Math 615, Winter 2022 Problem Set 5: Solutions

1. Suppose r € R and r € (I5)*, so that for some ¢ € S\ {0}, cr? € (15)l4 = 119§ for all
g > 1. ¢ has a nonzero multiple in R, so we may assume ¢ € R. As shown in class, there
is an R-linear map 6 : S — R such that 6(1) = d # 0. Applying 6 yields c¢r?6(1) € Il9 for
all ¢ > 1, and so (cd)r? € I'9 for all ¢ > 0. O

2. (a) Let m, be the ideal spanned by forms of degree > n. For a standard grading,
m, = m”, but in all cases the m,, are cofinal with the powers of m and are m-primary.
Since E := FEg(K) is an essential extension of K, every element is killed by m,, for
some n > 0, and so £ = |J,, Anngm,. Since R/m, is Artin, we already know from
class results that Anngm, = Eg/n, (K) = Homg (R/m,, K), and Homg (R/m, 1, K) =
@, _, Homg ([R], K). It follows that E = @;-, Homg ([R];, K). Note that the R-module
structure on the space of linear functionals that kill some m,, is given by (r0)(f) = 0(rf).

(b) If by, ... ,bs is a basis for a finite-dimensional K-vector space V', let bY, ... ;b denote
the dual basis for the dual of V into K, so that the functional b is 1 on b; and 0 on
b; for j # i. Grade the Segre product so that the typical element p = r%s®t°u?, where
a+b = c+d, has degree a+b. Let M be the set of monomials in R. Then we may use the
union of all the dual bases of the graded components of R to give a basis {u" : u € M},
where M is the set of all monomials in R, for the injective hull F := Er(K), by part
(a). Let A := rstu. There is a bijection 6 of this dual basis with the strictly negative
monomials specified in the problem given by 6 : i + (Au)~!. This extends to a K-vector
space isomorphism of FE with Ey. To check that this is an R-module isomorphism one
needs to check that for all v € M, (x) v8(uV) = 6(vuV). Let p/v denote /v if v|p and
0 otherwise. It is straightforward to check vu" = (u/v)Y. Also, v|u iff v/(Ap) is striclty
negative. It follows that each side of (x) is nonzero if and only if v divides u, and then
both sides are v/(Ap). O

3. (a) If u € M\ {0} we have Ru — Ru/m(Ru) = K, and so a nonzero composite map
fo: Ru— K — E. Since F is injective, fy extends to a nonzero map f: M — E. U

(b) If u € M\ {0}, the map f: M — E constructed in part (a) is nonzero on u, and then
the image T, of u in HomR(HomR(M, E), E) is nonzero, since Ty, (f) = f(u) #0. O

4. (a) Let 21, ... ,x4 be a system of parameters in R. By flatness, this is a regular sequence
on M (note that (z1,...,24)S C n and M/nM # 0, by Nakayama’s lemma). Since
Rad (z1, ... ,z4) = m and Rad (mS) = n, it follows that Rad ((z1, ... ,z4)S) = n, and so
the images of =1, ... ,x4 form a sequence of elements in S such that M/(zq, ... ,zq)M

is killed by a power of n. Since this sequence is a regular sequence on M, it follows that
dim(M) = d and M is Cohen-Macaulay. [

(b) Let fi, ..., fr generate m. We have a map R — R* such that 1 — (f1, ..., fx)
whose kernel is Anngpm. Since 0 — Annpm — R — RF is exact and M is R-flat, we
have also that 0 — (Anngm) ® g M — M — MP* is exact, where the rightmost map « is
u — (fiu, ..., fru). Ker(a) = Annym, but from the exactness of () is also the image
(under an injection) of (Anngm) ® g M, which which may be identified with (Anngm)M.
Then Annyn C Annjsm, and is the same as ANn(annzmy@rmn. Now Anngm is a K-vector
space whose dimension is the type ¢t of R and so is & K*. Then Annym = Anngrg ,pn =
Ann p/maneent = (Ann gy, am)®t, and the dimension over L, which is the type of M over
S, is t times the dimension over L of Anny;/,am, which is ¢ times the type of M/mM. [



5. (a) Consider a maximal ideal m’ of R' and the corresponding maximal ideal m of R.
Then R,, — RT,,, = RL is flat local, Ry, is Cohen-Macaulay, and the fiber is (R/m)L =
(R/m)", which is purely inseparable over the field (R/m), and so is zero-dimensional. By
part (a) of Problem 4., Rl , is Cohen-Macaulay. Since m’ is arbitrary, R' is Cohen-
Macaulay. [

(b) It was show in class that when R is regular, so is R! for all sufficiently small ' < A.
When R is not regular, by a class result if V' (J) is the singular locus in R, then for all
sufficiently small T’ < A, V(JRY) is the singular locus in R'. if R is normal, we can choose
a regular sequence of length two (or more) in J. Since R — RI is flat, the image of these
elements is a regular sequence in JRI'.

6. We may replace R by R without loss of generality, and so assume that R is complete.
When E; C E; C E where E; C E; is a proper inclusion, we may apply Hompg(__, E)
to obtain surjections R = Hompg(E,E) — Homg(E;, E) — Hompg(E;, E) where, since
Homp(_, F) is faithfully exact by Problem 3.(a), we have that the rightmost map is a
proper surjection. Thus, dualizing produces R — R/J; — R/J; where the second map
is a proper surjection: this means J; is strictly larger than J;. It will complete all parts
of the problem if we show that J; = AnngE; =: ;. Since R/J; = Hompg(F;, E), we
have that 2; C J;. But we also know that F; — Homp (HomR(Ei, E), E) is injective by
problem 3.(b), and the latter module is killed by J; since Homg(F;, F) = R/J;, which
shows that J; C ;. O (In fact, over a complete local ring, if M has ACC or DCC,
then Hompg(M, E) ACC or DCC, respectively, and M — Hompg (HomR(M7 E), E) is an
isomorphism.)

EC9. We have pdgM = ht (I) = n —d. Let 0 — R — ... — R% — (0 be a minimal
free resolution of M, where d; : R* — RY-1 and Coker(d;) = M. When we apply
_* = Hompg(_,R) (not tight closure!), we get: (%) 0 — (RY)* — ... — (R")* — 0,
and the cohomology is Ext%(M,R). Here, the (R%)* are free, and the matrix of d;
is the transpose of the matrix of d;. Since the depth of R on AnngM = T is ht(I),
which is h, the jth cohomology of the complex (x) is Ext%(M ,R) = 0 except when
j = h. Hence, the complex (x) is a minimal (entries of the matrices are still in m) free
resolution of the Coker (d}) = Ext%(M,R) = MV. Moreover, if use this resolution to
compute Ext"(MY, R), because _ ** is naturally isomorphic to the identity functor, we
come back to the original complex, which shows that Ext® (M"Y, R) & M. Clearly, I kills
MY and the annihilator of MV kills Ext,(MY, R). Since the annihilator of each module
kills the other, each annihilator is contained in the other, and they are equal. Thus,
dim(MV) = n — h = d. By the Auslander-Buchsbaum theorem, the depth of MY on m is
n—pdr(MY) =n—h=d. Hence, MV is Cohen-Macaulay. Exactness of _ " now follows
from the long exact sequence for Ext along with the fact that for Cohen-Macaulay modules
of dimension d, the only non-vanishing Ext},(M, R) occurs when j = n —d. When z is a
nonzerodivisor on M, 0 - M — M — M/xM — 0 is exact, yield a long exact sequence for
Extr(_, R) with just three consecutive nonzero terms, and then (M/xM)Y = M"Y /xMY
is immediate. When we localize at a prime P O I, Rp is regular, Mp is Cohen-Macaulay,
the new annihilator is Ip, which has height h since all minimal primes of I have height h,
and so My = Exth, (Mp,Rp) = Exth(M,R)p = (MY)p. O

EC10. (a) Use the Koszul complex of a regular system of parameters to calculate Ext.

(b) Fom the exactness of _ Y, if one has a short exact sequence of finite length modules



0—>A— M — B— 0, then {(M") ={(AY) + ¢(C"). The result is immediate from (a)
by induction on ¢(M).

(¢c) The type of M and the least number of generators of M" don’t change when one passes
from M to M/xM, where x is a nonzerodivisor on M, since (M/xzM)Y = MY /xM".
Iterated application of this fact reduces the problem to the case where M has finite length.
The result then says that the socle in M has the same dimension as the least number
of generators of M. With notation as in the first part of Problem 4.(b) we have that
0 — Annpym — M — MP¥ is exact, and thus, applying ¥, we have that the sequence
MY* 5 MY = (Annym)Y — 0 is exact, where the leftmost map takes (u1, ..., ug) —
Zle fiu;. Thus, the cokernel of the map is also MY /mMY, and the least number of
generators of M"Y, by Nakayma’s lemma, is the length (the same as vector space dimension)
of MY /mMV. This is the same as the length of (Anny;m)Y, which by part (b) is the same
as the length (or vector space dimension) of Anny;m, the socle of M. [O



