1. Let $p = 3h + 2, h \in \mathbb{N}$. Then $z^{2p} = z^{6h+4} = (z^3)^{2h+1}z = -(x^3 + y^3)^{2h+1}z$. Each term in the binomial theorem expansion of $(x^3 + y^3)^{2h+1}$ is a multiple of $(x^3)^{a_i}(y^3)^{b_i}$ where $a_i, b_i \in \mathbb{N}$ and $a_i + b_i = 2h + 1$. If $3a_i < p$ and $3b_i < p$, then $3a_i + 3b_i \leq p - 1 + p - 1 = 6h + 2$, But $3(a_i + b_i) = 6h + 3$, a contradiction. It follows that each term is in (x^p, y^p) , and, hence, so is the sum.

2. Following the suggestion, if $u \in M \setminus \{0\}$ is killed by power of m, choose t is large as possible such that $\mathfrak{m}^t u \neq 0$. Any nonzero element of $\mathfrak{m}^t u$ is killed by \mathfrak{m} . Take M = R/I. If $u \in I^* \setminus I$, choose a multiple v of u that represents an element of the socle in R/I but is not 0. Then $v \in I^* \setminus I$.

3. As indicated, it suffices to show that when $\dim(R) = 1$ the socle V mod xR is isomorphic to the socle $W \mod xyR$ when x, y are parameters (equivalently, nonzerodivisors). Note: When y is a nonzerodivisor and $yA \subseteq yB$ then $A \subseteq B$. We show multiplication by y gives the needed isomorphism. If $v \in R$ represents an element of V then $\mathfrak{m}v \subseteq xR$ implies that $myv \subseteq xyR$. The map is injective because if yv - yv' = xyr then y(v - v' - xr) = 0and $v \equiv v'$ in R/xR. Now suppose $w\mathfrak{m} \in xyR$. Then $x \in \mathfrak{m}$, and wx = xyr, so that x(w-yr) = 0 and w = yr. To show the map surjective, it suffices to show $r\mathfrak{m} \subseteq xR$. But $w\mathfrak{m} \subseteq xyR$ so that $yr\mathfrak{m} \subseteq xyR$, and, hence, $r\mathfrak{m} \subseteq xR$. \Box

4. This is immediate from 2.

5. If $u \in (N : f)_M^*$ we have $c \in R^\circ$ such that $cu^q = \sum_{j=1}^{n_q} r_{qj} u_{qj}^q$ for all $q \ge q_0$, where every $u_{qi} \in N :_R f$ and so satisfies $fu_{qi} \in N$. If we multiply by f^q we have $c(fu)^q = \sum_{j=1}^{n_q} r_{qi} (fu_{qj})^q \in N^{[q]}$ for $q \ge q_0$. Since $N = N^*$, $fu \in N$ and $u \in N :_R f$, as required. \Box

6. If $f \in J$ then since JM = IM we can write $ju = \sum_{i=1}^{n} g_i m_i$ with all $g_i \in I$ and all $m_i \in M$. Applying the *e*-fold iterated composition F^e , we obtain $j^q u = \sum_{i=1}^{n} g_i^q F^e(m_i)$, since $F^e(u) = u$. Applying the *R*-linear map θ now yields $cj^q = j^q \theta(u) = \sum_{i=1}^n g_i^q \theta(F^e(m_i)) \in I$ $I^{[q]}$ for all q, and so $i \in I^*$. \Box

EC1. and 2. The identification is immediate from the adjointness. Note also that the value of $^{\vee}$ on $K = A/\mathfrak{m}$ is K (since it is the same as $\operatorname{Hom}_{K}(\underline{\ }, K)$ and that the value on $(A/\mathfrak{m})^t$ is an isomorphic module. For **EC2.**, let a_1, \ldots, a_n generate \mathfrak{m} . Let $\alpha : M \to M^n$ by $m \mapsto (a_1 m, \ldots, a_n m)$. We have

is exact. When we apply $_^{\vee}$ we get an exact sequence M^n

where the dual map α^{\vee} takes $(m_1, \ldots, m_n) \mapsto \sum_{i=1}^n a_i m_i$. Thus, cokernel α^{\vee} is $M^{\vee}/\mathfrak{m}M^{\vee}$, and so $(\operatorname{Ann}_M\mathfrak{m})^{\vee} \cong M^{\vee}/\mathfrak{m}M^{\vee}$. The two modules are vector spaces of the same dimension. Since $M^{\vee\vee} \cong M$, one may interchange the roles of M and M^{\vee} . Finally, A and A^{\vee} alwaays have have the same length. We have that A is Gorenstein if and only if it is type one if and only if A^{\vee} is cyclic, and has the form A/J. But A and A/J caannot have the same length unless J = (0). Thus, A^{\vee} is cyclic if and only if $A^{\vee} \cong A$. \Box

For **EC1** let the type be t. By **EC2**, M^{\vee} has t generators and we may map $A^t \to M^{\vee}$. Applying the exact functor $^{\vee}$ again, we obtain an injection $M^{\vee\vee} \hookrightarrow \operatorname{Hom}_A(A^t, E)$. But $M \cong M^{\vee \vee}$ and $\operatorname{Hom}_A(A^t, E) \cong E^t$. \Box