Problem Set 5: Solutions

1. Suppose $r \in R$ and $r \in(I S)^{*}$, so that for some $c \in S \backslash\{0\}, c r^{q} \in(I S)^{[q]}=I^{[q]} S$ for all $q \gg 1$. c has a nonzero multiple in R, so we may assume $c \in R$. As shown in class, there is an R-linear map $\theta: S \rightarrow R$ such that $\theta(1)=d \neq 0$. Applying θ yields $c r^{q} \theta(1) \in I^{[q]}$ for all $q \gg 1$, and so $(c d) r^{q} \in I^{[q]}$ for all $q \gg 0$.
2. (a) Let \mathfrak{m}_{n} be the ideal spanned by forms of degree $\geq n$. For a standard grading, $\mathfrak{m}_{n}=\mathfrak{m}^{n}$, but in all cases the \mathfrak{m}_{n} are cofinal with the powers of \mathfrak{m} and are \mathfrak{m}-primary. Since $E:=E_{R}(K)$ is an essential extension of K, every element is killed by \mathfrak{m}_{n} for some $n \gg 0$, and so $E=\bigcup_{n} \operatorname{Ann}_{E} \mathfrak{m}_{n}$. Since R / \mathfrak{m}_{n} is Artin, we already know from class results that $\operatorname{Ann}_{E} \mathfrak{m}_{n} \cong E_{R / \mathfrak{m}_{n}}(K) \cong \operatorname{Hom}_{K}\left(R / \mathfrak{m}_{n}, K\right)$, and $\operatorname{Hom}_{K}\left(R / \mathfrak{m}_{n+1}, K\right) \cong$ $\bigoplus_{t=0}^{n} \operatorname{Hom}_{K}\left([R]_{t}, K\right)$. It follows that $E=\bigoplus_{t=0}^{\infty} \operatorname{Hom}_{K}\left([R]_{t}, K\right)$. Note that the R-module structure on the space of linear functionals that kill some \mathfrak{m}_{n} is given by $(r \theta)(f)=\theta(r f)$.
(b) If b_{1}, \ldots, b_{s} is a basis for a finite-dimensional K-vector space V, let $b_{1}^{\vee}, \ldots, b_{s}^{\vee}$ denote the dual basis for the dual of V into K, so that the functional b_{i}^{\vee} is 1 on b_{i} and 0 on b_{j} for $j \neq i$. Grade the Segre product so that the typical element $\mu=r^{a} s^{b} t^{c} u^{d}$, where $a+b=c+d$, has degree $a+b$. Let \mathcal{M} be the set of monomials in R. Then we may use the union of all the dual bases of the graded components of R to give a basis $\left\{\mu^{\vee}: \mu \in \mathcal{M}\right\}$, where \mathcal{M} is the set of all monomials in R, for the injective hull $E:=E_{R}(K)$, by part (a). Let $\lambda:=r s t u$. There is a bijection θ of this dual basis with the strictly negative monomials specified in the problem given by $\theta: \mu^{\vee} \mapsto(\lambda \mu)^{-1}$. This extends to a K-vector space isomorphism of E with E_{0}. To check that this is an R-module isomorphism one needs to check that for all $\nu \in \mathcal{M},(*) \quad \nu \theta(\mu \vee)=\theta(\nu \mu \vee)$. Let $\mu \overline{/} \nu$ denote μ / ν if $\nu \mid \mu$ and 0 otherwise. It is straightforward to check $\nu \mu^{\vee}=(\mu \overline{/} \nu)^{\vee}$. Also, $\nu \mid \mu$ iff $\nu /(\lambda \mu)$ is striclty negative. It follows that each side of $(*)$ is nonzero if and only if ν divides μ, and then both sides are $\nu /(\lambda \mu)$.
3. (a) If $u \in M \backslash\{0\}$ we have $R u \rightarrow R u / \mathfrak{m}(R u) \cong K$, and so a nonzero composite map $f_{0}: R u \rightarrow K \hookrightarrow E$. Since E is injective, f_{0} extends to a nonzero map $f: M \rightarrow E$.
(b) If $u \in M \backslash\{0\}$, the map $f: M \rightarrow E$ constructed in part (a) is nonzero on u, and then the image T_{u} of u in $\operatorname{Hom}_{R}\left(\operatorname{Hom}_{R}(M, E), E\right)$ is nonzero, since $T_{u}(f)=f(u) \neq 0$.
4. (a) Let x_{1}, \ldots, x_{d} be a system of parameters in R. By flatness, this is a regular sequence on M (note that $\left(x_{1}, \ldots, x_{d}\right) S \subseteq \mathfrak{n}$ and $M / \mathfrak{n} M \neq 0$, by Nakayama's lemma). Since $\operatorname{Rad}\left(x_{1}, \ldots, x_{d}\right)=\mathfrak{m}$ and $\operatorname{Rad}(\mathfrak{m} S)=\mathfrak{n}$, it follows that $\operatorname{Rad}\left(\left(x_{1}, \ldots, x_{d}\right) S\right)=\mathfrak{n}$, and so the images of x_{1}, \ldots, x_{d} form a sequence of elements in S such that $M /\left(x_{1}, \ldots, x_{d}\right) M$ is killed by a power of \mathfrak{n}. Since this sequence is a regular sequence on M, it follows that $\operatorname{dim}(M)=d$ and M is Cohen-Macaulay.
(b) Let f_{1}, \ldots, f_{k} generate \mathfrak{m}. We have a map $R \rightarrow R^{k}$ such that $1 \mapsto\left(f_{1}, \ldots, f_{k}\right)$ whose kernel is $\operatorname{Ann}_{R} \mathfrak{m}$. Since $0 \rightarrow \operatorname{Ann}_{R} \mathfrak{m} \rightarrow R \rightarrow R^{k}$ is exact and M is R-flat, we have also that $0 \rightarrow\left(\operatorname{Ann}_{R} \mathfrak{m}\right) \otimes_{R} M \rightarrow M \rightarrow M^{k}$ is exact, where the rightmost map α is $u \mapsto\left(f_{1} u, \ldots, f_{k} u\right)$. $\operatorname{Ker}(\alpha)=\operatorname{Ann}_{M} \mathfrak{m}$, but from the exactness of $(*)$ is also the image (under an injection) of $\left(\operatorname{Ann}_{R} \mathfrak{m}\right) \otimes_{R} M$, which which may be identified with $\left(\operatorname{Ann}_{R} \mathfrak{m}\right) M$. Then $\mathrm{Ann}_{M} \mathfrak{n} \subseteq \mathrm{Ann}_{M} \mathfrak{m}$, and is the same as $\operatorname{Ann}_{\left(\operatorname{Ann}_{R} \mathfrak{m}\right) \otimes_{R} M} \mathfrak{n}$. Now $A n n_{R} \mathfrak{m}$ is a K-vector space whose dimension is the type t of R and so is $\cong K^{t}$. Then $\operatorname{Ann}_{M} \mathfrak{n} \cong \operatorname{Ann}_{K^{t} \otimes_{R} M} \mathfrak{n} \cong$ $\operatorname{Ann}_{(M / \mathfrak{m} M) \oplus t} \mathfrak{n} \cong\left(\operatorname{Ann}_{M / \mathfrak{m} M} \mathfrak{n}\right)^{\oplus t}$, and the dimension over L, which is the type of M over S, is t times the dimension over L of $\operatorname{Ann}_{M / \mathfrak{m} M} \mathfrak{n}$, which is t times the type of $M / \mathfrak{m} M$.
5. (a) Consider a maximal ideal \mathfrak{m}^{\prime} of R^{Γ} and the corresponding maximal ideal \mathfrak{m} of R. Then $R_{m} \rightarrow R \Gamma_{m^{\prime}}=R_{m}^{\Gamma}$ is flat local, $R_{\mathfrak{m}}$ is Cohen-Macaulay, and the fiber is $(R / \mathfrak{m})_{\mathfrak{m}}^{\Gamma} \cong$ $(R / \mathfrak{m})^{\Gamma}$, which is purely inseparable over the field (R / \mathfrak{m}), and so is zero-dimensional. By part (a) of Problem 4., $R_{m^{\prime}}^{\Gamma}$ is Cohen-Macaulay. Since m^{\prime} is arbitrary, R^{Γ} is CohenMacaulay.
(b) It was show in class that when R is regular, so is R^{Γ} for all sufficiently small $\Gamma \ll \Lambda$. When R is not regular, by a class result if $V(J)$ is the singular locus in R, then for all sufficiently small $\Gamma \ll \Lambda, V\left(J R^{\Gamma}\right)$ is the singular locus in R^{Γ}. if R is normal, we can choose a regular sequence of length two (or more) in J. Since $R \rightarrow R \Gamma$ is flat, the image of these elements is a regular sequence in $J R \Gamma$.
6. We may replace R by \widehat{R} without loss of generality, and so assume that R is complete. When $E_{i} \subseteq E_{j} \subseteq E$ where $E_{i} \subset E_{j}$ is a proper inclusion, we may apply $\operatorname{Hom}_{R}\left(_, E\right)$ to obtain surjections $R \cong \operatorname{Hom}_{R}(E, E) \rightarrow \operatorname{Hom}_{R}\left(E_{j}, E\right) \rightarrow \operatorname{Hom}_{R}\left(E_{i}, E\right)$ where, since $\operatorname{Hom}_{R}\left(_, E\right)$ is faithfully exact by Problem 3.(a), we have that the rightmost map is a proper surjection. Thus, dualizing produces $R \rightarrow R / J_{j} \rightarrow R / J_{i}$ where the second map is a proper surjection: this means J_{i} is strictly larger than J_{j}. It will complete all parts of the problem if we show that $J_{i}=\operatorname{Ann}_{R} E_{i}=: \mathfrak{A}_{i}$. Since $R / J_{i} \cong \operatorname{Hom}_{R}\left(E_{i}, E\right)$, we have that $\mathfrak{A}_{i} \subseteq J_{i}$. But we also know that $E_{i} \rightarrow \operatorname{Hom}_{R}\left(\operatorname{Hom}_{R}\left(E_{i}, E\right), E\right)$ is injective by problem 3.(b), and the latter module is killed by J_{i} since $\operatorname{Hom}_{R}\left(E_{i}, E\right) \cong R / J_{i}$, which shows that $J_{i} \subseteq \mathfrak{A}_{i}$. \square (In fact, over a complete local ring, if M has ACC or DCC, then $\operatorname{Hom}_{R}(M, E) \mathrm{ACC}$ or DCC, respectively, and $M \rightarrow \operatorname{Hom}_{R}\left(\operatorname{Hom}_{R}(M, E), E\right)$ is an isomorphism.)

EC9. We have $\operatorname{pd}_{R} M=\operatorname{ht}(I)=n-d$. Let $0 \rightarrow R^{b_{h}} \rightarrow \cdots \rightarrow R^{b_{0}} \rightarrow 0$ be a minimal free resolution of M, where $d_{i}: R^{b_{i}} \rightarrow R^{b_{i-1}}$ and Coker $\left(d_{1}\right) \cong M$. When we apply _ $^{*}=\operatorname{Hom}_{R}\left(_, R\right)$ (not tight closure!), we get: $\quad(*) \quad 0 \rightarrow\left(R^{b_{0}}\right)^{*} \rightarrow \cdots \rightarrow\left(R^{b_{h}}\right)^{*} \rightarrow 0$, and the cohomology is $\operatorname{Ext}_{R}^{\bullet}(M, R)$. Here, the $\left(R^{b_{i}}\right)^{*}$ are free, and the matrix of d_{i}^{*} is the transpose of the matrix of d_{i}. Since the depth of R on $\operatorname{Ann}_{R} M=I$ is ht (I), which is h, the j th cohomology of the complex $(*)$ is $\operatorname{Ext}_{R}^{j}(M, R)=0$ except when $j=h$. Hence, the complex $(*)$ is a minimal (entries of the matrices are still in \mathfrak{m}) free resolution of the Coker $\left(d_{h}^{*}\right)=\operatorname{Ext}_{R}^{h}(M, R)=M^{\vee}$. Moreover, if use this resolution to compute $\operatorname{Ext}^{h}\left(M^{\vee}, R\right)$, because ${ }^{* *}$ is naturally isomorphic to the identity functor, we come back to the original complex, which shows that $\operatorname{Ext}_{R}^{h}\left(M^{\vee}, R\right) \cong M$. Clearly, I kills M^{\vee} and the annihilator of M^{\vee} kills $\operatorname{Ext}_{R}^{h}\left(M^{\vee}, R\right)$. Since the annihilator of each module kills the other, each annihilator is contained in the other, and they are equal. Thus, $\operatorname{dim}\left(M^{\vee}\right)=n-h=d$. By the Auslander-Buchsbaum theorem, the depth of M^{\vee} on \mathfrak{m} is $n-\operatorname{pd}_{R}\left(M^{\vee}\right)=n-h=d$. Hence, M^{\vee} is Cohen-Macaulay. Exactness of ${ }^{\vee}$ now follows from the long exact sequence for Ext along with the fact that for Cohen-Macaulay modules of dimension d, the only non-vanishing $\operatorname{Ext}_{R}^{j}(M, R)$ occurs when $j=n-d$. When x is a nonzerodivisor on $M, 0 \rightarrow M \rightarrow M \rightarrow M / x M \rightarrow 0$ is exact, yield a long exact sequence for $\operatorname{Ext}_{R}\left(_, R\right)$ with just three consecutive nonzero terms, and then $(M / x M)^{\vee} \cong M^{\vee} / x M^{\vee}$ is immediate. When we localize at a prime $P \supseteq I, R_{P}$ is regular, M_{P} is Cohen-Macaulay, the new annihilator is I_{P}, which has height h since all minimal primes of I have height h, and so $M_{P}^{\vee} \cong \operatorname{Ext}_{R_{P}}^{h}\left(M_{P}, R_{P}\right) \cong \operatorname{Ext}_{R}^{h}(M, R)_{P}=\left(M^{\vee}\right)_{P}$.

EC10. (a) Use the Koszul complex of a regular system of parameters to calculate Ext.
(b) Fom the exactness of $_^{\vee}$, if one has a short exact sequence of finite length modules
$0 \rightarrow A \rightarrow M \rightarrow B \rightarrow 0$, then $\ell\left(M^{\vee}\right)=\ell\left(A^{\vee}\right)+\ell\left(C^{\vee}\right)$. The result is immediate from (a) by induction on $\ell(M)$.
(c) The type of M and the least number of generators of M^{\vee} don't change when one passes from M to $M / x M$, where x is a nonzerodivisor on M, since $(M / x M)^{\vee}=M^{\vee} / x M^{\vee}$. Iterated application of this fact reduces the problem to the case where M has finite length. The result then says that the socle in M has the same dimension as the least number of generators of M^{\vee}. With notation as in the first part of Problem 4.(b) we have that $0 \rightarrow \mathrm{Ann}_{M} \mathfrak{m} \rightarrow M \rightarrow M^{k}$ is exact, and thus, applying ${ }^{\vee}$, we have that the sequence $M^{\vee k} \rightarrow M^{\vee} \rightarrow\left(\operatorname{Ann}_{M} \mathfrak{m}\right)^{\vee} \rightarrow 0$ is exact, where the leftmost map takes $\left(u_{1}, \ldots, u_{k}\right) \mapsto$ $\sum_{i=1}^{k} f_{i} u_{i}$. Thus, the cokernel of the map is also $M^{\vee} / \mathfrak{m} M^{\vee}$, and the least number of generators of M^{\vee}, by Nakayma's lemma, is the length (the same as vector space dimension) of $M^{\vee} / \mathfrak{m} M^{\vee}$. This is the same as the length of $\left(\mathrm{Ann}_{M} \mathfrak{m}\right)^{\vee}$, which by part (b) is the same as the length (or vector space dimension) of $\mathrm{Ann}_{M} \mathfrak{m}$, the socle of M.

