
Math 615, Winter 2022 Problem Set 5: Solutions

1. Suppose r ∈ R and r ∈ (IS)∗, so that for some c ∈ S \ {0}, crq ∈ (IS)[q] = I [q]S for all
q � 1. c has a nonzero multiple in R, so we may assume c ∈ R. As shown in class, there
is an R-linear map θ : S → R such that θ(1) = d 6= 0. Applying θ yields crqθ(1) ∈ I [q] for
all q � 1, and so (cd)rq ∈ I [q] for all q � 0. �

2. (a) Let mn be the ideal spanned by forms of degree ≥ n. For a standard grading,
mn = mn, but in all cases the mn are cofinal with the powers of m and are m-primary.
Since E := ER(K) is an essential extension of K, every element is killed by mn for
some n � 0, and so E =

⋃
n AnnEmn. Since R/mn is Artin, we already know from

class results that AnnEmn
∼= ER/mn

(K) ∼= HomK(R/mn,K), and HomK(R/mn+1,K) ∼=⊕n
t=0 HomK([R]t,K). It follows that E =

⊕∞
t=0 HomK([R]t,K). Note that the R-module

structure on the space of linear functionals that kill some mn is given by (rθ)(f) = θ(rf).

(b) If b1, . . . , bs is a basis for a finite-dimensional K-vector space V , let b∨1 , . . . , b
∨
s denote

the dual basis for the dual of V into K, so that the functional b∨i is 1 on bi and 0 on
bj for j 6= i. Grade the Segre product so that the typical element µ = rasbtcud, where
a+ b = c+d, has degree a+ b. LetM be the set of monomials in R. Then we may use the
union of all the dual bases of the graded components of R to give a basis {µ∨ : µ ∈ M},
where M is the set of all monomials in R, for the injective hull E := ER(K), by part
(a). Let λ := rstu. There is a bijection θ of this dual basis with the strictly negative
monomials specified in the problem given by θ : µ∨ 7→ (λµ)−1. This extends to a K-vector
space isomorphism of E with E0. To check that this is an R-module isomorphism one
needs to check that for all ν ∈M, (∗) νθ(µ∨) = θ(νµ∨). Let µ/ν denote µ/ν if ν|µ and

0 otherwise. It is straightforward to check νµ∨ = (µ/ν)∨. Also, ν|µ iff ν/(λµ) is striclty
negative. It follows that each side of (∗) is nonzero if and only if ν divides µ, and then
both sides are ν/(λµ). �

3. (a) If u ∈ M \ {0} we have Ru � Ru/m(Ru) ∼= K, and so a nonzero composite map
f0 : Ru� K ↪→ E. Since E is injective, f0 extends to a nonzero map f : M → E. �

(b) If u ∈M \ {0}, the map f : M → E constructed in part (a) is nonzero on u, and then
the image Tu of u in HomR

(
HomR(M, E), E

)
is nonzero, since Tu(f) = f(u) 6= 0. �

4. (a) Let x1, . . . , xd be a system of parameters in R. By flatness, this is a regular sequence
on M (note that (x1, . . . , xd)S ⊆ n and M/nM 6= 0, by Nakayama’s lemma). Since
Rad (x1, . . . , xd) = m and Rad (mS) = n, it follows that Rad

(
(x1, . . . , xd)S) = n, and so

the images of x1, . . . , xd form a sequence of elements in S such that M/(x1, . . . , xd)M
is killed by a power of n. Since this sequence is a regular sequence on M , it follows that
dim(M) = d and M is Cohen-Macaulay. �

(b) Let f1, . . . , fk generate m. We have a map R → Rk such that 1 7→ (f1, . . . , fk)
whose kernel is AnnRm. Since 0 → AnnRm → R → Rk is exact and M is R-flat, we
have also that 0 → (AnnRm) ⊗R M → M → Mk is exact, where the rightmost map α is
u 7→ (f1u, . . . , fku). Ker (α) = AnnMm, but from the exactness of (∗) is also the image
(under an injection) of (AnnRm)⊗R M , which which may be identified with (AnnRm)M .
Then AnnMn ⊆ AnnMm, and is the same as Ann(AnnRm)⊗RMn. Now AnnRm is a K-vector
space whose dimension is the type t of R and so is ∼= Kt. Then AnnMn ∼= AnnKt⊗RMn ∼=
Ann(M/mM)⊕tn ∼= (AnnM/mMn)⊕t, and the dimension over L, which is the type of M over
S, is t times the dimension over L of AnnM/mMn, which is t times the type of M/mM . �



5. (a) Consider a maximal ideal m′ of RΓ and the corresponding maximal ideal m of R.
Then Rm → RΓm′ = RΓ

m is flat local, Rm is Cohen-Macaulay, and the fiber is (R/m)Γ
m
∼=

(R/m)Γ, which is purely inseparable over the field (R/m), and so is zero-dimensional. By
part (a) of Problem 4., RΓ

m′ is Cohen-Macaulay. Since m′ is arbitrary, RΓ is Cohen-
Macaulay. �

(b) It was show in class that when R is regular, so is RΓ for all sufficiently small Γ � Λ.
When R is not regular, by a class result if V (J) is the singular locus in R, then for all
sufficiently small Γ� Λ, V (JRΓ) is the singular locus in RΓ. if R is normal, we can choose
a regular sequence of length two (or more) in J . Since R→ RΓ is flat, the image of these
elements is a regular sequence in JRΓ.

6. We may replace R by R̂ without loss of generality, and so assume that R is complete.
When Ei ⊆ Ej ⊆ E where Ei ⊂ Ej is a proper inclusion, we may apply HomR( , E)
to obtain surjections R ∼= HomR(E,E) → HomR(Ej , E) → HomR(Ei, E) where, since
HomR( , E) is faithfully exact by Problem 3.(a), we have that the rightmost map is a
proper surjection. Thus, dualizing produces R → R/Jj → R/Ji where the second map
is a proper surjection: this means Ji is strictly larger than Jj . It will complete all parts
of the problem if we show that Ji = AnnREi =: Ai. Since R/Ji ∼= HomR(Ei, E), we
have that Ai ⊆ Ji. But we also know that Ei → HomR

(
HomR(Ei, E), E

)
is injective by

problem 3.(b), and the latter module is killed by Ji since HomR(Ei, E) ∼= R/Ji, which
shows that Ji ⊆ Ai. � (In fact, over a complete local ring, if M has ACC or DCC,
then HomR(M,E) ACC or DCC, respectively, and M → HomR

(
HomR(M, E), E) is an

isomorphism.)

EC9. We have pdRM = ht (I) = n − d. Let 0 → Rbh → · · · → Rb0 → 0 be a minimal
free resolution of M , where di : Rbi → Rbi−1 and Coker (d1) ∼= M . When we apply
∗ = HomR( , R) (not tight closure!), we get: (∗) 0 → (Rb0)∗ → · · · → (Rbh)∗ → 0,

and the cohomology is Ext•R(M,R). Here, the (Rbi)∗ are free, and the matrix of d∗i
is the transpose of the matrix of di. Since the depth of R on AnnRM = I is ht (I),

which is h, the j th cohomology of the complex (∗) is ExtjR(M,R) = 0 except when
j = h. Hence, the complex (∗) is a minimal (entries of the matrices are still in m) free
resolution of the Coker (d∗h) = ExthR(M,R) = M∨. Moreover, if use this resolution to
compute Exth(M∨, R), because ∗∗ is naturally isomorphic to the identity functor, we
come back to the original complex, which shows that ExthR(M∨, R) ∼= M . Clearly, I kills
M∨ and the annihilator of M∨ kills ExthR(M∨, R). Since the annihilator of each module
kills the other, each annihilator is contained in the other, and they are equal. Thus,
dim(M∨) = n− h = d. By the Auslander-Buchsbaum theorem, the depth of M∨ on m is
n− pdR(M∨) = n− h = d. Hence, M∨ is Cohen-Macaulay. Exactness of ∨ now follows
from the long exact sequence for Ext along with the fact that for Cohen-Macaulay modules
of dimension d, the only non-vanishing ExtjR(M,R) occurs when j = n − d. When x is a
nonzerodivisor on M , 0→M →M →M/xM → 0 is exact, yield a long exact sequence for
ExtR( , R) with just three consecutive nonzero terms, and then (M/xM)∨ ∼= M∨/xM∨

is immediate. When we localize at a prime P ⊇ I, RP is regular, MP is Cohen-Macaulay,
the new annihilator is IP , which has height h since all minimal primes of I have height h,
and so M∨P

∼= ExthRP
(MP , RP ) ∼= ExthR(M,R)P = (M∨)P . �

EC10. (a) Use the Koszul complex of a regular system of parameters to calculate Ext.

(b) Fom the exactness of ∨, if one has a short exact sequence of finite length modules



0 → A → M → B → 0, then `(M∨) = `(A∨) + `(C∨). The result is immediate from (a)
by induction on `(M).

(c) The type of M and the least number of generators of M∨ don’t change when one passes
from M to M/xM , where x is a nonzerodivisor on M , since (M/xM)∨ = M∨/xM∨.
Iterated application of this fact reduces the problem to the case where M has finite length.
The result then says that the socle in M has the same dimension as the least number
of generators of M∨. With notation as in the first part of Problem 4.(b) we have that
0 → AnnMm → M → Mk is exact, and thus, applying ∨, we have that the sequence

M∨
k → M∨ → (AnnMm)∨ → 0 is exact, where the leftmost map takes (u1, . . . , uk) 7→∑k

i=1 fiui. Thus, the cokernel of the map is also M∨/mM∨, and the least number of
generators of M∨, by Nakayma’s lemma, is the length (the same as vector space dimension)
of M∨/mM∨. This is the same as the length of (AnnMm)∨, which by part (b) is the same
as the length (or vector space dimension) of AnnMm, the socle of M . �


