
Math 711: Lecture of September 21, 2005

We continue to review some basic facts about simplicial complexes.
The convex hull of a finite set v1, . . . , vk ⊆ Rn is the smallest convex set that contains

it; it may also be characterized as

{r1v1 + · · · + rkvk : 0 ≤ ri ≤ 1, r1 + · · · + rk = 1}.

Let e1, . . . , en be the standard basis for Rn. The geometric realization |∆| of a finite
simplicial complex ∆ with vertices x1, . . . , xn may be defined as the topological sub-
space of Rn obtained as the union of the convex hulls of the sets {ei1 , . . . , eik

} such that
{xi1 , . . . , xik

} is a face of ∆.
Then the dimension of ∆ is the same as the dimension of the real topological space |∆|.
We also recall the notion of the simplicial homology H•(∆; K) of ∆ with coefficients in

a commutative ring K. We form a free complex C• such that Cj , j ≥ 0 is the free K-module
on the free basis consisting of simplices of ∆ of dimension j. To define the differential we
need only specify its value on a typical j-simplex σ = {xi1 , . . . , xij+1}. We do this by
letting

dσ =
j+1∑
t=1

(−1)t−1(σ − {xit
}).

Then H•(∆; K) is defined as the homology of this complex, and is a topological invariant
of |∆| and, in fact, only depends on the homotopy type of |∆|, but the proof of this is
outside the scope of these lectures.

We also define the reduced simplicial homology H̃•(∆; K) as the homology of the com-
plex obtained by modifying the complex C• above to include a term in degree −1: the
additional term is the free module on one generator corresponding to the unique simplex
of dimension −1, to wit, the empty simplex ∅. The value of d on every {xi} is ∅. Note
that H̃i(∆; K) ∼= Hi(∆; K) for i ≥ 1. The rank of H̃0(∆; K) is one less than the rank
of H0(∆; K). The rank of the latter is the number of connected components of |∆|. In
particular, when |∆| is connected, H̃0(X) = 0.

Proposition. Let K be an integral domain and ∆ a finite simplicial complex with vertices
x1, . . . , xn. There is a bijection between the facets σ of ∆ and the minimal primes of K[∆]
(equivalently, of I∆) in which the minimal prime corresponding to σ is generated by the
images of the variables not in σ. The quotient by the minimal prime corresponding to σ
may be identified with the polynomial ring over K in variables corresponding bijectively
with the vertices of σ.

Hence, if K is a field, dim (K[∆]) = dim (∆) + 1. More generally, dim (K[∆]) =
dim (K) + dim (∆) + 1.

Proof. The final statement about dimension follows from the analysis of the minimal
primes, and the fact that the dimension of K[x1, . . . , xk] is dim (K) + k when K is Noe-
therian.
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We may analyze the minimal primes of I = I∆ as follows. Consider any prime P
containing I∆. Note that for each subset of x1, . . . , xn that is not a face, the product of
the variables in that subset is 0, and so at least one of them is in P . But a subset S of the
vertices meets every subset that is not a face if and only if its complement is a face. (If
the complement were not a face, it would have to meet it, a contradiction. On the other
hand, if the complement of the face σ fails to meet a set, the set must be contained in σ,
and therefore is a face.) Thus, any prime P ⊇ I contains the variables in the complement
of a face, and therefore the variables in the complement of a facet. But the variables in the
complement of a facet generated a prime Q that contains I (each generator of I is divisible
by one of variables in Q), and there can be no smaller prime that contains I within Q,
since it would have to contain the complement of a larger face. �

Note that every quotient ring R of K[x1, . . . , xn] obtained by killing square-free mono-
mials has the form K[∆]: let ∆ consist of all subsets of the variables the image of whose
product is not 0 in R.

Think of x1, . . . , xn as coordinate functions on An
K , where K is a field. By a coordinate

k-plane we mean a k-dimensional vector subspace of Kn = An
K defined by the vanishing of

a subset of the coordinate functions: n−k coordinate functions will be needed. Then, with
K a field, V (I∆) ⊆ An

K is the union of the coordinate k-planes (where k may vary) defined
by the vanishing of the variables in the complements of the facets of ∆. For example, when
n = 3 and the facets of ∆ are {x1, x2}, {x1, x3}, and {x2, x3}, V (I∆) is the union of the
three planes V (x1), V (x2), and V (x3).

If the field is the real numbers, and C denotes the standard simplex which is the convex
hull of the standard basis e1, . . . , en, then V (I∆)∩C is the same as the geometric realization
|∆| of ∆.

We next want to describe Reisner’s criterion for when the ring K[∆] is a Cohen-Macaulay
ring. In order to do so, we introduce the concept of a link within a simplicial complex.

Let ∆ be a simplicial complex and σ ∈ ∆. We define the link of σ in ∆ to be the
simplicial complex {τ ∈ ∆ : τ ∩ σ = ∅ and τ ∪ σ ∈ ∆}. One defines the link of a vertex xi

to be the same as the link of {xi}. The link of ∅ is simply ∆. The link of σ = {xi1 , . . . , xik
}

may also be obtained recursively as follows: take the link of xi1 in ∆ to produce ∆1. At
the the (t + 1) st stage take the link of xit+1 in ∆t to produce ∆t+1. Then ∆k is the link
of σ.

For example, if ∆ is the triangulation of the disk obtained from a convex polygon
(including its interior) by joining an interior point x to each vertex on the boundary, the
link of x in ∆ consists of the boundary: it is one-dimensional.

We shall eventually prove:

Theorem (Reisner’s criterion). Let K be a field and ∆ a finite simplicial complex.
Then K[∆] is Cohen-Macaulay if and only if for every Λ which is either ∆ itself or a link
of a simplex of ∆, if Λ has dimension h then H̃i(Λ; K) = 0, 0 ≤ i ≤ h− 1.

Mentioning that ∆ itself satisfies the condition is redundant here, since it is the link of
∅, but the statement about ∆ is included for emphasis. If |∆| is a manifold with boundary,
the condition on smaller links is automatically satisfied. Although it is not immediately
obvious, the condition given is topological, i.e., it depends only on |∆|. We note that if ∆
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arises from a triangulation of the real projective plane, then K[∆] is Cohen-Macaulay if
and only if the characteristic of K is different from 2.

We next want to prove that when K is a field, the rings K[∆] are reduced, and that if
K has positive characteristic p, then K[∆] is F-pure: we need to explain the meaning of
this notion.


