
Math 711: Lecture of September 12, 2005

We next want to use the work that we have done on the ideals I2(X) to prove that the
rings K[X]/I2(X) are all Cohen-Macaulay rings. We first need to calculate the dimensions
of the rings K[X]/I2(X).

Proposition. Let X be an r × s matrix of indeterminates. The localization of R =
K[X]/I2(X) at the element x = x1,1 is isomorphic with the localization of the polynomial
ring S = K[xi,1, x1,j : 1 ≤ i ≤ r, 1 ≤ j ≤ s] at the element x = x1,1. Hence, dim (R) =
dim (Rx) = r + s− 1.

Proof. For i ≥ 2, j ≥ 2 the equation given by the vanishing of the 2× 2 minor formed the
first and i th rows and the first and j th columns is

x1,1xi,j − x1,jxi,1 = 0

which is equivalent to
(∗) xi,j = x1,jxi,1/x

in Rx. Consider the K-algebra homomorphism K[X] → Sx that fixes xi,j if i = 1 or if
j = 1, and otherwise sends xi,j 7→ x1,jxi,1/x. It is straightforward to verify that the map
kills I2(X) and so induces a surjection Rx � Sx. The inclusion S ⊆ K[X] induces a map
Sx → Rx. The composition (Rx → Sx) ◦ (Sx → Rx) is clearly the identity on Sx, and the
composition (Sx → Rx)◦(Rx → Sx) is the identity on Rx because of the displayed relations
(∗). The statement about dimensions is clear, since dim (Sx) = dim (S) = r + s− 1. �

We may also argue as follows in calculating the dimension of R, which is the same as the
dimension of V (I2(X)). Consider the open set where the first row of the matrix is nonzero.
The first row varies in As

K (with the origin deleted), i.e., in a variety of dimension s. Each
of the other r− 1 rows is a scalar times the first row, and so one expects the dimension to
be s + (r − 1) = r + s− 1.

Theorem. With r, s, X as above, each of the rings K[X]/I2(X) is Cohen-Macaulay.

Before proving this, we note the following.

Lemma. If I and J are any ideals of any ring R, there is an exact sequence:

0 → R/(I ∩ J) → R/I ⊕R/J → R/(I + J) → 0

where the first map sends r + (I ∩ J) 7→ (r + I) ⊕ (−r + J) and the second map sends
(r + I)⊕ (r′ + J) 7→ (r + r′) + (I + J).

Proof. It is straightforward to check that the maps are well-defined and R-linear. The first
map is injective, since r + (I ∩ J) is in the kernel iff r ∈ I and r ∈ J . The second map
obviously kills the kernel, and is clearly surjective, Finally, (r+I)⊕(r′+J) is in the kernel
of the second map iff r + r′ ∈ I + J , i.e., r + r′ = i + j with i ∈ I and j ∈ J . But then
r − i = r′ + j = r0, and (r + I)⊕ (r′ + J) is the image of r0 + (I ∩ J). �
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In the case of an N-graded Noetherian ring R with R0 = K, a field, and homogeneous
maximal ideal m, R is Cohen-Macaulay if and only if depthmR = dim (R).

Proof of the Theorem. We use induction, and so we may assume the result if either or both
of the dimensions of the matrix X are decreased. R is a domain and x = x1,1 is therefore a
nonzerodivisor. It will therefore suffice to prove that R/xR is Cohen-Macaulay. In R/xR,
the fact that xi,1x1,j − x1,1xi,j = 0 shows that any minimal prime of x either contains all
the x1,j or all of the xi,1. Let P be the ideal I2(X) + (x1,j : 1 ≤ j ≤ s) and Q the ideal
I2(X) + (xi,1 : 1 ≤ i ≤ r). It follows that V (x) = V (P ) ∪ V (Q). Since all of these ideals
are radical, we have that xR = P ∩Q.

Let X ′, X ′′, and X ′′′ be the matrices obtained from X be deleting, respectively, the first
row, the first column, and both the first column and row. Then R/P ∼= K[X ′]/I2(X ′) is a
Cohen-Macaulay domain of dimension (r−1)+s−1 = r+s−2 by the induction hypothesis.
R/Q ∼= K[X ′′]/Q is, similarly, a Cohen-Macaulay domain of dimension r + (s − 1) − 1 =
r + s − 2. Moreover, K[X]/(P + Q) ∼= K[X ′′′]/I2(X ′′′) is a Cohen-Macaulay domain of
dimension (r− 1) + (s− 1)− 1 = r + s− 3, again using the induction hypothesis. We can
now make of the short exact sequence

0 → R/xR → R/P ⊕R/Q → R/(P + Q) → 0.

Since the module in the middle has depth r + s − 2 on m and the module on the right
has depth r + s − 3 on m, the module on the left has has depth r + s − 2 on m. (One
may use the long exact sequence for ExtR(K, ), or for Koszul homology, or for local
cohomology to show this.) Since x is not a zerodivisor in the domain R, it follows that
depthm(R) = r + s− 1, which is dim (R). Therefore, R is Cohen-Macaulay. �

We now want to generalize all this to the case of t × t minors. We introduce two
notations that will be useful in dealing with matrices. If A is a matrix, we write A|t for
the submatrix formed from the first h columns of A. If A and B are matrices of sizes r× t
and r×u, respectively, we write A#B for the r× (t+u) matrix obtained by concatenating
A and B: the first t columns of A#B give A, while the last u columns give B.

The following elementary fact will prove critical in our analysis. It generalizes the fact
that when the two by two minors of a matrix vanish and the entries of the first row in the
first v columns are 0, then the rest of the entries of the first row kill the elements in the
first v columns.

Lemma (killing minors). Let A = (aij) be a matrix and 1 < v < w integers such that
the (k + 1)× (k + 1) minors of A|w vanish. Suppose also that a1j = 0 for 1 ≤ j ≤ v. Then
for v < j ≤ w, a1j kills Ik(A|v).

Proof. Fix j and fix a k × k minor of A|v. If the minor involves the first row of A, it
is 0, since the first row of A|v is 0. Therefore we may assume that the minor involves k
rows of A other than the first and k columns of A that are actually columns of A|v. Let
B denote the k × k submatrix of A determined by these rows and columns. Consider the
(k + 1) × (k + 1) submatrix of A that involves, additionally, the first row of A and the

j th column of A. This submatrix has the block form
(

0 a1,j

B C

)
where 0 denotes a 1× k
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block and C denotes a k×1 block. The determinant of this matrix is 0 by hypothesis, and
is equal to ±ai,j det(B). The result follows. �

Now suppose that we want to create a family of ideals that can be used to prove that
ideals of the form I3(X) are prime. If we kill the variables in the first v columns of the
first row, we are led to consider ideals in which the 2× 2 minors of the first v columns are
0 and the 3 × 3 minors of the entire matrix are 0. In addition, some of the entries of the
first row are 0. Eventually we may lose the entire first row.

When we consider building an appropriate family for I4(X), we are led to consider
ideals of the form I3(X|v) + I4(X) + Ia(X). But once the first row is gone, and we
start to kill entries of te second row, we see that we need to consider ideals of the form
I2(X|u)+I3(Xv)+I4(X)+Ia(X). This suggests studying the large class that we are about
to introduce.

Let X be an r × s matrix and 1 ≤ t ≤ min r, s as before. Let σ = (s0, s1, . . . , st−1),
where the sj are nonnegative integers ≤ s and st−1 = s. We denote by Iσ(X) the ideal

I1(X|s0) + I2(X|s1) + · · ·+ It(X|st−1).

We shall prove:

Theorem. Let K be a field, and X an r × s matrix of indeterminates over K with r, s, t
as above. Then all of the ideals Iσ(X) + Ik,h,a(X) are radical, where σ = (s1, . . . , st−1)
as above.

We shall also prove that certain ideals among these are prime, and the the quotients
by these primes are Cohen-Macaulay, but before we state the precise result, we want to
introduce some restrictions on the elements σ and k, h, a used to describe the ideals.

Exactly as in our analysis of the case where t = 2, if k > 0 or h > 0 we can consider
instead an ideal of the same type defined using a matrix of indeterminates with at least
one dimension strictly smaller than r or s. Henceforth, we assume that h = k = 0. Having
a positive value for s0 has the same effect as having the same value for k. We may likewise
assume that s0 = 0. If we are not killing any j × j minors in our sum Iσ(X), we assume
that sj−1 = j − 1. Note that X|j−1 has rank at most j − 1 automatically. Also note
that if the size j minors vanish for the first u columns, the same is true for the size j + 1
minors. This enables us to assume that sj−1 ≤ sj . But we can say more: the size j + 1
minors will vanish for X|u+1 as well, since a j + 1 size minor that involves the last column
may be expanded with respect to that column, and the cofactors are size k minors of X|u.
Henceforth, we may assume without loss of generality that 0 < s1 < s2 · · · < st−1 = s.
When this condition holds, we shall say that σ is standard. Note that when we want to
work with It(X), we work instead with Iσ(X) for σ = (0, 1, 2, 3, . . . , t− 2, s).

We can now state a more precise version of the theorem that we are aiming to prove.

Theorem. Let K, X, r, s, t, k, h, σ, and a be as above. Then Iσ(X)+Jk,h,a(X) is radical.
If σ is standard and a = sk for some k (the case where k = 0, when sk = 0, is included),

then P = Iσ(X) + Isk
(X) is prime, and the ring K[X]/P is Cohen-Macaulay.

The proof will occupy as for a while, but is, in fact, quite similar to the argument for
the case where t = 2.

We first prove:



4

Lemma. Let 0 ≤ k < t ≤ r be integers and K a field. Let L be a nonzero linear functional
on Kr and let 0 = V0 ⊆ V1 ⊆ · · · ⊆ Vt−1 be a nondecreasing chain of subspaces of Kr such
that L vanishes on Vk (hence, on all of V1, . . . , Vk) and dim K(Vj) ≤ j for 1 ≤ j ≤ t− 1.
Then there exists a chain of subspaces 0 = W0 ⊆ W1 ⊆ · · · ⊆ Wt−1 in Kr such that L
vanishes on Wk, Vj ⊆ Wj for 1 ≤ j ≤ t− 1, and dim (Wj) = j for 1 ≤ j ≤ t− 1.

Proof. We construct the Wj by reverse induction on j. We may evidently choose Wt−1 ⊆
Kr such that Vt−1 ⊆ Wt−1 and dim K(Wt−1) = t − 1, since dim (Vt−1) ≤ t − 1 < r. If
Wj+1, . . . , Wt−1 have already been chosen satisfying the required conditions, j > 1, then
there are two cases. If j 6= k, simply chose Wj of dimension j lying between Vj ⊆ Wj+1,
which is possible since dim (Vj) ≤ j and dim (Wj+1) = j + 1. If j = k, let H denote the
kernel of L, a codimension one subspace of Kr. We now have to choose Wk of dimension
k so that it contains Vk and is contained in H ∩Wk+1. But the dimension of H ∩Wk+1 ≥
dim (H) + dim (Wk+1) − r = r − 1 + k + 1 − r = k, and since Vk ⊆ H ∩ Wk+1 and has
dimension at most k, this is possible. �

We can now show the irreducibility of the algebraic sets corresponding to the ideals we
are claiming to be prime.

Proposition. With notation as in the Theorem, if σ is standard, V = V (Iσ(X)+Jsk
(X))

is irreducible.

Proof. Consider r × (t− 1) matrices B such that the first k entries of the first row are 0.
These may be thought of as the points of Ar(t−1)−k

K . Let Cj be a j × (sj − sj−1) matrix
over K, 1 ≤ j ≤ t− 1. (Recall that s0 = 0 and st−1 = s.) Consider the matrix

A = B|1C1#B|2C2# · · ·#B|t−1Ct−1.

The first k columns are in the span of the columns of B|k and so all have a 0 as their initial
entry. Moreover, the columns of A|sj

are in the span of the columns of B|j for every j,
and so the rank of A|sj is at most j for every j. That is, A is a point of V . The choices for
Cj are parametrized in bijective fashion by the points of Aj(sj−sj−1)

K for all j. Therefore,
we have a map AN

K → V , where

N = r(t− 1)− k +
t−1∑
j=1

j(sj − sj−1).

To show that V is irreducible, it suffices to show that this map is onto.
Consider any matrix A representing a point of V . Let Vj be the span of the columns of

A|sj
. Then the Vj satisfy the conditions of the Lemma, and we may choose Wj as in the

lemma: the linear functional is projection on the first coordinate. Choose B so that its
first column spans W1, its first two columns span W2, and, in general, its first j columns
span Wj . It is a straightforward induction to prove that this can be done.

Now the columns of A|sj
are in the span of the columns of B|j for all j: in particular,

this is true for the last sj − sj−1 columns, which says precisely that the matrix formed
from those columns has the form B|jCj , as required. �


