
Math 615, Winter 2022 Problem Set 2: Solutions

1. (a) Every finitely generated submodule of C is killed by the product of elements killing
its generators, and C is the direct limit of finitely generated submodules, and so it suffices
to prove the result when C is killed by one element of R; this element kills all the Tors,
which was shown in class.
(b) The long exact sequence for Tor yields

· · · → TorR1 (M,C)
α−−−−→ M ⊗R A

β−−−−→ M ⊗R B → · · ·.

Since every element in the domain of α is a torsion element, this is also true for its image.
Since M ⊗R A is a torsion-free, the image of α must be 0, and so β is injective. �

2. (a) The test ideal is evidently stable under all ring automorphisms, and so must be
homogeneous with respect to the Nn grading inherited from the polynomial ring. This
means that the test ideal is spanned over K by (and so generated by) monomials.

(b). If c is a test element, it follows that I∗ =
⋃
q{r ∈ R : rq ∈ I [q]}. Each ideal

being intersected is easily seen to be monomial, and, hence, so is the intersection. If
I = (ν1, . . . , νk), a monomial µ is in I∗ iff and only if cµq ∈ (νq1 , . . . , ν

q
k) for all q, and this

implies that for every q there exists iq such that cµq ∈ νqiq . Since there are only finitely

many choices for iq, some νi recurs for infinitely many q. But then there are infinitely
many values of q such that cµ∈(νR)q, where ν = νi. By a class result, this implies that µ
is in the integral closure of νR. Note that by a class theorem, integral closure and tight
closure are the same for principal ideals. We have that µ satisfies an equation of the form
µs+r1νµ

s−1+ · · ·+rsν
s = 0, and we may take s ≥ 1 as small as possiblre, We may replace

each ri by its monomial term gi such that giν
iµs−i (which is a monomial) is a scalar times

µs. Since s is as small as possible we may assume that rs 6= 0 is a monomial term, or
we get a lower degree equation by dividing by a power of µ. Thus, if µ is in the integral
closure of νR, then (µ/ν)s is a scalar times rs, and so is in the ring. On the other hand,
if (µ/ν)s = r, then µs − rνs = 0 shows that µ is integral over νR, and so in (νR)∗. �

3. We have that syz1K = m. syz1m is given by the relations on x, y, which minimal
generate m. But polynomals (f, g) represent a relation if and only if fx+ gy = hx2 + jxy
for polynomials h, j ∈ K[x, y]. Since x divides the other three terms, it divides gy and
so g = xg0. Dividing by x in the polynomial ring yields that f + g0y = hx + jy, so
that f = hx + (j − gz − 0)y. Thus, the condition f ∈ m and g ∈ xR are necessary
aand sufficient for (f, g) to be a relation, and xR ∼= R/AnnRx = R/m ∼= K. That is
syz1m ∼= m ⊕ K. It is straightforward to check that syz1(M ⊕ N) ∼= syz1M ⊕ syz1N .
Hence, if syznK ∼= K⊕an ⊕m⊕bn , we have syzn+1K ∼= man + (K⊕m)⊕bn ∼= Kbn ⊕man+bn .
We therefore have a0 = 1, b0 = 0, a1 = 0, b1 = 1, an+1 = bn and bn+1 = an+bn = bn−1+bn.
Thus, bn is the Fibonacci sequence {fn}n and an = bn−1. Thus syzn(K) = Kfn−1 + mfn .

Comment for the remaining problems. Note that if N ⊆ M are R-modules, q = pe,
and q′ = pe

′
, then Fe′

(
Fe(M)

) ∼= Fe+e′(M). Also note that N [q] ⊆ F e(M) and we have

that (N [q])[q
′] ⊆ F e′

(
F e(M)

)
may be identified with N [qq′] ⊆ Fe+e′(M).

4. If cuQ ∈ N [Q] for all Q ≥ Q0, then cquqQ ∈ (N [Q])[q] = N [qQ] = (N [q])[Q] for all
Q ≥ Q0, and so using cq for the test shows that uq ∈ (N [q])∗ �



5. (a) If uq ∈ I [q], then by taking Q/q powers one has 1 · uQ ∈ I [Q] for all powers Q of p
greater than or equal to q. �
(b) When R is reduced, the ring map Rp ⊆ R is isomorphic with Rpq ⊆ Rq for every

q = pe. The composition Rp
e ⊆ Rp

e−1 ⊆ · · · ⊆ Rp
2 ⊆ Rp ⊆ R shows that for all q → pe,

every ideal of Rq is contracted from R . I.e., ideals of Rq are contracted from R for all
q = pe iff ideals of Rp are contracted from R. If I is an ideal of R, this says that if we
extend the corresponding ideal Iq = {iq : i ∈ I} ⊆ Rq to R and contract, we get Iq. Since

the extension of Iq to R is precisely I [q], this says exactly that rq ∈ I [q] implies rq ∈ Iq
and so r ∈ I. �

6. Suppose cn ∈ τ(R). Then so is cq for q = pe ≥ n. If N ⊆M are finitely generated

and u ∈ N∗M then cquQ ∈ N [Q] for all Q. For any q′ = pe
′

let Q = qq′. Then we have

cquqq
′ ∈ N [qq′] and so which yields (∗) (cuq

′
)q ∈ N [qq′] ∼= (N [q′])[q]. The fact that F

is split implies that F e is split, i.e. the map R → S = R given by F e is split. Let θ
be the R-linear splitting. Let v = cuq

′
. Let W = N [q′]. Then what we know from (∗)

is that 1 ⊗ v is in the image S ⊗R W , i.e., 1 ⊗ v =
∑h
i=1 si ⊗ wi. Then θ gives a map

S ⊗R M → R ⊗R M ∼= M whose restriction to 1 ⊗R M is the identity, and this yields
v =

∑
i=1 θ(si)wi ∈ W . This says that cuq

′ ∈ N [q′] for all q′, N , M , and u ∈ N∗M . Thus,
cn ∈ τ(R) implies that c ∈ τ(R). �

EC3. The length needed is the number of monomials in R of even degree not in the ideal
(x2q1 , x

q
1x
q
2, x

2q
2 ). (We can work in the polynomial ring, because killing a power of each

variable automatically gives a local ring.) These are the terms xayb such that a < 2q,
y < 2q, at least one of a, b is < q, and a + b is even. The number we want is the number
of choices of (a, b) with even sum such that either a < q and b < 2q or q ≤ a < 2q and
0 ≤ b < q. (This is the number of lattice points in a 2q by 2q square with the upper right
q by q corner cut out, but with the restriction that the sum of the coordinates is even.)
Without the parity restriction on the sum, this would be 2q2 + q2 = 3q2. In this counting
problem, once a is fixed, approximately half the choices for b are eliminated (one gets every
other lattice point on a certain line segment) with an error of at most 1. Hence, the error
is bounded by a constant times q, say Cq. Thus, the number of choices is 3q2/2 with an
error bounded by Cq. Once we divide by q2, the error term will approach 0 as q → ∞.
Hence, the limit is 3/2.

EC4. For the first statement consider a filtration of M with L = `R(M) factors isomorphic
with K = R/m. When we apply S ⊗R with S flat we get a filtration with L factors,
each of which is ismorphic with S ⊗R K ∼= S/mS. The statement in the problem follows.
If R is regular, F e is flat, and and the extension of m is m[q], so that the term S/mS in the
first part corresponds to R = R/m[q]. Thus, it suffices to show that the length of R is qd.
Totally order the d-tuples of elements of N in [0, q−1]d so that (a1, . . . , ad) < (b1, . . . , bd)
iff for the least i such that ai 6= bi we have ai > bi. Use this ordering of exponent
vectors to totally order the corresponding monomials xa11 · · ·x

ad
d . Call the monomials

µ1 < · · · < µi < · · · < µd where µ1 = xq−11 · · ·xq−1d and µqd = 1. Then

0 ⊂ (µ1)R ⊂ · · · ⊂ (µ1, . . . , µi)R ⊂ · · · ⊂ (µ1, . . . , µqd)R = R

filters R so that each factor is cyclic, nonzero, and killed by m (increasing one exponent by
one produces either an exponent of q or a monomial that is smaller in the total ordering),
i.e., each factor is ∼= K. This shows that the length of R is qd. �


