of the forcing algebras Forceσ(T ) as σ varies in
T . One way of constructing this coproduct is to adjoin to T one set of appropriately many
indeterminates for every σ ∈ Σ, all mutually algebraically independent over T , and then
impose for every σ the same relations needed to form Forceσ(T ). If Σ = {σ1, . . . , σn}
one may think of this algebra as

n⊗
i=1

Forceσi(T ),

where the tensor product is taken over T . When Σ is infinite, one may think of ForceΣ(T )
as the direct limit of all the forcing algebras for the finite subsets Σ0 of Σ.

If Σ is forcing data for T and h : T → T ′, we may take the image of Σ to get forcing
data over T ′: one is simply applying the homomorphism h to every entry of every column
and every matrix. We write h(Σ) for the image of Σ under h. Then

Forceh(Σ)(T
′) ∼= T ′ ⊗T ForceΣ(T ).

We refer to the process of formation of Forceh(Σ)(T
′) as postponed forcing: we have, in

fact, postponed the formation of the forcing algebra until after mapping to T ′.

In discussing forcing algebras we make the following slight generalization of the nota-
tions. Suppose that Σ is a set of forcing data over S and g : S → T is a homomorphism.
We shall also write ForceΣ(T ) for Forceh(Σ)(T ). Thus, our notation will not distinguish
between forcing and postponed forcing.

Note that if we partition forcing data Σ for T into two sets, we can form a forcing
algebra for the first subset, and then form the forcing algebra for the image of the second
subset. We postponed the forcing process for the second subset. But the algebra obtained
in the two step process is isomorphic to ForceΣ(T ).

One can also think of the formation of ForceΣ(T ) as an infinite process. Well order the
set Σ. Now perform forcing for one (u, α) at a time. Take direct limits at limit ordinals.
By transfinite recursion, one reaches the same forcing algebra ForceΣ(T ) that one gets by
doing all the forcing in one step.
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Algebra modifications

Let g : S → T be a ring homomorphism (which may well be the identity map) and
let Γ be a a set whose elements are finite sequences of elements of S. We assume that if
a sequence is in Γ, then each initial segment of it is also in Γ. Let ΣΓ, g denote the set
of pairs

(
u,
(
x1 . . . xk

))
such that x1, . . . , xk+1 is a sequence in Γ, u ∈ T , and xk+1u ∈

(x1, . . . , xk)T . Thus, if x1, . . . , xk+1 were a regular sequence on T , we would have that
u ∈ (x1, . . . , xk)T . Let Σ be a subset of ΣΓ,g. We call Σ modification data for T over Γ. We
refer to ForceΣ(T ) as a multiple algebra modification of T over Γ. We write AlgmodΓ,g(T )
for the forcing algebra ForceΣΓ,g (T ) and refer to it as the total algebra modification of
T over Γ. If σ is one element of ΣΓ,g we refer to Forceσ(T ) as an algebra modification
of T . For emphasis, we also refer to it as a simple algebra modification of T . We shall
use iterated multiple algebra modifications to construct T -algebras on which the specified
sequences in Γ become regular sequences.

Note that if k = 0 and x1u = 0 in T , then we get an algebra modification Forceσ(T ) in
which σ is a pair consisting of u and a 1 × 0 matrix: this algebra modification is simply
T/uT .

If we have a homomorphism h : T → T ′, and σ =
(
u,
(
x1 . . . xk

))
, we write h(σ) for(

h(u),
(
x1 . . . , xk

))
. Note that if xk+1u ∈ (x1, . . . , xk)T , then

xk+1h(u) ∈ (x1, . . . , xk)T ′.

Thus,

h(ΣΓ,g) ⊆ ΣΓ,h◦g).

With this notation, if Σ is algebra modification data for T over Γ, then h(Σ) is modifi-
cation data for T ′ over Γ.

Algebra modifications are forcing algebras. As in the general case of a forcing algebra,
we may talk about postponed modifications.

The construction of big Cohen-Macaulay algebras

that capture tight closure

Let (R, m, K) be a complete local domain. Let Γ consist of all sequences in R+ that

are part of a system of parameters in some ring R1 with R ⊆ R1 ⊆ R+ such that R1

is module-finite over R. Let Σ be the set of all pairs (u, α) consisting, for some ring R1

as above, of an h × 1 column vector over R1 and an h × k matrix over a ring R1 such
that u is in the tight closure over R1 of the column space of α. Note that we know that
whether this condition holds is unaffected by replacing R1 by a larger ring R2 such that

R1 ⊆ R2 ⊆ R+ with R2 module-finite over R.



253

Let B0 = ForceΣ(R+). If Bn has been defined for i ≥ 0, let Bn+1 be the total algebra
modification of AlgmodΓ(Bn) of Bn over Γ. Then we have a direct limit system

B0 → B1 → · · · → Bn → Bn+1 → · · · .

Let B = lim
−→ nBn. We shall prove that B is the required big Cohen-Macaulay algebra.

Much of this is obvious. Suppose that N ⊆ M are finitely generated R1-modules and
u ∈ N∗M over R1. Choose a finite presentation for M/N over R1, so that MN/ is the
cokernel of an h × k matrix αo over R1. The image of v in M/N is represented by an
element u ∈ Rk1 . Then u is in the tight closure of the column space of α in Rh1 , and it
follows from the definition of B0 that u is a linear combination of the columns of α in B0

and, hence, in B.

It is likewise easy to see that if x1, . . . , xd is a system of parameters in R1 then it is a
regular sequence on B. Suppose that we have a relation

xk+1bk+1 =
k∑

i=1l

xibi

on B. Because B is the direct limit of the Bn, we can find n0 such that Bn0
contains

elements βi that map to the bi. The corresponding relation may not hold in Bn0 , but since
it holds in B it will hold when we map to Bn for some n ≥ n0. Thus, we may assume that

we have β1, . . . , βk+1 ∈ Bn such that xk+1βk+1 =
∑k
i=1 xiβi in Bn and every βi maps to

bi when we map Bn → B. By the construction of Bn+1, we have that the image of βk+1

is in (x1, . . . , xk)Bn+1. We can then map to B to obtain that bk+1 ∈ (x1, . . . , xk)B.

There remains only one thing to check: that mB 6= B. This is the most difficult point in
the proof. This is equivalent to the condition that for some (equivalently, every) system of
parameters x1, . . . , xd in every R1, we have that (x1, . . . , xd)B 6= B. To see this, observe
that if IB = B, then I2B = IB = B, and multiplying by I repeatedly yields by induction
that ItB = B for every t ≥ 1. If m1 is the maximal ideal of R1, then mR1 ⊆ m1, which
is contained in a power of mR1. Hence, mB = B if and only if m1B = B. Likewise,
if x1, . . . , xd is a system of parameters for R1 generating an ideal I, for some t we have
mt

1 ⊆ I ⊆ m1, and so m1B = B if and only if IB = B.

If (x1, . . . , xd)B = B, then we have that

1 = x1b1 + · · ·+ xdbd

for some finite set of elements of B.

We shall show that if this happens, it happens for some algebra obtained from some
choice of R1 by a finite sequence of forcing algebra extensions: the first extension is the
forcing algebra for a single pair (u, α) such that u is in the tight closure of the column
space of α over R1. The extensions after that are simple algebra modifications with respect
to sequences each of which is part of a system of parameters for R1.
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Eventually, we shall have to work even harder to make the problem more “finite”:
specifically, we aim to replace these algebras by finitely generated submodules. We then
use characteristic p methods to get a contradiction. However, the first step is to get to
the case where we are only performing the forcing procedure finitely many times. With
suffiicient thought about the situation, that one can do this is almost obvious, but it is not
quite so easy to give the argument formally..

Descent of forcing algebras

Let g : S → T be a ring homomorphism. Let Λ be a directed poset and let {Sλ}λ∈Λ

be a directed family of subrings of S indexed by Λ whose union is S. Let {Tλ}λ∈Λ be a
directed family of rings such that lim

−→ λ Tλ = T , and suppose that for every λ ∈ Λ we have

a homomorphism gλ : Sλ → Tλ such that if λ ≤ µ the diagram

S
g−−−−→ Tx x

Sµ
gµ−−−−→ Tµx x

Sλ
gλ−−−−→ Tµ

commutes. Thus, g : S → T is the direct limit of the maps Sλ → Tλ.

Proposition. Let notation be as above.

(a) Let Σ be forcing data over S. Let Σλ denote a subset of Σ such that all entries
occurring are in Sλ. Suppose also that if λ ≤ µ then Σλ ⊆ Σµ and that the union of
the sets Σλ is Σ. Then ForceΣ(T ) is a direct limit of rings each of which is obtained
from some Tλ by a finite sequence of such extensions of Tλ each of which is obtained
from its immediate predecessor by forcing one element of Σλ.

(b) Let Γ be a family of finite sequences in S closed under taking initial segments, and
Σ ⊆ ΣΓ,g(T ). Define Σλ to consist of all elements of Σ whose entries are in Tλ,
whose corresponding sequence is in Sλ, and such that if the sequence is x1, . . . , xk+1

and the element is (u,
(
x1 . . . xk

)
), then xk+1u ∈ (x1, . . . , xk)Tλ. Then the algebra

modification ForceΣ(T ) is a direct limit of rings, each of which is obtained from Tλ
by a simple algebra modification over a subset of Γ.

Proof. (a) Let L denote the poset each of whose elements is a pair (λ, Φ) where Φ is a
finite subset of Σλ. The partial ordering is defined by the condition that (λ, Φ) ≤ (µ, Ψ)
precisely if λ ≤ µ and Φ ⊆ Ψ. There is an obvious map

ForceΦ(Tλ)→ ForceΨ(Tµ).
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We claim that ForceΣ(T ) is the direct limit over L of the algebras ForceΦ(Tλ) with
(λ, Φ) ∈ L. If we fix any finite set Φ if Σ, it is contained in Σλ for all sufficiently large
λ, and the direct limit of the ForceΦ(Tλ) is evidently ForceΦ(T ). The result follows from
the fact that the direct limit over Φ of the rings ForceΦ(T ) is ForceΣ(T ).

(b) Note that a relation involving a sequence in Γ that holds in one Tλ continues to
hold in Tµ for all µ ≥ λ. Also note that if σ ∈ Σ, then for all sufficiently large λ then
entries will be in Tλ, the elements of the corresponding string (x1, . . . , xk+1) will be in λ,
and since one has xk+1u ∈ (x1, . . . , xk)T , this will also hold with T replaced by Tλ for
all sufficiently large λ. From this it is clear that Σλ ≤ Σµ if λ ≤ µ and that the union of
the Σλ is Σ. Moreover, each time we force Tλ with respect to an element of Σλ we are
performing a simple algebra modification. The result is now immediate from part (a). �

Lemma. Let (R, m, K) be a complete local domain of prime characteristic p > 0, and let
B be the R-algbera constructed at the bottom of p. 3 and the top of p. 4. Then B is a direct
limit of rings of that are obtained as follows: start with a module-finite extension R1 of R

within R+, force finitely many elements σ = (u, α) where u is in the tight closure of the
column space of α over R1, and then perform finitely many simple algebra modifications
with respect to parts of systems of parameters in R1.

Proof. We freely use the notations from the bottome of p. 3 and top of p. 4 where B is

defined. We apply part (a) of the preceding Proposition, taking S = T = R+. Both are
the directed union of rings of the form R1. It follows that B0 is a direct limit of rings that

are obtained from a module-finite extension R1 of R within R+ by forcing finitely many
elements σ = (u, α) where u is in the tight closure of the column space of α over R1. By
induction on n and part (b) of the preceding Proposition, every Bn is a direct limit of rings
of the form described in the statement of the Lemma. This follows for B as well, since B
is the direct limit of the Bn.

Since every R1 is again a complete local domain, to complete the proof of the Theorem
stated on p. 1, we might as well change notation and repalce R by R1. Now, if one has a
finite set of instances of tight closure over R, say ui is in the tight closure of the column
space of αi for 1 ≤ i ≤ t, then the direct sum of the ui is in the tight closure of the column
space of the direct sum of the matrices αi, 1 ≤ i ≤ t. Moreover, the forcing algebra for
these direct sums is the coproduct of the t individual forcing algebras for the individual
instances of tight closure. While it is not actually necessary to make this reduction, it does
simplify the issue a bit. The problem that remains to complete the proof of the Theorem
on p. 1 is to establish the following:

Let R be a complete local domain of prime characteristic p > 0. Let x1, . . . , xd be
a system of parameters for R. Let T be a ring obtained from R by first forcing one
element σ = (u, α) such that u is in the tight closure of the column space of α over R,
and then performing finitely many simple algebra modifications with respect to parts
of systems of parameters in R. Then 1 /∈ (x1, . . . , xd)T .

The next step in the argument will involve replacing the sequence of forcing algebras
by a sequence of finitely generated R-modules.
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Math 711: Lecture of December 7, 2007

We assume that we have the situation of the displayed paragraph near the bottom of
p. 6 of the Lecture Notes from December 5. Specifically, let

R→ T0 → T1 → · · · → Tr

be a sequence of algebras obtained from a complete local domain R of prime characteristic
p > 0 by successive forcing with respect to σ0, σ1, . . . , σr−1. Here σ0 forces a column
u ∈ Rh that is in the tight closure of the column space of an h×k matrix α into the column
space of α, and for i ≥ 1, σi yields an algebra modification with repsect to a relation on
part of a system of parameters in R. Moreover, we assume that 1 ∈ (x1, . . . , xd)Tr, where
x1, . . . , xd is a system of parameters for R. We want to obtain a contradiction.

Each Ti is presented as the quotient of polynomial ring over Ti−1 in finitely many
variables Zij by an ideal generated by polynomials that are linear in the new variables.
Putting these presentations together gives a presentation of every Ti as a polynomial ring
over R. Thus, we have an increasing sequence of polynomial rings R ⊆ T1 ⊆ T2 ⊆ · · · ⊆ Tr
and in each Ti an ideal Bi such that Ti ∼= Ti/Bi.

For any polynomial ring T in finitely many variables over R, let T≤N denote the span
of the monomials of total degree at most N over R. Evidently, T≤N is a finitely generated

R-module. Let M
(N)
i be the image of (Ti)N in Ti. Thus, we have a commutative diagram:

R −−−−→ T0 −−−−→ T1 −−−−→ · · · −−−−→ Tr

1

x x x x
R −−−−→ M

(N)
0 −−−−→ M

(N)
1 −−−−→ · · · −−−−→ M

(N)
r

where the vertical maps are inclusions. The bottom row consists of finitely generated R-
modules, and the top row is the ascending union over N of the bottom rows. We refer to
the bottom row as a sequence of partial forcing algebras over R. Because Tr is the direct

limit of the modules M
(N)
r , we have that (1) the image of 1 ∈ R under the composite map

from the bottom row is in (x1, . . . , xd)M
(N)
r for any sufficiently large choice of N . We also

know that (2) for every i, the elements of Ti occurring in σi are in M
(N)
i for N sufficiently

large. For the rest of the argument, we fix a choice of N sufficiently large that both these
conditions hold.

Also fix a Z-valued valuation ord on R that is nonnegative on R and positive on m. In

particular, ord (xi) ≥ 1 for every xi. Extend ord to a Q-valued valuation on R+ that is

nonnegative on R+. We can do this by the argument at the bottom of p. 1 and top of
p. 2 of the Lecture Notes from November 12.

We now use characteristic p techniques to obtain a contradiction. Everything that we
have done so far is independent of the characteristic, but the final part of the argument
depends heavily on the fact that we are in characteristic p.

Here is the key fact:
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Lemma. Let Ni = N i+1 for 0 ≤ i ≤ r, which is evidently an ascending sequence of
positive integers. For every test element c ∈ R and every q = pe there is a commutative
diagram of R-linear maps:

R+[1/c1/q]
1−−−−→ R+[1/c1/q]

1−−−−→ R+[1/c1/q]
1−−−−→ · · · 1−−−−→ R+[1/c1/q]

ι

x φ0

x φ1

x φr

x
R −−−−→ T0 −−−−→ T1 −−−−→ · · · −−−−→ Tr

1

x x x x
R −−−−→ M

(N)
0 −−−−→ M

(N)
1 −−−−→ · · · −−−−→ M

(N)
r

such that ι is the inclusion map, the maps from the middle row to the top row are R-algebra

homomorphisms, and such that for every i, 0 ≤ i ≤ r, the image of M
(N)
i is contained in

the cyclic R+ module spanned by
1

cNi/q
.

Before proving the Lemma, we state for emphasis that the values of the integers Ni are
independent of the choice of q.

Proof of the Lemma. We construct the φi recursively. T0 is formed from R by forcing
(u, α), where u is in the tight closure of the column space of α. This implies that c1/qu is

an R1/q-linear combination of the the columns of α, and, hence, an R+-linear combination
of the columns of α. This enables us to write u as a linear combination of the columns of α
with coefficients in R+[1/c1/q] and so we obtain a map T0 → R+[1/c1/q]. The elements

Zi are sent into the cyclic R+-module spanned by 1/c1/q. Hence, M
(N)
0 maps into the

cyclic R+-module spanned by (1/c1/q)N = 1/cN0/q, since N0 = N .

Now suppose that we have constructed φ0, . . . , φi such that φj(M
(N)
j ) ⊆ R+wj for

1 ≤ j ≤ i, where wj = 1/cNj/q. We want to construct φi+1. Now, Ti+1 is a modification
of Ti with respect to a relation

yk+1vk+1 = y1v1 + · · ·+ ykvk,

where y1, . . . , yk are part of a system of parameters for R. By our choice of N , the elements

v1, . . . , vk+1 are in M
(N)
i . Hence, their images under φi are expressible in the form sjw

with the sj ∈ R+ and w = wi = 1/cNi/q. This means that we can write

yk+1φi(vk+1) ∈ (y1, . . . , yk)R+w.

Since R+ is a big Cohen-Macaulay algebra for R, this implies that

φi(vk+1) ∈ (y1, . . . , yk)R+w,
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say

φi(vk+1) =
k∑
j=1

yjsjw

where the sj ∈ R+. We can now define φi+1 by letting its values on the variables be the
elements sjw. Its value on any monomial of degree N in all of the variables that occur up
to and including the i+ 1 spot will involve, at worst,

(
(1/c1/q)Ni

)N
= 1/c(NNi)/q = 1/cNi+1/q

as claimed. �

We are now ready for the dénoument, i..e, we can complete the proof of the Theorem
stated on p. 1 of the Lecture Notes from December 5.

The final step in the proof of the existence of big Cohen-Macaulay algebras that capture tight

closure. We keep the notation of the Lemma above. We have that 1 ∈ (x1, . . . , xd)M
(N)
r ,

and that if wi = 1/cNi/q, 1 ≤ i ≤ r, for every q there is a commutative diagram

R+ −−−−→ R+w0 −−−−→ R+w1 −−−−→ · · · −−−−→ R+wrx φ0

x φ1

x φr

x
R −−−−→ M

(N)
0 −−−−→ M

(N)
1 −−−−→ · · · −−−−→ M

(N)
r

where the vertical maps are the restrictions of the φi and the horizontal maps in the

first row are inclusion maps. By can consider the composite map from R → R+wr
obtained by iterated composition by traversing two edges of the rectaqngle in two different
ways. If we use the leftmost vertical arrow and the top row, we see that the image is

simply 1 ∈ R+wr ⊆ R+[1/c1/q]. By using the bottom row and the rightmost vertical
arrow, as well as the fact that the image of 1 ∈ R is in (x1, . . . , xd)Mr, we obtain that

1 ∈ (x1, . . . , xd)R
+wr for all q. It follows that cNr/q ∈ (x1, . . . , xd)R

+ for all q, which
leads to the conclusion that

1

q
ord (cNr ) = ord (cNr/q) ≥ min

j
ord (xj) ≥ 1

for all q. This is a contradiction, since we can choose q > ord (cNr ). �

Note that if S and T are R-algebras, where R is a domain, and there is a map S → T ,
then S is solid if T is solid. For if T is solid there is an R-linear map T → R such that
1 7→ c ∈ R◦, and the composition S → T → R will also be such a map. We obtain at once:
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Corollary. Let (R, m, K) be a complete local domain of prime characteristic p > 0. Let
u ∈ R, and let I = (f1, . . . , fk)R be an ideal of R. Then u ∈ I∗ if and only if

S = R[Z1, . . . , Zk]/(u−
k∑
i=1

fiZi)

is a solid R-algebra, i.e., if and only if Hd
m(S) 6= 0.

Proof. We know that u ∈ I∗ if and only if there is homomorphism from R→ T such that
u ∈ IT and T is solid. Hence, if S is solid, u ∈ I∗, for u ∈ IS. On the other hand, if
u ∈ IT with T solid, we can map the forcing algebra S to T as an R-algebra, and it follows
that S is solid. �

This characterization is the starting point for the work of H. Brenner on tight closure.

Remark. There is an entirely similar criterion for when an element is in the tight closure
of a submodule of a finitely generated free module over R.

It appears to be a very difficult problem to determine whether a given finitely generated
R-algebra is solid. Any non-trivial result in this direction would be of great interest.

It is an open question whether every solid algebra over a complete local domain R can
be mapped as an R-algebra to a big Cohen-Macaulay algebra. (If it can be mapped to a big
Cohen-Macaulay algebra, it is solid.) G. Dietz has examples of finitely generated algebras
that he conjectures are solid, but which cannot be mapped to a big Cohen-Macaulay
algebra. However, it appears difficult to prove that these algebras are solid. See [G.
D. Dietz, Closure operations in positive characteristic and big Cohen-Macaulay algebras,
Thesis, University of Michigan, 2005].

Or next objective will be to study the notion of phantom homology. In part of a complex
of finitely generated modules (the maps may raise or lower degree), say G′ → G → G′′ ,
an element of the homology at the middle spot is called phantom if it is represented by a
cycle that is in the tight closure of the module of boundaries in G. This notion turns out
to have many applications.
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Math 711: Lecture of December 10, 2007

We have defined an element of the homology or cohomology of a complex of finitely
generated modules over a Noetherian ring R of prime characteristic p > 0 to be phantom
if it is represented by a cycle (or cocycle) that is in the tight closure of the boundaries
(or coboundaries) in the ambient module of the complex. We say that the homology or
cohomology of a complex of finitely generated modules over R is phantom if every element
is phantom. A left complex is called phantom acyclic if all of its homology is phantom in
positive degree.

Discussion: behavior of modules of boundaries under base change. Note the
following fact: if

G′
d−→ G

is any R-linear map (in the application, this will be part of a complex), S is any R-algebra,
and B denotes the image of d in G, then the image of

S ⊗R G′
1S⊗d−−−→ S ⊗R G

is the same as the image 〈S ⊗R B〉 in S ⊗R G. Note that we have a surjection G′ � B
and an injection B ↪→ G, whence

S ⊗R G′ → S ⊗R G

factors as the composition of S⊗RG′ � S⊗RB (this is a surjection by the right exactness
of S ⊗R ) with S ⊗R B → S ⊗R G.

From these comments, we obtain the following:

Proposition. Let R→ S be a homomorphism of Noetherian rings of prime characteristic
p > 0 for which persistence2 of tight closure holds. Let

G′ → G→ G′′

be part of a complex, and suppose that η is a phantom element of the homology H at G.
Then the image of η in the homology H ′ of

S ⊗R G′ → S ⊗R G→ S ⊗R G′′

is a phantom element .

Hence, if S is weakly F-regular, the image of η in H ′ is 0.

2See the Theorem on p. 3 and Corollary on p. 4 of the Lecture Notes from November 7.
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Proof. Let z ∈ G represent η, and let B be the image of G′ in G. Then z ∈ B∗, and
1⊗ z represents the image of η in H ′. By the persistence of tight closure for R to S, 1⊗ z
is in the tight closure over S of 〈S ⊗R B〉 in S ⊗R G, and by the discussion above, this
is the same as the image of S ⊗R G′. The final statement then follows because we can
conclude, when the ring is weakly F-regular, that an element in tight closure of the module
of boundaries is a boundary. �

There are many circumstances in which one can prove that complexes have phantom
homology, and these lead to remarkable results that are difficult to prove by other methods.
We shall pursue this theme in seminar next semester. For the moment, we shall only give
one result of this type. However, the result we give is already a powerful tool, with
numerous applications.

Theorem (Vanishing Theorem for Maps of Tor). Let A → R → S be Noetherian
rings of prime characteristic p > 0, where A is a regular domain, R is module-finite and
torsion-free over A, and S is regular or weakly F-regular and locally excellent.3 Then for
every A-module M , the map

TorAi (M, R)→ TorAi (M, S)

is 0 for all i ≥ 1.

This result is also known in equal characteristic 0 when S is regular, but the proof is
by reduction to characteristic p > 0. It is an open question in mixed characteristic, even
in the case where S is the residue class field of R ! We discuss this further below.

Proof of the Vanishing Theorem for Maps of Tor. Since M is a direct limit of finitely
generated A-modules and Tor commutes with direct limit, it suffices to consider the case
where M is finitely generated. If some

TorAi (M, R)→ TorAi (M, S)

has a nonzero element η in the image, this remains true when we localize at a maximal
ideal of S that contains the annihilator of η and complete. Thus, we may assume that
(S,M) is a complete weakly F-regular local ring, and then persistence of tight closure
holds for the map R→ S. Let m be the contraction of M to A. Then we may replace A,
M , and R by their localizations at m, and so we may assume that (A, m, K) is regular
local. Let P• be a finite free resolution of M by finitely generated free A-modules.

To complete the proof, we shall show that the complex R⊗AP• is phantom acyclic over
R, i.e., all of its homology modules in degree i ≥ 1 are phantom. These homology modules
are precisely the modules TorAi (M, R). Hence, for i ≥ 1, the image of this homology in
the homology of

S ⊗R (R⊗A P•) ∼= S ⊗A P•
3The result holds when the completions of the local rings of R are weakly F-regular, which is a conse-

quence of either of the stated hypotheses.



262

is 0, by the Proposition at the bottom of p 1. But the i th homology module of the latter
complex is TorAi (M, S), as required.

It remains to show that R⊗AP• is phantom acyclic. Let h be the torsion-free rank of R
over A, and let G ⊆ R be a free A-module of rank h. Thus, G ∼= Ah as an A-module. Then
R/G is a torsion A-module, and we can choose c ∈ A◦ such that cR ⊆ G. Let z ∈ R⊗A Pi
represent a cycle for some i ≥ 1. Let Bi be the image of R ⊗ Pi+1 in R ⊗A Pi. We shall

show that czq ∈ B[q]
i in FeR(R⊗A Pi) for all q, which will conclude the proof.

It will suffice to show that, for all e, c kills the homology of FeR(R⊗AP•) in degree i ≥ 1,
since zq is an element of the homology, and the module of boundaries in FeR(R⊗APi) is, by
another application of the Proposition at the bottom of p. 1, the image of FeR(Bi), which

is B
[q]
i .

By (11) on p. 3 of the Lecture Notes from September 12, we may identify

FeR(R⊗A P•) ∼= R⊗A FeA(P•).

By the flatness of the Frobenius endomorphism of A, the complex FeA(P•) is acyclic. Since
G is A-free, we have that G⊗AFeA(P•) is acyclic, and this is a subcomplex of R⊗AFeA(P•).
Because cR ⊆ G, we have that c multiplies R ⊗A FeA(P•) into the acyclic subcomplex
G ⊗A FeA(P•). If y is a cycle in R ⊗A FeA(P•) in degree i ≥ 1, then cy is a cycle in
G⊗A FeA(P•) in degree i, and consequently is a boundary in G⊗A FeA(P•). But then it is
a boundary in the larger complex R⊗A FeA(P•) as well. �

We conclude by giving two consequences of the Vanishing Theorem for Maps of Tor.
Both are known in equal characteristic and are open questions in mixed characteristic.
Both can be proved by other means in the equal characteristic case, but it is striking that
they are consequences of a single theorem.

Theorem. The Vanishing Theorem for Maps of Tor implies, if it holds in a given charac-
teristic, that direct summands of regular rings are Cohen-Macaulay in that characteristic.

Before we can give the proof, we need a Lemma that will permit a reduction to the
complete local case.

Lemma. Let R and S be Noetherian rings.

(a) Let S be a regular ring and let J be any ideal of S. The the J-adic completion T of S
is regular.

(b) Let R→ S be a homomorphism and suppose that R is a direct summand of S. Then
for every ideal I of R, the I-adic completion of R is a direct summand of the IS-adic
completion of S.

Proof. (a) Every maximal ideal M of T must contain the image of J , since if u ∈ JT is
not inM, there exists a non-unit v ∈M such that tu+v = 1. But v = 1− tu is invertible,
since

1 + tu+ · · ·+ tnun + · · ·
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is an inverse. Hence, every maximal ideal T corresponds to a maximal ideal Q of S
that contains J . Note that S → T is flat, and Q expands to M. Hence, SQ → TM is
faithfully flat, and the closed fiber is a field. It follows that the image of a regular system
of parameters for SQ is a regular system of parameters for TM.

(b) Let f1, . . . , fh ∈ I generate I. Let X1, . . . , Xh be formal power series indetermi-
nates over both rings. Let θ : S → R be an R-linear retraction, Then R[[X1, . . . , Xh]] is

a direct sumnand of S[[X1, . . . , Xh]]: we define a retraction θ̃ that extends θ by letting
θ act on every coefficient of a given power series. Let A be the ideal of R[[x1, . . . , xh]]
generated by the elements Xi − fi, 1 ≤ i ≤ h. Then there is an induced retraction

S[[x1, . . . , xh]]/AS[[X1, . . . , Xh]]→ R[[X1, . . . , Xh]]/A.

The former may be identified with the IS-adic completion of S, and the latter with the
I-adic completion of R. �

Proof of the Theorem. Let R be a Cohen-Macaulay ring that is a direct summand of the
regular ring S. The issue is local on R, and so we may replace R by its localization at a
prime ideal P , and S by SP . Therefore, we may assume that (R, m, K) is local. Second,

we may replace R by its completion R̂ and S by its completion with respect to mS. The
regularity of S and the direct summand property are preserved, by the Lemma just above.

Hence, we may assume without loss of generality that (R, m, K) is complete local,
and then we may represent it as module-finite over a regular local ring A with system of
parameters x1, . . . , xd. Let M = A/(x1, . . . , xd). Then the maps

fi : TorAi (M, R)→ TorAi (M, S)

vanish for i ≥ 1. Since S = R ⊕W over R (over A is enough), the maps fi are injective.
Hence,

TorAi
(
A/(x1, . . . , xd), R

)
= 0, 1 ≤ i ≤ d.

This means that the Koszul homology Hi(x1, . . . , xd; R) = 0 for i ≥ 1, and, by the
self-duality of the Koszul complex, also implies that

ExtiA
(
A(x1, . . . , xd)A, R

)
= 0, 0 ≤ i < d.

It follows that the depth of R on (x1, . . . , xd)A is d = dim (A) = dim (R). Hence R is
Cohen-Macaulay. �

Theorem. The Vanishing Theorem for Maps of Tor, if it holds in a given characteristic,
implies that the direct summand conjecture holds in that characteristic, i.e., that regular
rings are direct summands of their module-finite extensions in that characteristic.

Proof. Let A ↪→ R be module-finite. We want to show that this map splits. By part (a)
of the Theorem on p. 3 of the Lecture Notes from September 24, it suffices to show this
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when (A, m, K) is local. By part (b), we may reduce to the case where A is complete.
We may kill a minimal prime p of R disjoint from A◦. If A → R/p has a splitting θ,

the composite map R � R/p
θ−→ A splits A ↪→ R. Hence, we may also assume that R

is a domain module-finite over A. Then R is local. Let L be the residue field of R. Let
x1, . . . , xd be a regular sequence of parameters for A. The the image of 1 generates the
socle in A/(x1, . . . , xd)A = A/m = K. Hence, the image of xt−1

1 · · ·xt−1
d generates the

socle in A/(xt1, . . . , x
t
d)A for all t ≥ 1. By characterization (4) in the Theorem at the top

of p. 3 of the Lecture Notes from October 24, it suffices to show that we cannot have an
equation

(∗) xt−1
1 · · ·xt−1

d = y1x
t
1 + · · ·+ ydx

t
d

for any t ≥ 1 with y1, . . . , yd ∈ R.

Observe that ifA→ T is any ring homomorphism, f1, . . . , fh ∈ A, and I = (f1, . . . , fh)A,

then TorA1 (A/I, T ) is the quotient of the submodule of Th whose elements are the rela-
tions on f1, . . . , fh with coefficients in T by the submodule generated by the images of the
relations on f1, . . . , fh over A. (A free resolution of A/I over A begins

· · · −→ Ak
α−→ Ah

(fi)−−→ A −→ A/I −→ 0

where (fi) is a 1× h row vector whose entries are f1, . . . , fh and the column space of the
matrix α is the module of relations on f1, . . . , fh over A. Drop the A/I term, apply the
functor T ⊗ , and take homology at the Th spot.)

Assume that we have the equation (∗) for some t ≥ 1 and y1, . . . , yd ∈ R Let I be the
ideal of A with generators

xt−1
1 · · ·xt−1

d , xt1, . . . , x
t
d.

Then
(#) (1, −y1, . . . , −yd)

represents an element of TorA1 (A/I, R). Take S to be the residue class field L of R. S = L
is certainly regular. Hence, assuming the Vanishing Theorem for Maps of Tor, the image
of the relation (#) in TorA1 (A/I, L) is 0. The image of the relation (#) has the entry 1 in
its first coordinate. However, the relations on

xt−1
1 · · ·xt−1

d , xt1, . . . , x
t
d

over A all have first entry in m, since xt−1
1 · · ·xt−1

d , /∈ (xt1, . . . , x
t
d)A. These relations map

to elements of Ld+1 whose first coordinate is 0, and so the image of (#) cannot be in their
span, a contradiction. �

It is worth noting that these two applications of the Vanishing Theorem for Maps of
Tor are, in some sense, at diametrically opposed extremes. In the first application, the
map to the regular ring S is a split injection. In the second, the map to the regular ring
S is simply the quotient surjection of a local ring to its residue class field!



265

Math 711, Fall 2007 Problem Set #1 Solutions

1. Let θ(1) = c 6= 0. If r ∈ IS ∩ R, we have r = f1s1 + · · · fnsn with r ∈ R, the fi ∈ I,
and s1, . . . , sn ∈ S. Then for all q, rq = fq1 s

q
1 + · · · fqnsqn, and applying the R-linear map

θ yields crq = rqθ(1) = fq1 θ(s
q
1) + · · · fqnθ(sqn) ∈ I [q]. Hence, r ∈ I∗. �

2. Since S is weakly F-regular, it is normal, and, hence, a finite product of weakly F-regular
domains. It follows that R is reduced. We use induction first on the number of factors of
R, if R is a product, and second on the number of factors of S. If R is not a domain, we
can partition the minimal primes into two nonempty sets M1 and M2. We can construct
a in all of the primes that are in M1 and not in any of the primes that are in M2, and
b in all of the primes in M2 and in none of the primes in M1. Then ab = 0 and a + b is
not a zerodivisor in R. If we kill any minimal prime of S, either a or b becomes 0, and,
in either case, a is in the ideal (a + b)S. Hence, a is in its tight closure and therefore in
the ideal in S. Then a ∈ (a + b)S ∩ R = (a + b)R, and so we can find e ∈ R such that
a = e(a + b). Modulo every prime in M1, we must have e ≡ 0, and modulo every prime
in M2 we must have e ≡ 1. It follows that e ≡ e2 mod every minimal prime, and, hence,
that e is a nontrivial idempotent in R. It is immediate that R is a product Re×Rf with
f = 1 − e, and Re ↪→ Se and Rf ↪→ Sf inherit the hypothesis. Hence, by induction on
the number of factors of R, both Re and Rf are weakly F-regular: consequently, so is R.

Thus, we may reduce to the case where R is a domain. If R◦ maps into S◦, which is
automatic if S is a domain, then whenever crq ∈ I [q] for all q � 0 in R, we have that
crq ∈ I [q]S = (IS)[q] for all q � 0 in S, and then r ∈ (IS)∗ in S, i.e., r ∈ IS, since S is
weakly F-regular. But then r ∈ IS ∩R = I, and so every ideal I of R is tightly closed.

Now suppose that S = S1×· · ·×Sn where n ≥ 2. We proceed by induction on n. Every Si
is an R-algebra. If R→ Si is injective for every i, then R◦ maps into S◦ = S◦1 × · · · × S◦n.
If not, we may assume by renumbering that R → Sn has a nonzero kernel P . Let T =
S1 × · · · × Sn−1. We shall show that R → T still has the property that IT ∩ R = I
for all I ⊆ R, and then the result follows by induction on n. Suppose not, and choose
I ⊆ R and u ∈ R − I such that u ∈ IT ∩ R. Let a be a nonzero element of P . Then
au ∈ aIT ∩R, but au /∈ aI in R. Since au maps to 0 in Sn and aIS = (0) in Sn, we have
that au ∈ aI(T × Sn) = aIS as well, and so au ∈ aIS ∩R− aI, a contradiction. �

Further comments on 2. Note that it is not true that the hypothesis that (∗) every ideal
of R is contracted from S implies that R◦ maps into S◦. Let R = K[x], S = K[x] ×K,
where K is a field, and consider the homomorphism R→ S such that f 7→

(
f, f(0)

)
. The

product projection π1 : S → R on the first coordinate is an algebra retraction of S to R,
which implies that (∗) holds. But x ∈ R◦ maps to (x, 0) /∈ S◦.

Likewise, (∗) does not imply that there is a choice of minimal primes p in R and q in S such
that q lies over p and the induced map R/p → S/q still has property (∗). For example,
suppose that R = K[x2, x3] ⊆ K[x], where K is a field of characteristic other than 2, and
x is an indeterminate over K. Let y be a new indeterminate, and let S = R[y]/(y2 − x2).
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Then S is R-free on the basis consisting of the images of 1 and y, and so every ideal of
R is contracted from S. R is a domain, while S has two minimal primes, which are the
contractions of y−x and y+x, respectively, from K[x, y]. The quotient by either minimal
prime of S is K[x], and (∗) fails for R ⊆ K[x], since x3 is in the expansion of x2R.

3. If P ∈ Ass (M) then R/P ↪→ M . Applying Fe, which is faithfully flat, we have
R/P [q] ↪→ Fe(M). Since Rad (P [q]) = P , P is a minimal prime of P [q], and so R/P ↪→
R/P [q] ↪→ Fe(M). Hence, P ∈ Ass

(
Fe(M)

)
. Now suppose that P /∈ Ass (M). Whether

P ∈ Ass (M) or P ∈ Ass
(
Fe(M)

)
is unaffected by localization at P . (Note that if

T = RP , FeT (MP ) ∼= F eR(M)P .) Therefore, we may assume that (R, P, K) is local, and
that P /∈ Ass (M). Then there exists x ∈ P that is not a zerodivisor on M . It follows that
xq is a nonzerodivisor on Fe(M), and so P /∈ Ass

(
Fe(M)

)
, as required. �

Further comments on 3. It is not true in general that if M is a finitely generated
module over a Noetherian ring R, then M has a filtration by prime cyclic modules R/P
such that P ∈ Ass (M). E.g., let R be any local domain whose maximal ideal m is not
principal, and consider m as an R-module. The only associated prime is 0. Any prime
cyclic filtration of m will involve one copy of R, but there will also be copies of R/P for
P 6= (0). However, it is true that M has a filtration such that each factor is a torsion-free
module over R/P for some P ∈ Ass (M). Each finitely generated torsion-free module over
R/P can be embedded in a finitely generated free module over R/P . These two facts,
which we leave as exercises, lead to a different proof that Ass

(
Fe(M)

)
incAss (M). It

suffices to show this for each torsion-free factor, and this reduces to the case of a free R/P -
module and then to the case of R/P itself. Then one can conclude using the argument
given in class that every P [q] is P -primary. �

4. For every generator ui of J we can choose ci ∈ R◦ such that cuqi ∈ I [q] for all q � 0.

Let c ∈ R◦ be the product of the ci. Then c ∈ R◦ is such that cJ [q] ⊆ I [q] for all q � 0.
Now 0 ≤ `(R/I [q])− `(R/J [q]) (since I [q] ⊆ J [q]), and this is the same as `(J [q]/I [q]). Since
J has k generators, J [q] has at most k generators, and the same holds for Nq = J [q]/I [q].

Since c and I [q] both kill Nq, we can map R/(I [q] + cR)⊕k onto Nq, which bounds its

length by k`
(
R/(I [q] + cR)

)
= k`(R/A[q]) ≤ k`(R/Aqh). Since R has dimension d − 1

and A is primary to its maximal ideal, this length is bounded by C1(qh)d−1, using the
ordinary Hilbert function. This yields the uppoer bound kC1h

d−1qd−1, so that we may
take C = kC1h

d−1. �

5. Let p1, . . . , pn be the minimal primes of R, and let ci ∈ R − pi represent a test
element in R/pi. We may choose di not in pi but in all other minimal primes of R. Let
c = c1d1 + · · · + cndn. Then c ∈ R◦, and if u ∈ N∗M , this is true modulo every pi, and so
ciu ∈ N + piM for all i. Then cidiu ∈ N , since di kills pi, and adding shows that cu ∈ N ,
as required. (The argument is valid both for test elements and for big test elements.) �

6. This result is proved in the Lecture Notes of October 8.
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1. ⊆ is clear. To prove ⊇, if c is a test element and u ∈
⋂
n(I + mn)∗ then for all q and

n, cuq ∈ (I + mn)[q] = I [q] + (mn)[q] ∈ Iq + mn. Fix q. Then cuq ∈
⋂
n(I [q] + mn) = Iq.

Hence, u ∈ I∗. �

2. u ∈ I∗ iff cuq ∈ I [q] for all q iff cuq ∈ IqR̂ for all q (since R̂ is faithfully flat over R,

JR̂ ∩ R = J for all J ⊆ R) iff cuq ∈ (IR̂)[q] for all q iff u ∈ (IR̂)∗. It is not necessary
that I be m-primary. More generally, if R ⊆ S, c ∈ R is a test element for both rings, and
JS ∩R = J for all J ⊆ R, then u ∈ I∗R iff u ∈ (IS)∗S . �

3. Since R and S are domains, R◦ ⊆ S◦ and I∗ ⊆ (IS)∗ = IS. Hence I∗ ⊆ IS ∩ R.
The fact that IS ∩ R ⊆ I∗ was proved in class (see the Theorem on the first page of the
Lectcure Notes from October 12).

4. Frobenius closure of ideals commutes with localization: if W is a multiplicative system
in R and (u/w)q ∈ (W−1R)[q], where u ∈ R and w ∈ W , then for some w1 ∈ W we have
w1u

q ∈ I [q], and then (w1u)q ∈ I [q] as well. But then w1u ∈ IF, and so u ∈ IF, which
shows that u/w ∈ IFW−1R as well. Now suppose that u ∈ I∗ but the cu /∈ IF. We want
to obtain a contradiction. The latter condition can be preserved by localizing at a maximal
ideal m in the support of the image of cu in R/IF. We then have that u/1 ∈ (IRm)∗ in

Rm, but that u/1 /∈ (IRm)F. Choose q ≥ Nm. We also have that uq/1 ∈
(
IRm)[q]

)∗
, and

so cquq/1 ∈ (IRm)[q], since cq is a multiple of cNm . But this says that (cu/1)q ∈ (IRm)[q],
which shows that cu/1 ∈ (IRm)F, a contradiction. �

5. Let cS be a test element for S. Then cS satisfies an equation of integral dependence on
R whose constant term is not 0 (or factor out a power of x). Hence, cS has a multiple c
in R◦. Now suppose that u ∈ H∗G, where H is a submodule of the module G over R. Fix
an R-linear map θ : S → R whose value on 1 is nonzero: call the value d. θ induces an
R-linear map η : S ⊗G→ G such that s⊗ g 7→ θ(s)g: hence, if g ∈ G, η(1⊗ g) = dg. We

have 1 ⊗ u ∈ 〈S ⊗R H〉∗S⊗RG and so 1 ⊗ cu ∈ 〈S ⊗R H〉, i.e., cu =
∑h
j=1 sj ⊗ hj , sj ∈ S,

hj ∈ H. Apply η to obtain cdu =
∑n
j=1 θ(sj)hj ∈ H. Thus, cd is a test element for R. �

6. Let x ∈ m. It suffices to show that if N ⊆ M are finitely generated modules and
u ∈ N∗M , then xu ⊆ N , for then m ⊆ τ(R) (if τ(R) = R, R is weakly F-regular). If
not, chose N ′ with N ⊆ N ′ ⊆ M such that N ′ is maximal with respect to not containing
xu. Then M/N ′ is a finite length essential extension of Rxu, which is killed by m. We
may replace u and N ⊆ M by u + N ′ and 0 ⊆ M/N ′ as a counterexample. For large t,
It = (xt1, . . . , x

t
d)R kills M , and since R/It is (R/It)-injective, M embeds in R/It. xu

must map to a socle generator, which we may take to be the image, z, of (x1 · · ·xd)t−1y.
By hypothesis, (It, z)R is tightly closed, so that Kz is tightly closed in R/It. But since
u ∈ 0∗M its image v ∈ 0∗R/It ⊆ (Kz)∗R/It = Kz. Since v ∈ Kz, xv = 0. Since M ⊆ R/It,

we also have xu = 0, a contadiction. �
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1. Since the test ideal τ(R) has height two, it cannot be contained in the union of P and
the minimal primes of R. Hence, we can choose a test element c ∈ R◦ that is not in P .

If u ∈ N∗M , we have that cuq ∈ N
[q]
M for all q � 0. This is preserved when we apply

S ⊗R , and the image of c is not 0. �

2. (a) Every element of I∗ maps into (IW−1R)∗, from which I∗W−1R ⊆ (IW−1R)∗. To
show ⊇, , let r/w ∈ (IW−1R)∗. Then r ∈ (IW−1R)∗ as well, so that for all q � 0,
(c/1)(rq/1) ∈ (IW−1R)[q] = I [q]W−1R. By the Proposition on p. 2 of the Lecture Notes
from September 17, W−1R◦ maps onto (W−1R)◦, and so we may assume that c ∈ R◦.
Then for all q � 0 there exists wq ∈ W such that wqcr

q ∈ I [q]. Since w is not in any

associated prime of I [q], it is a nonzerodivisor on I [q]. Then crq ∈ I [q] , and r ∈ I∗. �

(b) For every q, xq1, . . . , x
q
n is a regular sequence in the Cohen-Macaulay ring R, and so

R/I [q] is Cohen-Macaulay, which implies that all associated primes of I [q] are minimal
primes of I [q] and, hence, of I. By part (a), we can localize at W , the complement of the
union of the minimal primes of I, and IW−1R will be tightly closed, while PW−1R is a
maximal idea of W−1R. Thus, I remains tightly closed when we localize at PW−1R, by
the Lemma on p. 2 of the Lecture Notes from September 17. We have a reduced Cohen-
Macaulay local ring in which a system of parameters generates a tightly closed ideal, and
the ring is F-rational by the Theorem on p. 9 of the Lecture Notes from October 8. �

(c) R is F-rational and so it is certainly Cohen-Macaulay and reduced. Choose part of a
system of parameters for R that is also a system of parameters for RP . The ideal these
elements generate in R is tightly closed, and, hence, so is the ideal they generate in RP . �

3. Let P be maximal in Ass (M) and let N = AnnMP . Then N 6= 0, and it will suffice
to show that (∗) Ass (M) = Ass (N) ∪ Ass (M/N). In fact, Ass (N) ⊆ Ass (M) and any
prime in Ass (N) must contain P . It follows that Ass (N) = {P}, since P is maximal in
Ass (M), and that N is a torsion-free module over R/P . If (∗) holds, then by Noetherian
induction on M , M/N will have a filtration as required whose inverse image in M , together
with N , will give the required filtration of M . To prove (∗) note that we always have ⊆
and that Ass (N) ⊆ Ass (M). We need only show that Ass (M/N) ⊆ Ass (M). Suppose
Q ∈ Ass (M/N). If P is not contained in Q, then NQ = 0, and so MQ = (M/N)Q. Thus,
QRQ ∈ Ass (MQ) over RQ, and so Q ∈ Ass (M), as required. Now suppose that P ⊂ Q
strictly, and that Q is the annihilator of u ∈ M −N . Since u /∈ N , we can choose r ∈ P
such that ru 6= 0. But then Qru = rQu ⊆ rN = 0, and so Q or a larger prime is in
Ass (M), contradicting the maximality of P . �

(b) If P ∈ AssR(M), then R/P ↪→ M , and so S/PS = S ⊗R R/P injects into S ⊗R M .
Thus, AssS(S/PS) ⊆ Ass S(S ⊗R M) for every P ∈ AssR(M). This proves ⊇. For the
other direction, suppose that we have a finite filtration of M such that every factor Ni
is a torsion-free module over R/Pi for some Pi ∈ AssR(M). Then we have a filtration
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of S ⊗R M by the modules S ⊗ Ni. It suffices to show that if Ni is nonzero torsion-free
over R/Pi, then AssS(S ⊗R Ni) ⊆ AssS(S/PiS). But if Ni is torsion-free over R/Pi, it
embeds in a free module (R/Pi)

⊕h by the Lemma on the first page of the Lecture Notes
from October 12. Therefore, S ⊗R Ni embeds in S ⊗R (R/P )⊕h, which is a direct sum of
copies of S/PS. Hence, Ass S(S ⊗R Ni) ⊆ AssS(S/PiS). �

4. Evidently τ(R) ⊆ I :R I∗ for every ideal I. In the local case, if It is a sequence of
m-primary irreducible ideals cofinal with the powers of m, then τ(R) =

⋂
t(It :R I∗t ).

To see this, suppose c is in the intersection but not in τ(R). Then there exist finitely
generated modules N ⊆ M such that u ∈ N∗ but cu /∈ N . Replace N by N ′ maximal
such that N ⊆ N ′ ⊆ M and cu /∈ N ′. Then replace, u, M,N ′ by v, M/N ′, 0, where v is
the image of u in M/N ′. Every nonzero submodule of M contains Rcv = Kcv, and so
M is a finite length essential extension of K and is killed by some It: then M ↪→ R/It
with cv corresponding to the socle element. Then v corresponds to an element r of I∗t /It
with cr /∈ It, a contradiction, since cI∗t ⊆ It by hypothesis. If x1, . . . , xn is generated by
test elements in the Gorenstein ring (R, m, K), let It = (xt1, . . . , x

t
n). We only need that

I :R I
∗ = It :R I

∗
t for all t. Let u ∈ I∗t . Then xiu ∈ It for all i, and u ∈ It :R I = It+y

t−1R,
where y = x1 · · · xn. But if u = f + yt−1r, then r ∈ I∗t :R yt−1 = J : we’ll show that
J ⊆ I∗. Since yt−1r ∈ I∗t , for some d ∈ R◦ and all q � 0, dyq(t−1)rq ∈ (It)

[q] = Iq ⇒ drq ∈
Itq :R y

tq−q = I [q]. Thus, r ∈ I∗, and I∗t = It + yt−1I∗. But then cI∗t ⊆ It iff cyt−1I∗ ⊆ It,
and this holds iff cI∗ ⊆ It :R y

t−1 = I. Thus, I∗t :R It = I∗ :R I, as required. �

5. (a) With R F-finite or complete, it follows from part (6) of the splitting crriterion
at the top of p. 3 of the Lecture Notes from October 24 that the map is split iff uS /∈
(x1, . . . , xn)S, where S is R viewed as an R-algebra via F : R → R. But this means
precisely that up /∈ (xp1, . . . , x

p
n)R.

(b) Use x, y as a system of parameters. The socle mod (x, y) is represented by z2. Note
that R is free over A = K[[x, y]] on the basis 1, z, z2, and so every element can be
uniquely represented as a0 + a1z + a2z

2 with the ai ∈ A. The ring is F-split if and
only if z2p /∈ (xp, yp). Let p = 3k + r, where r = 1 or 2 and so 2p = 6k + 2r. Then
z2p = z6kz2r = ±(x3 + y3)2kz2 if r = 1 and ±(x3 + y3)2k+1z if r = 2. This is in (xp, yp) iff
all terns of (x3 + y3)2k (resp., (x3 + y3)2k+1) are: the binomial coefficients do not vanish,
since 2k + 1 < p. In case r = 1 there is a term involving x3ky3k which is not in (xp, yp).
In the second case, every term involves an exponent on x3 or on y3 that is at least k + 1,
and 3k+ 3 > p. Hence, the ring is F-split if p ≡ 1 mod 3 and is not F-split if p ≡ 2 mod 3.

6. (a) When N is already a module over W−1R = S, S ⊗R N ∼= N as S-modules. Hence,
FeS(M) ∼= FeS(S⊗RM) ∼= S⊗RFeR(M) (by property (11) on p. 3 of the Lecture Notes from
September 12), and this is simply FeR(M) because every w ∈W already acts invertibly on
this module, since wq does.

(b) By the equivalent condition (c) in the Proposition on p. 3 of the Lecture Notes from
October 22, it suffices to show that for every prime ideal Q of W−1R, 0 is tightly closed in
the injective hull of W−1R/Q. We know that Q has the form PW−1R for some prime ideal
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P of R disjoint from W . Thus it suffices to check that 0 is tightly closed in E = E(R/P )
thought of as an W−1R module. Suppose to the contrary that u 6= 0 is in the tight closure
of 0. By the Proposition on p. 2 of the Lecture Notes from September 17, we may assume
the element used in establishing that u is in the tight closure is the image of c ∈ R◦. Then
cuq is 0 in FeS(E) for all q � 0. Since FeS(E) ∼= FeR(E), this shows that u is in the tight
closure of 0 in E working over R, a contradiction. �
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Math 711, Fall 2007 Problem Set #4 Solutions

1. Let eR indicate R and viewed as an R-algebra via F eR and similarly for eS. We have
that FeR(M) ⊗R FeS(N) = (eR ⊗R M) ⊗eR (eS ⊗S N) ∼= (M ⊗R eR) ⊗eR (eS ⊗S N) (by
the associativity of ⊗) ∼= M ⊗R (eS ⊗S N) ∼= (eS ⊗S N) ⊗R M ∼= eS ⊗S (N ⊗R M) (by
the associativity of ⊗) ∼= eS ⊗S (M ⊗R N) = FeS(M ⊗R N). Then, as we trace through
the identifications, uq ⊗ vq 7→ (1 ⊗ u) ⊗ (1 ⊗ v) 7→ (u ⊗ 1) ⊗ (1 ⊗ v) 7→ u ⊗ (1 ⊗ v) 7→
u⊗ (v ⊗ 1) 7→ (u⊗ v)⊗ 1 7→ 1⊗ (u⊗ v), as required. �

2. If x is a nonzerodivisor on R, it is also on the smallest ideal 6= 0 in the specified filtration
(or on R/I, if I = 0), which is ∼= (R/I)t, t > 0. Thus, x is a nonzerodivisor on R/I. If x
is a nonzerodivisor on R/I, it is also on each It−1/It, since these are (R/I)-free. By the
Proposition on p. 1, October 8, and its proof, x is a nonzerodivisor on R, and the filtration
is preserved when we kill x. This proves (a). Since I is nilpotent, dim (R/I) = dim (R)
⇒ the image of a system of parameters for R is a system of parameters for R/I. The
statement about the Cohen-Macaulay property in (b) now follows at once from part (a),
and the fact that as we successively kill elements of a system of parameters, we are in the
same situation that we had initially, but with the dimension one smaller. �

3. (a) Localize at an element in all minimal primes except P so that P is the only minimal
prime. Any finitely generated (R/P )-module has a localization at one element not in P
that is free. We may apply this successively to each factor in a filtration as discussed in
the statement of the problem. Now, when we localize at any prime containing P , we are
in the situation of Problem 2, and part (b) gives the required result. �

(b) We apply conditions (1) and (2◦) of the criterion at the top of p. 3 of the Lecture Notes
from November 5. We know that if Q ⊆ P and RP is Cohen-Macaulay then RQ is Cohen-
Macaulay. Now suppose that RP is Cohen-Macaulay and we want an open neighborhood
U of P in V(P ) such that RQ is Cohen-Macaulay for Q ∈ U . Choose a maximal regular
sequence in PRP consisting of images of elements x1, . . . , xh in R. After localizing at
one element of RP , these form a regular sequence in R, and we may kill them without
affecting the issue. Thus, we may assume that P is a minimal prime of R. After localizing
at one more element of R − P , we have from part (a) that P is the only minimal prime
of R and that RQ is Cohen-Macaulay iff (R/P )Q is Cohen-Macaulay. Thus, we need only
consider the case where R = R/P is a domain. Suppose that R = S/p where p is is a
prime ideal of the Cohen-Macaulay ring S. After localizing at one element of S − p, p
will contain a maximal regular sequence that is also a maximal regular sequence in Sp.
We may kill it without affecting the issue. We now have that p is a minimal prime of the
Cohen-Macaulay ring S. By another application of part (a), we may localize at a single
element of S − p so that p is the only minimal prime of S and SQ is Cohen-Macaulay iff
(S/p)Q is Cohen-Macaulay. But then S/p is Cohen-Macaulay. �

4. Since S is a torsion-free finitely generated R-module it is embeddable in a finitely gen-
erated free R-module Rh. The image of 1 in Rh will have at least one nonzero coordinate,
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and the composite of S ↪→ Rh and projection on that cooridinate will give an R-linear
map θ : S → R such that θ(1) = c ∈ R◦. Now suppose that u ∈ 〈S ⊗R N〉 in S ⊗R M .

Then there exists d ∈ S◦ such that duq ∈ 〈S ⊗R N〉[q] = 〈S ⊗R N [q]〉 for all q � 0. We
may replace d by a nonzero multiple R◦, and so we may assume that that d ∈ R◦. Now
apply θ ⊗ 1Fe(M) to obtain that c(duq) ∈ N [q] for all q � 0, as required. �

5. Write R as a finite-module over a DVR A: it is A-free. Let M \ = HomA(M, A). The
rank of M over R is its rank over A divided by the rank of R over A, and the same holds
for M \. Then M \ and M have the same rank over R. It suffices to show that the type
of M is the number of generators of M \ over R. Let x be a regular parameter for A.
Let N = M/xM . Then M \/xM \ ∼= HomK(N, A/xA) = HomK(N, K). Let u1, . . . , uh
generate the maximal ideal of R/xR. Let ∗ indicate duals into K. We have an exact
sequence 0→ V → N → Nh where dimK(V ) is the type of M/xM and of M and the map
has matrix (u1 . . . uh). Applying HomK( ,K) gives an exact sequence which shows that
V ∗ ∼= N∗/(u1, . . . , uh)N∗ ∼= M \/mM \. �

6. Again apply (1) and (2◦): we know (1). Since the Cohen-Macaulay locus is open, we
may assume that the ring is Cohen-Macaulay. Suppose the type of RP is t. We may also
localize at c ∈ R − P so that R/P is Cohen-Macaulay. As in 3., we may assume P is
the only minimal prime of R. If R = S/J , with S Gorenstein, then R/P = S/Q for a
prime ideal Q of S. After localizing c ∈ S − Q, we may kill a maximal regular sequence
for SQ that is is in J . After localizaing at c′ ∈ S −Q we may assume that S is Gorenstein
with unique minimal prime Q, and that R = S/J with J ⊆ Q. Since RP has type t, we
have an SQ-module embedding ι : R/P ↪→ (S/Q)⊕t: embed the socle of RP and then
extend the map to RP using that SQ is injective. Since localization commutes with Hom,
we have R ↪→ St inducing αι, where α is a unit of SQ. Then 0 → R → St → C → 0 is
exact where each S-module is killed by a power of Q. Filter R and C so that the finitely
many factors are (S/Q)-modules, and localize at c′′ ∈ S−Q so that all factors are free over
S/Q = R/P . Then all of R, C, St are maximal Cohen-Macaulay modules. If we localize at
any primeM of S and kill a system of parameters y1, . . . , yk, we get an exact sequence 0→
RM/(y1, . . . , yk)RM →

(
SM/(y1, . . . , yk)SM

)⊕t → CM/(y1, . . . , yk)CM → 0, and since
the socle in the middle term has dimension at most t, so does the socle in R/(y1, . . . , yk)R.

If R is excellent, localize at c ∈ R−P so that R/P is regular. Let Mi = AnnRP
i and M =

M1. Localize at c′ ∈ R−P so that all the Mi+1/Mi are (R/P )-free. Then M ∼= (R/P )⊕t,
since M is R/P -free, and its rank is t because RP has type t. For each prime Q of R, let
B = QB be the quotient of RQ by the images of elements x1, . . . , xK ∈ R that form a
regular system of parameters in (R/P )Q. We shall write B for B ⊗R . PRB = PB is
the maximal ideal of RB = B, and is nilpotent. B/PB is a field. We show by induction
on n that, after localizing at c′′ ∈ R−P , then (∗) for Q ∈ Spec (R), AnnBP

i is (Mi)B . In
particular, the socle of B is (M1)B ∼= (B/PB)t, and so the type is t, as required. By the
induction hypothesis, we may assume that we have localized so that (∗) holds for R/M1.
We know M1 = (R/P )⊕t. We have an exact sequence (∗) 0 → M1 → R → R/M1 → 0

which yields (#) 0 → HomR(R/P, M1)
f−→ HomR(R/P, R) → HomR(R/P, R/M1)

∂−→
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Ext1
R(R/P, M1)→ D → 0, where D = Coker (∂). The map f is onto and so ∂ is injective.

We want to compare the result of applying B to (#) with the result of forming the
long exact sequence (#B), , truncated at the same spot, for HomB

(
B/PB,

)
applied

to the short exact sequence obtained by applying B to (∗). We want these two to be
the same. It suffices to localize at c′′′ ∈ R − P so the map ∂B in (#B) is still injective,
and B commutes with the formation of HomR(R/P, R/M1) and Ext1(R/P, M) as well
as the formation of the connecting homomorphism. For then the counterpart fB of f in
(#B) will again be onto. This can be achieved by localizing to make sufficiently many (but
finitely many) auxiliary modules have finite filtrations by free (R/P )-modules, along with
the observation that for HomR(R/P, R/M1), we get what we need from the induction
hypothesis. Localization at Q and killing a regular system of parameters in RQ then
preserve exactness. LetG2 → G1 → G0 → R/P → 0 be part of a finite free R-resolution for
R/P . Then we also have exact sequences 0→ Z1 → HomR(G1, M1)→ HomR(G2, M1)→
E → 0, 0→ Z0 → HomR(G0, M1)→ B1 → 0, and 0→ B1 → Z1 → Ext1

R(R/P, M1)→ 0,
If we localize so that every module occurring has a finite filtration by free R/P -modules,
then x1, . . . , xk is a regular sequence on every module after localization at Q, and the
exactness is preserved when we apply B . Moreover, B commutes with Hom from
a free R-module. The fact needed about the connecting homomorphism is now easy to
check. �
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Math 711, Fall 2007 Problem Set #5 Solutions

1. (a) The extension is module-finite since the equation is monic in Z, and generically
étale since adjoining a cube root gives a separable field extension in characteristic 6= 3.
The matrix has as entries the traces of the elements zi−1+j−1, 1 ≤ i, j ≤ 3. The trace
of 1 is 3, and the trace of multiplication by z or z2 is 0 (the matrices have all zeros on
the diagonal). Since z3 = −(x3 + y3) and z4 = −(x3 + y3)z, the matrix of traces is 3 0 0

0 0 −3(x3 + y3)
0 −3(x3 + y3) 0

 , whose determinant is −27(x3 + y3)2 = −27z6.

(b) The partial derivatives are 3X2, 3Y 2, and 3Z2, and 3 is invertible in K. �

2. R is Gorenstein, and not weakly F-regular, since z2 ∈ (x, y)∗. (The solution for
5(b) in Problem Set #3 gives x(z2)q ∈ (xq, yq) for all q.) Hence, no parameter ideal
is tightly closed in R. Since z2 is a socle generator mod (x, y), (xy)z2 is mod (x2, y2).
Mod J = (x2, y2, xyz2) the ring is K-spanned by 1, x, y, z, xy, xz, yz, z2, xz2, yz2

and xyz. It suffices to show that J = I∗: since I 6= I∗, xyz2 ∈ I∗. If not, there exists
v ∈ I∗ representing a socle element of R/J − {0}. The socle in R/J is spanned by the
images of xz2, yz2, and xyz. Hence, it suffices if when a, b, c ∈ K, not all 0, then for
some q, x2(axz2 + byz2 + cxyz)q /∈ (x2q, y2q). The left hand side is A + B + C where

A = aqxq+2(x3 + y3)kzρ, B = bqx2yq(x3 + y3)kzρ, and C = cqxq+2yq(x3 + y3)hzρ
′
, where

2q = 3k + ρ, q = 3h + ρ′, with 1 ≤ ρ, ρ′ ≤ 2. R is K[x, y]-free on the basis 1, z, z2. Since
ρ ≡ 3ρ′ mod 3, terms from C cannot cancel those from A or B. Exponents on x in terms
from A are ≡ q + 2 mod 3; those from B are ≡ 2 mod 3: these cannot cancel either.

Thus, if az2x+ bz2y+ cxyz ∈ I∗, each term with nonzero coefficient ∈ I∗. Thus, it suffices
to show that each of z2x, z2y, zxy /∈ I∗. Say zxy ∈ I∗. Then colon-capturing (cf. the

Theorem, bottom of p. 2, November 12) gives z ∈ (x2, y2)∗ : xy ⊆
(
(x2, y2) : xy

)∗
= (x, y)∗.

But x2zq = x2(x3 + y3)hzaρ, and if q = p, x2(x3 + y3)h has a term x2x3bh/2cy3(h−bh/2c).
Since 3bh/2c ≤ 3h/2 ≤ p/2 < p and 3(h−bh/2c) ≤ 3

(
h−(h−1/2)

)
≤ 3h+3/2 < p+1 < 2p,

and
(

k
bh/2c

)
6= 0 with k < p, z /∈ (x2, y2).

If xz2 ∈ (x2, y2)∗, then z2 ∈ (x2, y2)∗ : x ⊆
(
(x2, y2) : x

)∗
= (x2, y)∗. We will show

this is false. (By symmetry, this handles v = yz2.) Then x2zq ∈ (x2q, yq) for all q

⇒ x2(x3 + y3)kzρ
′ ∈ (x2q, yq) and so x2(x3 + y3)k ∈ (x2q, yq). But

(
k
1

)
x2(x3)k−1y3 /∈

(x2q, yq): since p does not divide k = (2q − ρ′)/3 the coefficient is nonzero, while the
degree in x is 2 + 3k − 3 = 3k − 1 < 2q and the degree in y is 3 < q for all q � 0.

It follows that the test ideal in Rm where m = (x, y, z)R is (x2, y2)Rm : JRm = mRm,
i.e., the annihilator of 0∗E in the injective hull of Rm/mRm is m. This is also true for
ER(R/m) ∼= E. The localization at other maximal ideals is regular, and the annihilator of
0∗E′ = 0 in the injective hull E′ of R/m′ for any other maximal ideal m′ of R. It follows
from the Theorem at the top of p. 5, notes from Novemberr 30, that τ(R) = m. �
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3. Suppose u ∈ R (we may assume this after clearing denominators) has the property that
its image in W−1R is in (IW−1R)∗ − (I∗)W−1R. Choose a prime ideal of W−1R that
contains (I∗)W−1R :W−1R u ⊇ IW−1R. Localizing at this prime gives a counterexample
in which W = R− P for some prime P with I ⊆ P . But then I is generated by part of a
system of parameters for RP , and we may replace tight closure by plus closure throughout.
Since plus closure commutes with localization, the result follows.

4. We need to prove that every ideal I generated by parameters in R is tightly closed. But
if u ∈ R and u ∈ I∗ = I+, there is a module-finite extension S of R such that u ∈ IS ∩R.
Since R ↪→ S splits by hypothesis, IS ∩R = I. �

5. Since R is complete, it suffices to prove that ideals I of R are contracted from S.
Suppose u ∈ IS ∩ R. Since R is weakly F-regular, it suffices to show that u ∈ I∗. Hence,
it suffices to show that S is a solid R-algebra, i.e., that Hd

m(S) 6= 0, or Hd
mS(S) 6= 0. Since

height (mS) = d, we can pick a minimal prime M of mS of height d. Then MSM =
Rad (mSM), and so Hd

mS(S)M = Hd
mS(SM) = Hd

MSM
(SM) 6= 0, since dim (SM) = d. �

6. Assume (∗q) cGq = uq1G
q
1 + · · ·uqhGqh for q � q1 where G, G1, . . . , Gh all have the

same degree and c 6= 0. The same holds when we pass to a homogenous component ck 6= 0
of c and the degree k components of the ui. Thus, we may assume that c and all uqh ∈ [R]k.
Take h minimum. If all of the uqi ∈ Kc, divide by c and take q th roots to show G ∈ I.
Hence, for every q, at least one uqi /∈ cK. Choose i such that uqi /∈ Kc for q ∈ Q with
|Q| =∞. By renumbering, say i = h, so that uqh /∈ Kc for q ∈ Q. It suffices if there exist
q0 and c′ ∈ R◦, such that for q ⊆ Q, there exists an Rq0-lineaar map θq : R→ R such that
θq(c) = c′ and θq(uhq) = 0. For then applying θq for q ≥ max{q0, q1} with q ∈ Q to (∗q)
shows that c′Gq ∈ (G1, . . . , Gh−1)[q] for infinitely many q, and we may replace h by h− 1.

Let K = frac (R) and K ′ =
⋂
q Kq. Then K ′ = K: to see this, choose a separating tran-

scendence basis for K and enlarge K to be Galois over a pure transcendental extension
F = K(y1, . . . , yd). Given w ∈ K ′ −K, all elementary symmetric functions of its conju-
gates over F are also in K ′, and so one of them z ∈ F ∩K ′ −K. Write z = (f/g)q with
f, g ∈ K[y] in lowest terms and not all exponents divisible by p. Then z has a pq th root
in K, and so f/g has a p th root in K not in F , contradicting that K/F is Galois.

Let v1, . . . , vN be a K-basis for [R]K . Then dimKqspanKq{v1, . . . , vn} cannot decrease
with q. Pick q0 for which it is maximum, and renumber so that v1, . . . , vt give a basis
for the span over Kq0 . If t < N , write vt+1 as a Kq0 -linear combination of v1, . . . , vt.
Then we must have that some coefficient is not in K, and we can choose q′ > q0 so
that this coefficient is not in Kq′ . Then v1, . . . , vt+1 are independent over Kq′ : a new
relation would give a relation on v1, . . . , vt. Thus, v1, . . . , vN are independent over Kq0 .
Extend v1, . . . , vN to v1, . . . , vB ∈ R, a Kq0-basis for K over Kq0 . Then we can choose

d ∈ Rq0 −{0} such that dR ⊆M =
∑B
j=1R

q0vj . We can now define θq as follows. Choose
a K-linear map T : V → R that sends c to c, and kills uh: this is possible since c and

uh are linearly independent over K. Extend this map to M =
∑B
j=1R

q0vj → R: let the
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values on v1, . . . , vN be given by T , and choose the values on the other vj arbitrarily. This
gives ηq : M → R that is Rq0-linear such that θq(c) = c and ηq(uqh) = 0. Finally, define
θq on R by θq(r) = ηq(dr). Then θq(c) = ηq(dc) = dηq(c) = dc, and θa(uhq) = ηq(duhq) =
dηquhq) = 0. Take c′ = dc. �


