Math 615, Winter 2022 Due: Wednesday, March 16

Problem Set #3

1 Let R be a Noetherian ring of positive characteristic p.

(a) Show that for every ideal I of R, there exists a tightly closed ideal between I and $I :_R \tau(R)$.

(b) Show that if \mathfrak{m} is a maximal ideal of R, $\tau(R)$ is \mathfrak{m} -primary, and I is an ideal of R such that \mathfrak{m} is not an associated prime of I, then I is tightly closed.

2. Let $R = K[x^2, xy, y^2] \subseteq K[x, y]$, the polynomial ring in two variables over K, a field of characteristic p > 0. Let $\mathfrak{m} = (x^2, xy, y^2)$, the maximal ideal. Show that the map $\mathcal{F}_R^e(\mathfrak{m}) \twoheadrightarrow \mathfrak{m}_R^{[p^e]} \subseteq \mathcal{F}^e(R) \cong R$ (so that $\mathfrak{m}_R^{[p^e]}$ is the usual $\mathfrak{m}^{[p^e]}$) has a nonzero kernel. Give a presentation of this kernel when e = 1.

3. Let R be a domain with integral closure S that is module-finite over R. Assume that S is weakly F-regular. Let $H \subseteq R^{\oplus n} \subseteq S \otimes_R R^{\oplus n}$, which we may identify with $S^{\oplus n}$. Prove that $H^*_{R^{\oplus n}} = HS \cap R^n$, where HS is the submodule of $S^{\oplus n}$ generated by H.

4. Let x_1, \ldots, x_n, x'_n be arbitrary elements of an arbitrary ring R and let M be any R-module. Let $\underline{x} = x_1, \ldots, x_n$, let $\underline{x}'' = x_1, \ldots, x_{n-1}, x_n x'_n$, and let $\underline{x}' = x_1, \ldots, x_{n-1}, x'_n$. Prove that there is a long exact sequence of Koszul homology:

 $\cdots \to H_i(\underline{x}; M) \to H_i(\underline{x}'; M) \to H_i(\underline{x}'; M) \to H_{i-1}(\underline{x}; M) \to \cdots$

[Suggestion; reduce to the case where $R = \mathbb{Z}[X_1, \ldots, X_n, X'_N]$ is a polynomial ring.]

5. Over a local ring (R, \mathfrak{m}, K) , if M is a finitely generated R-module, prove that one has an isomorphism $\operatorname{Ext}_{R}^{i}(M, K) \cong \operatorname{Hom}_{K}(\operatorname{Tor}_{i}^{R}(M, K), K)$. (Hence, they are vector spaces of the same dimension.)

6. Let *R* be Noetherian, let *M* be finitely generated, and let $\underline{x} = x_1, \ldots, x_n$ in *R* be such that (\dagger) $(x_1, \ldots, x_n)R + \operatorname{Ann}_R M$ is primary to a maximal ideal \mathfrak{m} of *R*.

(a) Show that the Koszul homology modules $H_i(\underline{x}; M)$ have finite length.

(b) If (†) holds, define the Koszul Euler characteristic of M with respect to \underline{x} , denoted $\chi(\underline{x}; M)$, as $\sum_{i=0}^{n} (-1)^{i} \ell(H_{i}(\underline{x}; M))$. Show that if M', M, and M'' all satisfy (†) and $0 \to M' \to M \to M'' \to 0$ is exact, then $\chi(\underline{x}; M) = \chi(\underline{x}; M') + \chi(\underline{x}; M'')$.

(c) Show that if x_1, \ldots, x_n is any sequence of elements of \mathfrak{m} and M is killed by a power of a maximal ideal \mathfrak{m} (so that (\dagger) is automatic), then $\chi(\underline{x}; M) = 0$.

Extra Credit 5. Let $R := K[x^2, x^5] \subseteq K[x]$, the polynomial ring in x over an infinite field K of characteristic p > 0. Prove that the test ideal $\tau(R)$ is $(x^5, x^6)R$, and that $\tau(R) = \tau(R)^{\text{F}}$, but $\tau(R)$ is not radical. (By a previous problem, $\tau(R)$ is generated by powers of x.)

Extra Credit 6. Let (R, \mathfrak{m}) be an Artin local ring and let $x, y \in \mathfrak{m}$. Prove that $H_1(x, y; R)$ needs at least two generators.