Math 711: Lecture of September 14, 2005

We can now compute the dimension of V, keeping the above notation. We can consider the open set $U \subseteq V$ where the matrix formed by the columns indexed by the $s_{j-1} + 1$, $1 \leq j \leq t - 1$, has rank t - 1: call this matrix B. Note that U is non-empty because we can use part of the standard basis e_2, \ldots, e_t for K^r for the columns of A indexed by the numbers $s_{j-1} + 1$, $1 \leq j \leq t - 1$, and take the rest of the columns of A to be 0.

For each j, the submatrix D_j of A consisting of the columns indexed by $s_{j-1}+1, \ldots, s_j$ can be written uniquely as a linear combination of the columns of $B|_j$. The coefficients needed comprise the columns of a $j \times (s_j - s_{j-1})$ matrix C_j . Note that the first column of C_j is the last column vector in the standard basis for K^j : this corresponds to the fact that the first column of D_j is the same as the column of A indexed by $s_{j-1} + 1$ and is the j th column of B. It is therefore the last column of $B|_j$. The entries of C_j other than the first column are arbitrary scalars and therefore C_j may be thought of as varying in an affine space $A^{j(s_j-s_{j-1}-1)}$, and this is also true, therefore, of D_j . It follows that the dimension of V should be

$$r(t-1) - k + 1(s_1 - 1) + 2(s_2 - s_1 - 1) + \dots + (t-1)(s_{t-1} - s_{t-2} - 1)$$

which we can rewrite as

$$r(t-1) - k - (s_1 + s_2 + \dots + s_{t-2}) + (t-1)s - {t \choose 2}$$

We can make this more precise as follows. Let $W \subseteq \mathbb{A}_{K}^{r(t-1)}$ be the non-empty open set consisting of matrices of rank t-1, and let $f: U \to W$ be the map that sends the matrix A to the matrix B = f(A) consisting of the columns of A with indices $s_{j-1} + 1$, $1 \leq j \leq t-1$. For fixed B, consider the fiber of f over B. Let V_j be the vector space spanned by the first j columns of B. Then the fiber may be described as consisting of all matrices A such that each column of A indexed by $s_{j-1} + 1$, $1 \leq j \leq t - 1$, is the j th column of B and each column of A with index $h, s_{j-1} + 1 < h \leq s_j$ is in the vector space V_j . It follows that the fiber is isomorphic with

$$\prod_{j=1}^{t-1} V_j^{s_j - s_{j-1} - 1},$$

so that each fiber has dimension $d = \sum_{j=1}^{t-1} j(s_j - s_{j-1} - 1)$, and so the dimension of U (and, likewise, of V) is the sum of the dimensions of W and d, as required. We have now proved:

Theorem. With notation as above, if σ is standard then

$$\dim \left(V(I_{\sigma}(X) + J_{s_k}(X)) \right) = (r+s)(t-1) - k - (\sum_{j=1}^{t-2} s_j) - {t \choose 2}. \quad \Box$$

In our discussion of dimension we used a fact relating the dimension of the domain of a dominant morphism to the dimension of the image and the dimension of a "typical" fiber. We treat this result formally below, but we first need some important facts about flatness. Part (a) is the first Lemma in the Lecture of December 8 from the notes for Math 711, Fall 2004. Part (b) is part (d) of the first Lemma in the Lecture of October 11, Math 711, Fall 2004.

Lemma. Let A, R, and S be Noetherian rings.

- (a) (Generic freeness) Let A be a domain. If M is a finitely generated module over a finitely generated A-algebra R, then there exists $a \in A \{0\}$ such that M_a is free over A_a . \Box
- (b) If $(R, m, K) \to (S, n, L)$ is a flat local homomorphism of local rings, then dim $(S) = \dim(R) + \dim(S/mS)$. \Box

We are now ready to prove the result we need:

Proposition. Let $f : V \to W$ be a dominant morphism of algebraic varieties over an algebraically closed field K. Suppose that there is a dense open subset W_0 of W such that for every point $w \in W_0$, the fiber $f^{-1}(w)$ has dimension d. Then dim $(V) = \dim(W) + d$.

Proof. We may replace W by an affine open set contained in W_0 and V by an open affine set contained in $f^{-1}(W_0)$. Thus, we may assume that V and W are affine and the dominance of f is then equivalent to the injectivity of the map of domains $K[W] \hookrightarrow K[V]$. By the Lemma of Generic Freeness, after localizing at one element of $K[W] - \{0\}$ we may assume that the map is flat. Consider any maximal ideal m of K[W]. The points of the fiber over m correspond to the maximal ideals of K[V]/mK[V] and we can choose a maximal ideal n of K[V] lying over m such that $\dim (K[V]/mK[V])_n = d$. But $\dim (V) = \dim (K[V]) =$ $\dim (K[V]_n)$ and $\dim (W) = \dim (W)_m$. The result now follows from part (b) of the Theorem applied to the flat local map $K[W]_m \to K[V]_n$. \Box

It is, moreover, always true that given a dominant map of varieties $V \to W$ there does exist an open set W_0 on which the dimension of the fiber is constantly dim $(V) - \dim (W)$. Cf. the Lemma on p. 3 of the Lecture Notes of September 8, Math 711, Fall 2004.

We can now complete the proof that all the ideals of the form $I = I_{\sigma}(X) + J_a(X)$ are radical. Because of our result on irreducibility, this also shows that the ones where $a = s_k$ are prime. As usual we may assume a < s or else we can work with the matrix obtained by deleting the first row of X instead. Let $x = x_{1,a+1}$. We use the two lemmas that are the basis for the method of principal radical systems. If we specialize x to 1 and all other entries of the matrix to 0 we see that we have a point A where all generators of I vanish but x does not. Thus, $I + (x) = I_{\sigma} + J_{a+1}(X)$ is strictly larger than I, and therefore radical by the induction hypothesis. If $a = s_k$ for some k we are done, since we know that Rad (I)is then prime. Otherwise we have that $s_k < a < s_{k+1}$ for some k. In this case, from the lemma on killing minors we have that $xI_k(X|_a) \subseteq I$. Let σ' be the t-tuple that agrees with σ except that we change the k + 1 st entry s_k to a. By the induction hypothesis, $I_{\sigma'}(X) + J_a(X)$ is radical and, therefore, prime: call it P, and $I \subseteq P$. But $xP \subseteq I$, and so I is radical. \Box