1. Suppose $r \in R$ and $r \in (IS)^*$, so that for some $c \in S \setminus \{0\}$, $cr^q \in (IS)^{[q]} = I^{[q]}S$ for all $q \gg 1$. c has a nonzero multiple in R, so we may assume $c \in R$. As shown in class, there is an R-linear map $\theta : S \to R$ such that $\theta(1) = d \neq 0$. Applying θ yields $cr^q\theta(1) \in I^{[q]}$ for all $q \gg 1$, and so $(cd)r^q \in I^{[q]}$ for all $q \gg 0$. \Box

2. (a) Let \mathfrak{m}_n be the ideal spanned by forms of degree $\geq n$. For a standard grading, $\mathfrak{m}_n = \mathfrak{m}^n$, but in all cases the \mathfrak{m}_n are cofinal with the powers of \mathfrak{m} and are \mathfrak{m} -primary. Since $E := E_R(K)$ is an essential extension of K, every element is killed by \mathfrak{m}_n for some $n \gg 0$, and so $E = \bigcup_n \operatorname{Ann}_E \mathfrak{m}_n$. Since R/\mathfrak{m}_n is Artin, we already know from class results that $\operatorname{Ann}_E \mathfrak{m}_n \cong E_{R/\mathfrak{m}_n}(K) \cong \operatorname{Hom}_K(R/\mathfrak{m}_n, K)$, and $\operatorname{Hom}_K(R/\mathfrak{m}_{n+1}, K) \cong$ $\bigoplus_{t=0}^{n} \operatorname{Hom}_{K}([R]_{t}, K)$. It follows that $E = \bigoplus_{t=0}^{\infty} \operatorname{Hom}_{K}([R]_{t}, K)$. Note that the *R*-module structure on the space of linear functionals that kill some \mathfrak{m}_n is given by $(r\theta)(f) = \theta(rf)$. (b) If b_1, \ldots, b_s is a basis for a finite-dimensional K-vector space V, let $b_1^{\vee}, \ldots, b_s^{\vee}$ denote the dual basis for the dual of V into K, so that the functional b_i^{\vee} is 1 on b_i and 0 on b_i for $j \neq i$. Grade the Segre product so that the typical element $\mu = r^a s^b t^c u^d$, where a+b=c+d, has degree a+b. Let \mathcal{M} be the set of monomials in R. Then we may use the union of all the dual bases of the graded components of R to give a basis $\{\mu^{\vee} : \mu \in \mathcal{M}\},\$ where \mathcal{M} is the set of all monomials in R, for the injective hull $E := E_R(K)$, by part (a). Let $\lambda := rstu$. There is a bijection θ of this dual basis with the strictly negative monomials specified in the problem given by $\theta: \mu^{\vee} \mapsto (\lambda \mu)^{-1}$. This extends to a K-vector space isomorphism of E with E_0 . To check that this is an R-module isomorphism one needs to check that for all $\nu \in \mathcal{M}$, $(*) \quad \nu \theta(\mu \vee) = \theta(\nu \mu \vee)$. Let μ/ν denote μ/ν if $\nu|\mu$ and 0 otherwise. It is straightforward to check $\nu\mu^{\vee} = (\mu/\nu)^{\vee}$. Also, $\nu|\mu$ iff $\nu/(\lambda\mu)$ is strictly negative. It follows that each side of (*) is nonzero if and only if ν divides μ , and then both sides are $\nu/(\lambda \mu)$. \Box

3. (a) If $u \in M \setminus \{0\}$ we have $Ru \twoheadrightarrow Ru/\mathfrak{m}(Ru) \cong K$, and so a nonzero composite map $f_0: Ru \twoheadrightarrow K \hookrightarrow E$. Since E is injective, f_0 extends to a nonzero map $f: M \to E$. \Box (b) If $u \in M \setminus \{0\}$, the map $f: M \to E$ constructed in part (a) is nonzero on u, and then the image T_u of u in $\operatorname{Hom}_R(\operatorname{Hom}_R(M, E), E)$ is nonzero, since $T_u(f) = f(u) \neq 0$. \Box

4. (a) Let x_1, \ldots, x_d be a system of parameters in R. By flatness, this is a regular sequence on M (note that $(x_1, \ldots, x_d)S \subseteq \mathfrak{n}$ and $M/\mathfrak{n}M \neq 0$, by Nakayama's lemma). Since Rad $(x_1, \ldots, x_d) = \mathfrak{m}$ and Rad $(\mathfrak{m}S) = \mathfrak{n}$, it follows that Rad $((x_1, \ldots, x_d)S) = \mathfrak{n}$, and so the images of x_1, \ldots, x_d form a sequence of elements in S such that $M/(x_1, \ldots, x_d)M$ is killed by a power of \mathfrak{n} . Since this sequence is a regular sequence on M, it follows that $\dim(M) = d$ and M is Cohen-Macaulay. \Box

(b) Let f_1, \ldots, f_k generate \mathfrak{m} . We have a map $R \to R^k$ such that $1 \mapsto (f_1, \ldots, f_k)$ whose kernel is $\operatorname{Ann}_R \mathfrak{m}$. Since $0 \to \operatorname{Ann}_R \mathfrak{m} \to R \to R^k$ is exact and M is R-flat, we have also that $0 \to (\operatorname{Ann}_R \mathfrak{m}) \otimes_R M \to M \to M^k$ is exact, where the rightmost map α is $u \mapsto (f_1 u, \ldots, f_k u)$. Ker $(\alpha) = \operatorname{Ann}_M \mathfrak{m}$, but from the exactness of (*) is also the image (under an injection) of $(\operatorname{Ann}_R \mathfrak{m}) \otimes_R M$, which which may be identified with $(\operatorname{Ann}_R \mathfrak{m})M$. Then $\operatorname{Ann}_M \mathfrak{n} \subseteq \operatorname{Ann}_M \mathfrak{m}$, and is the same as $\operatorname{Ann}_{(\operatorname{Ann}_R \mathfrak{m})\otimes_R M} \mathfrak{n}$. Now $\operatorname{Ann}_R \mathfrak{m}$ is a K-vector space whose dimension is the type t of R and so is $\cong K^t$. Then $\operatorname{Ann}_M \mathfrak{n} \cong \operatorname{Ann}_{K^t \otimes_R M} \mathfrak{n} \cong$ $\operatorname{Ann}_{(M/\mathfrak{m}M)^{\oplus t}} \mathfrak{n} \cong (\operatorname{Ann}_{M/\mathfrak{m}M} \mathfrak{n})^{\oplus t}$, and the dimension over L, which is the type of M over S, is t times the dimension over L of $\operatorname{Ann}_{M/\mathfrak{m}M} \mathfrak{n}$, which is t times the type of $M/\mathfrak{m}M$. \Box **5.** (a) Consider a maximal ideal \mathfrak{m}' of R^{Γ} and the corresponding maximal ideal \mathfrak{m} of R. Then $R_m \to R\Gamma_{m'} = R_m^{\Gamma}$ is flat local, $R_{\mathfrak{m}}$ is Cohen-Macaulay, and the fiber is $(R/\mathfrak{m})_{\mathfrak{m}}^{\Gamma} \cong (R/\mathfrak{m})^{\Gamma}$, which is purely inseparable over the field (R/\mathfrak{m}) , and so is zero-dimensional. By part (a) of Problem 4., $R_{m'}^{\Gamma}$ is Cohen-Macaulay. Since m' is arbitrary, R^{Γ} is Cohen-Macaulay. \Box

(b) It was show in class that when R is regular, so is R^{Γ} for all sufficiently small $\Gamma \ll \Lambda$. When R is not regular, by a class result if V(J) is the singular locus in R, then for all sufficiently small $\Gamma \ll \Lambda$, $V(JR^{\Gamma})$ is the singular locus in R^{Γ} . if R is normal, we can choose a regular sequence of length two (or more) in J. Since $R \to R\Gamma$ is flat, the image of these elements is a regular sequence in $JR\Gamma$.

6. We may replace R by \widehat{R} without loss of generality, and so assume that R is complete. When $E_i \subseteq E_j \subseteq E$ where $E_i \subset E_j$ is a proper inclusion, we may apply $\operatorname{Hom}_R(_, E)$ to obtain surjections $R \cong \operatorname{Hom}_R(E, E) \to \operatorname{Hom}_R(E_j, E) \to \operatorname{Hom}_R(E_i, E)$ where, since $\operatorname{Hom}_R(_, E)$ is faithfully exact by Problem 3.(a), we have that the rightmost map is a proper surjection. Thus, dualizing produces $R \to R/J_j \to R/J_i$ where the second map is a proper surjection: this means J_i is strictly larger than J_j . It will complete all parts of the problem if we show that $J_i = \operatorname{Ann}_R E_i =: \mathfrak{A}_i$. Since $R/J_i \cong \operatorname{Hom}_R(E_i, E)$, we have that $\mathfrak{A}_i \subseteq J_i$. But we also know that $E_i \to \operatorname{Hom}_R(\operatorname{Hom}_R(E_i, E), E)$ is injective by problem 3.(b), and the latter module is killed by J_i since $\operatorname{Hom}_R(E_i, E) \cong R/J_i$, which shows that $J_i \subseteq \mathfrak{A}_i$. \Box (In fact, over a complete local ring, if M has ACC or DCC, then $\operatorname{Hom}_R(M, E)$ ACC or DCC, respectively, and $M \to \operatorname{Hom}_R(\operatorname{Hom}_R(M, E), E)$ is an isomorphism.)

EC9. We have $pd_R M = ht(I) = n - d$. Let $0 \to R^{b_h} \to \cdots \to R^{b_0} \to 0$ be a minimal free resolution of M, where $d_i : \mathbb{R}^{b_i} \to \mathbb{R}^{b_{i-1}}$ and $\operatorname{Coker}(d_1) \cong M$. When we apply $_^* = \operatorname{Hom}_R(_, R) \text{ (not tight closure!), we get:} (*) \quad 0 \to (R^{b_0})^* \to \cdots \to (R^{b_h})^* \to 0,$ and the cohomology is $\operatorname{Ext}^{\bullet}_{R}(M,R)$. Here, the $(R^{b_{i}})^{*}$ are free, and the matrix of d_{i}^{*} is the transpose of the matrix of d_i . Since the depth of R on $\operatorname{Ann}_R M = I$ is $\operatorname{ht}(I)$, which is h, the j th cohomology of the complex (*) is $\operatorname{Ext}_{R}^{j}(M,R) = 0$ except when j = h. Hence, the complex (*) is a minimal (entries of the matrices are still in \mathfrak{m}) free resolution of the Coker $(d_h^*) = \operatorname{Ext}_R^h(M, R) = M^{\vee}$. Moreover, if use this resolution to compute $\operatorname{Ext}^h(M^{\vee}, R)$, because $_^{**}$ is naturally isomorphic to the identity functor, we come back to the original complex, which shows that $\operatorname{Ext}_R^h(M^{\vee}, R) \cong M$. Clearly, I kills M^{\vee} and the annihilator of M^{\vee} kills $\operatorname{Ext}_{R}^{h}(M^{\vee}, R)$. Since the annihilator of each module kills the other, each annihilator is contained in the other, and they are equal. Thus, $\dim(M^{\vee}) = n - h = d$. By the Auslander-Buchsbaum theorem, the depth of M^{\vee} on \mathfrak{m} is $n - \mathrm{pd}_R(M^{\vee}) = n - h = d$. Hence, M^{\vee} is Cohen-Macaulay. Exactness of $\underline{\ }^{\vee}$ now follows from the long exact sequence for Ext along with the fact that for Cohen-Macaulay modules of dimension d, the only non-vanishing $\operatorname{Ext}_{R}^{j}(M,R)$ occurs when j=n-d. When x is a nonzerodivisor on $M, 0 \to M \to M \to M/xM \to 0$ is exact, yield a long exact sequence for $\operatorname{Ext}_R(\underline{\ },R)$ with just three consecutive nonzero terms, and then $(M/xM)^{\vee} \cong M^{\vee}/xM^{\vee}$ is immediate. When we localize at a prime $P \supseteq I$, R_P is regular, M_P is Cohen-Macaulay, the new annihilator is I_P , which has height h since all minimal primes of I have height h, and so $M_P^{\vee} \cong \operatorname{Ext}_{R_P}^h(M_P, R_P) \cong \operatorname{Ext}_R^h(M, R)_P = (M^{\vee})_P$. \Box

EC10. (a) Use the Koszul complex of a regular system of parameters to calculate Ext. (b) Fom the exactness of $_^{\lor}$, if one has a short exact sequence of finite length modules $0 \to A \to M \to B \to 0$, then $\ell(M^{\vee}) = \ell(A^{\vee}) + \ell(C^{\vee})$. The result is immediate from (a) by induction on $\ell(M)$.

(c) The type of M and the least number of generators of M^{\vee} don't change when one passes from M to M/xM, where x is a nonzerodivisor on M, since $(M/xM)^{\vee} = M^{\vee}/xM^{\vee}$. Iterated application of this fact reduces the problem to the case where M has finite length. The result then says that the socle in M has the same dimension as the least number of generators of M^{\vee} . With notation as in the first part of Problem 4.(b) we have that $0 \to \operatorname{Ann}_M \mathfrak{m} \to M \to M^k$ is exact, and thus, applying $^{\vee}$, we have that the sequence $M^{\vee k} \to M^{\vee} \to (\operatorname{Ann}_M \mathfrak{m})^{\vee} \to 0$ is exact, where the leftmost map takes $(u_1, \ldots, u_k) \mapsto$ $\sum_{i=1}^k f_i u_i$. Thus, the cokernel of the map is also $M^{\vee}/\mathfrak{m}M^{\vee}$, and the least number of generators of M^{\vee} , by Nakayma's lemma, is the length (the same as vector space dimension) of $M^{\vee}/\mathfrak{m}M^{\vee}$. This is the same as the length of $(\operatorname{Ann}_M \mathfrak{m})^{\vee}$, which by part (b) is the same as the length (or vector space dimension) of $\operatorname{Ann}_M \mathfrak{m}$, the socle of M. \Box