
Commutative Algebra Seminar: Lecture of January 26, 2006

If Z is a closed subscheme of Y of pure dimension k, we can associate an element of
Zk(Y ), and, hence, of Ak(Y ) and Ak(Y ), with Z: in all three cases, we denote this element
[Z]. The element [Z] ∈ Zk(Y ) will be an integer linear combination of the irreducible
components Vi of Z. Let V = Vi be one of these. The question that remains to be
answered is what coefficient µ = µi do we use for V . We simply use the length of the Artin
local ring of the scheme Z at the point corresponding to V . We can describe this ring
alternatively as follows. Choose an open affine U in Y that meets Z. Let B be the ring of
sections on U , so that U = Spec (B). Let I be the ideal of B that defines Z ∩ U (I need
not be radical), so that Z ∩U = Spec (B/I). Then V ∩U corresponds to a minimal prime
P of I, and the Artin local ring we want is BP /IBP . Then [Z] =

∑
i µi[Vi] in Zk(Y ), in

Ak(Y ), and in Ak(Y ).

We can now make our definition of flat pull-back for a flat morphism f : Y ′ → Y
of relative dimension n precise: if V is closed, reduced and irreducible of dimension i in
Y , then f∗([V ]) = [f−1(V )], where f−1(V ) is the scheme-theoretic inverse image of V
(obtained locally by expanding the defining ideal). Note that, by the definition of relative
dimension, f−1(V ) has pure dimension dim(V ) + n.

Proper push-forward and flat pull-back give functorial operations both for A∗( ) and
A∗( ). Proper push-forward preserves degree. Flat pull-back shifts degrees upwards by
n, where n is the relative dimension. In the special case of an open immersion, degree is
preserved.

We next want to discuss two notions of vector bundle. One of them is that a vector
bundle on a scheme X is simply a locally free coherent sheaf of constant rank r on X. If
X is connected, the rank is automatically constant. In the case of an affine scheme, this
simply means that a vector bundle is given by a module locally free of rank r over the
corresponding ring.

The second notion is that a vector bundle of rank r on X is a scheme E together with a
projection map π : X → E satisfying the following condition: there is an open cover U of
X such that on each U ∈ U , π−1(U) is isomorphic with U ⊗Z Spec (Z[x1, . . . , xr]) = Ar

U

in such a way that the transition maps on overlaps are linear. This means that if we
use the identifications Ar

U
∼= π−1(U) and π−1(V ) ∼= Ar

V , each restricted to U ∩ V , to
get an automorphism Ar

U∩V
∼= Ar

U∩V , the automorphism is linear (on each open affine
W ⊆ U ∩ V , the corresponding automorphism of B[x1, . . . , xr], where B is the ring of
sections of X on W , is a B-algebra map induced by a B-linear automorphism of the one-
forms B1 = Bx1 + · · ·+ Bxr). The two notions correspond, up to isomorphism, by virtue
of the following two constructions, which are mutually inverse up to isomorphism.

First, given a locally free sheaf E of rank r on X, we can form π : E → X so that
over an open affine U = Spec (B) for which the E(U) is B-free, π−1(U) ∼= SymB

(
E∨(U)

)
.

These schemes glue together correctly as U varies.
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Second, given E, define a section of E on U to be a map σ : U → E|U whose compostion
with the restriction of π is the identity on U . When E is a vector bundle of rank r on X,
the sections of E form a locally free coherent sheaf of rank r.

For example, when X is simply Spec (B) and the vector bundle corresponds to the
module G = Br, the scheme E is Spec

(
Sym(G∨)

)
, where G• = HomB(G, B). A section

X → E is given by a map of B-algebras Sym(G∨) → B, which is completely determined
by its restriction to the forms of degree one. This restriction is simply an element of
Hom(G∨, B) ∼= G∨∨ ∼= G, so that, up to isomorphism, G is recovered from the sections.

If E is a locally free sheaf of rank r on X and we have a morphism f : Y → X then f∗E
is a locally free sheaf of rank r on Y . This is simply a consequence of the fact that if C is
a B-algebra, C ⊗B Br ∼= Cr is free of rank r. When Y is a closed, open, or locally closed
subscheme of X, f∗E is called the restriction of E to Y .

When r = 1, the vector bundle is called a line bundle.

We next want to characterize the first Chern class of a line bundle, and describe it
explicitly in some important special cases.

Given a line bundle L on X, we can characterize the action of the first Chern class
c1(L) by explaining, given V , a reduced and irreducible subscheme of dimension k, how
one gets a class in Ak−1(X): this class will be the value of c1(L) ∩ [V ] with [V ] ∈ Ak(X)
(this theory is also valid for A∗(X)). In fact we construct an element of Ak−1(V ) and then
use proper push-forward to get an element of Ak−1(X).

The first step is simply to restrict L to V . This gives a line bundle on V , and we need
only see how to get a class in Ak−1(V ) from a line bundle on V . Thus, for the purpose of
this description, we might as well assume that X = V and that L is simply a line bundle
on V .

There is one case in which it is particularly easy to see how one gets a class from L:
that is the case where L is associated with an effective Cartier divisor D ⊆ X. An effective
Cartier divisor D on X is a closed subscheme of X that is defined, locally, by the vanishing
of one element: in general, the element is required to be a nonzerodivisor, but in the case
of V , which is reduced and irreducible, this simply means that the element is nonzero. An
equivalent statement is that the sheaf of ideals defining D is locally free of rank one. This
sheaf of ideals is therefore the sheaf of sections of a line bundle, which is denoted OX(−D):
its inverse (or dual) is denoted OX(D).

When L ∼= OV (D), c1(L)∩[V ] = [D] ∈ Ak−1(V ): this makes sense, because D is a closed
subscheme of V of pure dimension k− 1. Note that L may be isomorphic with OV (D) for
more than one choice of D, but it is easy to show that in this situation, [D] ∈ Ak−1(V ) is
independent of the choice of D. When D is an effective Cartier divisor on X, if D does
not contain V , and L = OX(D), c1(L) ∩ V = [D ∩ V ].

We next recall the notion of blowing up a Noetherian scheme X along a closed sub-
scheme Z. First consider the case where X is Spec (B) and Z = Spec (B/I). Let
I = (f0, . . . , ft)B. Let Ci ⊆ Bfi

be the ring which is generated over the image of B
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by the images of the elements fj/fi, 0 ≤ j ≤ t. Then the Spec (Ci) are open affines cover-
ing the blow-up BlZX in this case. Note that (Ci)fj

and (Cj)fi
are isomorphic: both inject

into Bfifj
, and the images are the same, which explains how the open affines paste. The

resulting scheme is independent of the choice of generators of I, and may also be viewed
as ProjBB[IT ], where B[IT ] is an N-graded B-algebra, the Rees ring. Specifically,

B[IT ] = B + IT + I2T 2 + · · ·+ InTn + · · · ⊆ B[T ].

In the general case, X is covered by open affines Uj = Spec (Bj) on each of which Zj =
Z ∩ Bj is defined by an ideal Ij ⊆ Bj , and the schemes BlZj

Uj can be pasted together
in an obvious way to give BlZX, because blowing up in the affine case commutes with
localization. The scheme BlZX is independent of the choice of the cover of X by open
affines. There is a map BlZX → X which is a projective morphism and, in particular, a
proper morphism.

Note that when X is reduced and irreducible, it is obvious that BlZX and X have
the same function field. Also observe that the map BlZX → X has the following very
important property: the scheme-theoretic inverse image of Z is an effective Cartier divisor.
To see this, it suffices to consider the affine case. The assertion then follows once one sees
that if I = (f0, . . . , ft)B as above, then ICi, which defines the intersection of the scheme-
theoretic inverse of Z with Spec (Ci), is a principal ideal generated by a nonzerodivisor.
But ICi = fiCi, since fj = (fj/fi)fi for all j, and fi is a nonzerodivisor in Ci ⊆ Bfi .

We can characterize the action of c1(L) in the general case as follows. As before, we
may restrict L to V , where V is closed, reduced, and irreducible. Then there exists a
proper morphism f : Y → V , obtained by blowing up a suitably chosen closed subscheme
of V , such that f∗L has the form L1⊗L−1

2 , where L1 and L2 are associated with effective
Cartier divisors. The Li give classes βi in Ak−1(Y ). The class we seek is f∗(β1)− f∗(β2).

Thus, line bundles L give rise to degree −1 operators c1(L) : A∗(Y ) → A∗(Y ).

It turns out that all the operators c1(L) defined in this way commute.

We next note that given a vector bundle E of rank r on X, it has a projectivization
P(E), and that the morphism P(E) → X is both proper and also flat of relative dimension
r− 1. If we cover X by open affines U such that E|U → U is isomorphic to Ar

U → U , and
consider the various transition functions used to glue these, we can use the same transition
functions to clue the corresponding PU → U : this gives the projectivization of E.

We can now characterize the Chern classes of a vector bundle of rank r: one can
take a morphism π : Z → Y that is a composition of structural homomorphisms of pro-
jectivized vector bundles (these maps are flat and proper) such that the pullback of E
has a filtration by line bundles. Then ci(E) is determined by the i th elementary sym-
metric function of the first Chern classes of these line bundles, and lowers degrees by i.
In this situation π∗ : A∗(Z) → A∗(Y ) is onto and π∗ is a split monomorphism. Then
ci(E) ∩ α = π∗(ci(π∗(E) ∩ β), where β is chosen so that π∗(β) = α. These operators turn
out to have values independent of the choices made.
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These Chern classes are compatible with proper morphisms. If Z → Y is proper, E is
a vector bundle on Y , and α ∈ A∗(Z), one has the projection formula

f∗

(
ci

(
f∗(E)

)
∩ α

)
= ci(E) ∩ f∗(α).

All these operators commute and lower degree. One can therefore define new opera-
tors not only by substituting them in polynomials with rational coefficients, but also by
substituting them in power series. All terms of sufficiently high order will lower degree so
much that they may be interpreted as 0. In particular, for any line bundle L, we have an
operator ec1(L).

We can now define the Chern character of a vector bundle: this is the sum of the formal
exponentials of the Chern classes of line bundles in a filtration. Here, one really needs
rational coefficients. When there is no filtration one can still use the same method that
we used for Chern classes to characterize these: pull back via a flat proper morphism to a
scheme such that the pull-back does have a filtration by line bundles.

Similarly, we can define Todd classes: let h(x) denote the formal power series for

x/(1− e−x) = x/(x− x2/2! + x3/3!− · · · ) = 1/(1− x/2 + x2/6− · · · ) = 1 + x/2 + · · · .

In the case where E has a filtration by line bundles Li we can take the product of h
(
c1(Li)

)
to obtain the Todd class of E. We get a characterization of Todd classes in the general
case by pulling back as above via a flat proper morphism to a scheme where there is a
filtration by line bundles.


