
Math 615, Winter 2022 Problem Set 4: Solutions

1. Since the F1, . . . , Fd ∈ m, they generated a proper ideal in both rings. We have
already seen the flat base change preserves the property of being a nonzerodivisor and
commutes with taking quotients. It follows that if F1, . . . , Fd is a regular sequence R, it
remains one in Rm. For the converse, note that since the associated primes of each ideal
Ji = (F1, . . . , Fi)R, 0 ≤ i ≤ d−1, are ntahomogenous, and so contained in m, no element of
W := R\m is a zerodivisor on R/Ji, we have that R/Ji injectd into (R/Ji)m ∼= Rm/JiRm.
It follows that for 0 ≤ i ≤ d− 1, if the image of Fi is a nonzerodivisor on Rm/JiRm, it is
a nonzerodivisor in R/Ji.

2. (a) Ru ∼= Ku, and u has a nonzero multiple in M . This multiple must have the form
cu, where c ∈ K is nonzero, and so u ∈M .

(b) HomR(K,Ei) is the socle Si in Ei. Since this is aa minimal injective resolution, Ei is
the injective hull of the image Bi of Ei−1 in Ei. By part (a), each element of Si is in Bi,
and so maps to 0 in Ei+1.

3. We compute the Ext module by applying HomS( , S) to the resolution and taking
cohomology. When we do this, the arrows are reversed, and the matrices with respect to
the dual bases for the dual free modules are the transposes. It follows that Ext2S(R,S) is the
cokernel of the map S3 → S2 with matrix Xtr . We know a priori that this is an R-module,
since AnnSR kills the Ext module. Map S2 onto (x11, x12)R by (f, g) 7→ x12f − x11g.
Then it suffices to show that the kernel of this map is spanned by the columns of Xtr ,
i.e., by the rows of X. The columns are in the kernel, since the size 2 minors ∆i of X
vanish in R. Working over S, an element (f, g) of the kernel corresponds to a solution of
x12f − x11g = a∆1 + b∆2 + c∆3. Note that all relations with f, g ∈ (∆1,∆2,∆3) := P
are obtainable from the three rows, because we know that the the cokernel of Xtr ,
which is Ext2S(R,S), is killed by AnnSR = (∆1,∆2,∆3). We then have that x12f ∈
(x11,∆i : 1 ≤ i ≤ 3) ⊆ (x11, x21, x31)S. It follows that f ∈ (x11, x21, x31)S. Hence by
subtracting an S-linear combination of the rows of X from (f, g), we get a new relation
in which f = 0. It will then suffice to show that g ∈ (∆1,∆2,∆3). In this case, we have
−x11g = a∆1 + b∆2 + c∆3 ∈ (x11, x12x21, x12x31,∆1). The result now follows if we know
that P is prime. In fact, P is the kernel Q of the map from K[X] to the Segre product
T := K[s1, s2, s3]#KK[t1, t2] such that xij 7→ sitj . In the latter ring, each monomial such
that the degree in the si is equal to the degree in the ti can be written uniquely as a
product of sitj so as to use as many as possible terms of the form s1t1, then s1t2, then
s2t2, then s2t2, then s3t1, then s3t2. The relations given by the minors enable to one to
prove congruent mod P any two monomials α, β in the xij with the same image µ in T .
Use induction on the degrees of α, β. Let i be smallest such that si occurs in µ and j be
smallest such that tj occurs in µ. If each of α, β is congruent to a monomial involving xij ,
we can factor xij out and use the induction hypothesis. Suppose xij does not occur, say,
in α. Then xij′ occurs, where 1′ = 2 and 2′ = 1. Then j′ = 1 or we could have made a
smaller choice of j. Also, xi∗j must occur for some i∗, and i∗ > i or we could have made a
smaller choice of i, But xi∗jxij′ ≡ xijxi∗j′ , so α is congruent to a monomial involving xij
mod the minors generating P . The same argument can be applied to β. �

4. Since we are in an N-graded ring and working with homogeneous elements of positive
degree, it suffices to show that the off-diagonal entries of the matrix and the coefficients
(other than 1) form a regular sequence, for that regular sequence will be permutable



and we can place the coefficients first. It is clear that the off-diagonal variables form
a regular sequence. Once we have killed these, the matrix becomes diagonal with entries
xi := xi,i., and the characteristic polynomial become the coefficiens of (z−x1) · · · (z−xn) =
zn + c1z

n−1 + · · ·+ cn. Any value of z is a root of this polynomial satisfies the condition
that zn ∈ (c1, . . . , cn). Since each xi is a root of this polynomial, it follows that each
xi has its n th power in the ideal generated by the coefficients. Hence, the coefficients
generate an ideal whose radical in K[x1, . . . , xn](x1, . . . , xn) is the maximal ideal. Thus,
the coefficients are a system of parameters in the regular (hence, Cohen-Macaulay) ring
K[x1, . . . , xn]. Thus, they are a regular sequence in this localized ring. By Problem 1.,
they form a regular sequence in K[x1, . . . , xn]. �

5. The ring has dimension 2, since its integral extension K[x, y] does, and the maximal
ideal is nilpotent modulo (x4, y4), so x4, y4 will be a system of parameters in Rm. It is
easy to show by induction on n that the monomials in the ring in degree 4n, for n ≥ 1,
are all monomials of degree 4n except x4n−1y. It is clear that one cannot obtain any
monomial linear in y, and one does get all the others: once n ≥ 2 if the exponent on x is
at least 4 one can factor out x4. If the exponent i on x is ≤ 3, the exponent on y is at
least 4n − 3 and one may factor out y4 except when n = 2, but when i = 3, n = 2. But
x3y5 = (x2y2)(xy3). If there is a relation fx4 = gy4, g is divisible by x4 in the polynomial
ring, and g/x4 cannot have a term that is linear in y unless g does, so g ∈ x4R. Thus
x4, y4 is a regular sequence in R, and so in Rm. Hence, Rm is Cohen-Macaulay. �

6. Elements form a possibly improper regular sequence on a direct sum if and only if they
form a form a possibly improper regular sequence in each nontrivial summand. Hence,
xd1, . . . , x

d
n is a possibly improper regular sequence on S. Since these elements generate

a proper ideal, they form a regular sequence. This remains true in Sm, where they are
a system of parameters. Hence, Sm is Cohen-Macaaulay. It remains to determine the
dimension of the socle in S/(xd1, . . . , x

d
n). (This ring is already local.) This will be generated

by all monomials xd−1−a1
1 · · ·xd−1−an

n where 0 ≤ ai ≤ d − 1 (ai ≥ 0 guarantees that the
monomial is not divisible by xdi ) such that

∑n
i=1(ai + 1) is a multiple of d (so that the

monomial is in S) and such that for any choice of xb11 · · ·xbnn with the bi ∈ N such that∑
i bi = d, one has that at least one ai − 1 + bi ≥ d. This precisely forces

∑n
i=1 ai < d.

(Otherwise one may choose values for bi ≤ ai whose sum is d, and xb11 . . . xbnn will not
multiply x1d− 1− a1 · · ·xd−1−an

n into (xd1, . . . , x
d
n). Hence, we wish to count the n-tuples

of nonnegative integers in with sum s < d such that s − n is divisible by d. Thus, the
possibilities for s are the integers dk − n with 0 ≤ dk − n < d, i.e., n/d ≤ k < (n/d) + 1.

Thus, k = dn
d
e, s = dk − n, and we must count the number of choices of a1, . . . , an ∈ N

with
∑n

i=1 ai = s. Use consecutive dots to represent values of the ai separated by n − 1
slashes. The number of choices for the ai is the number of strings consisting of s+n− 1 =
dk − n+ n− 1 = dk − 1 elements with s dots and n− 1 slashes. These are determined by

the placement of the slashes. Hence, the type is

(
dnd ed− 1

n− 1

)
.

EC7. The injective hull of R/I is aa maximal essential extension of K as an R/I-module,
and one may take a maximal extension of this as an R-module, which will also be a maximal
essential extension of K. This gives an injection of ER/I(K) into ER(K). It is contained in
the annihilator M of I in ER(K). But M is an (R/I)-module, and is an essential extension
of K. Since ER/I(K) ⊆ M and ER/I(K) is a maximal essential extension, we must have



ER/I(K) = M . �

EC8. The number of elements in the proposed system of parameters is corrected, so it
suffices to show that the the homogeneous maximal ideal is nilpotent mod these. If we
renumber the first row by omitting the subscript 1, then after killing prescribed elements
the matrix has 0 below the first diagonal, x1 on the first diagonal, x2 on the second
diagonal, as so forth. We shall prove by induction on r and s that the ideal of minors is
(x1, . . . , xs−r+1)r power. The base cases are easy to check. For example, one of them is
when s = r. In that case, the matrix is diagonal with x1 all along the diagonal.
We shall also use induction on k to prove that we get all monomials that are divisible by
any of x1, . . . , xk. From the size r minors that involve the first column and r − 1 later
columns, we get the product of x1 and each minor of a similar matrix with r, s replace by
r−1, s−1. By the induction hypothesis, we get all monomials of degree r that are divisible
by x1. Now consider the matrix formed from by omitting the first column. Modulo x1,
this is an r×(s−1) matrix of the same form, except that the variables on the diagonals are
x2, . . . , xs−r+1. By the induction hypothesis, modulo (x1) the minors generate the ideal
(x2, . . . , xs−r+1)r. If we do not kill x1, from the minors of this matrix we get, for every
monomial µ of degree r in the variables x2, . . . , xr, an element of the form µ+ x1δ, where
δ is a homogeneous polynomial of degree r − 1. Since we already know that all degree r
polynomials that are multiples of x1 are in the ideal, x1δ is in the ideal, and it follows that
µ is in the ideal.
The type is the number of monomials of degree r − 1 in s − r + 1 variables, which is(
s−r+r−1

s−r
)

=
(
s−1
s−r
)

=
(
s−1
r−1
)
.


