Math 711: Lecture of September 21, 2005

We continue to review some basic facts about simplicial complexes.
The convexr hull of a finite set vy, ..., v C R"” is the smallest convex set that contains
it; it may also be characterized as

{rivm+ - +rpo: 0<r; <1, i+ -+ 1, =1}

Let ey, ..., e, be the standard basis for R™. The geometric realization |A| of a finite
simplicial complex A with vertices x1, ... ,x, may be defined as the topological sub-
space of R™ obtained as the union of the convex hulls of the sets {e;,, ..., €;, } such that
{i,, ..., x4, } is a face of A.

Then the dimension of A is the same as the dimension of the real topological space |A].

We also recall the notion of the simplicial homology He(A; K) of A with coefficients in
a commutative ring K. We form a free complex C, such that C;, j > 0 is the free K-module
on the free basis consisting of simplices of A of dimension j. To define the differential we

need only specify its value on a typical j-simplex o = {z;,, ..., z;,,,}. We do this by
letting
Jj+1
do = 32(=1)" "o = {ai,}).
t=1

Then He(A; K) is defined as the homology of this complex, and is a topological invariant
of |A| and, in fact, only depends on the homotopy type of |A|, but the proof of this is
outside the scope of these lectures. B

We also define the reduced simplicial homology He(A; K) as the homology of the com-
plex obtained by modifying the complex Co above to include a term in degree —1: the
additional term is the free module on one generator corresponding to the unique simplex
of dimension —1, to wit, the empty simplex (). The value of d on every {z;} is . Note
that H;(A; K) = H;(A; K) for i > 1. The rank of Ho(A; K) is one less than the rank
of Hy(A; K). The rank of the latter is the number of connected components of |A|. In
particular, when |A| is connected, I;TO(X )=0.

Proposition. Let K be an integral domain and A a finite simplicial complex with vertices
Z1, ... ,x,. There is a bijection between the facets o of A and the minimal primes of K[A]
(equivalently, of Ia) in which the minimal prime corresponding to o is generated by the
1mages of the variables not in o. The quotient by the minimal prime corresponding to o
may be identified with the polynomial ring over K in variables corresponding bijectively
with the vertices of o.

Hence, if K is a field, dim (K[A]) = dim (A) + 1. More generally, dim (K[A]) =
dim (K) + dim (A) + 1.

Proof. The final statement about dimension follows from the analysis of the minimal
primes, and the fact that the dimension of Kz, ..., x| is dim (K) + k& when K is Noe-
therian.
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We may analyze the minimal primes of I = In as follows. Consider any prime P
containing Ia. Note that for each subset of z1, ... ,x, that is not a face, the product of
the variables in that subset is 0, and so at least one of them is in P. But a subset S of the
vertices meets every subset that is not a face if and only if its complement is a face. (If
the complement were not a face, it would have to meet it, a contradiction. On the other
hand, if the complement of the face o fails to meet a set, the set must be contained in o,
and therefore is a face.) Thus, any prime P D [ contains the variables in the complement
of a face, and therefore the variables in the complement of a facet. But the variables in the
complement of a facet generated a prime () that contains I (each generator of [ is divisible
by one of variables in @), and there can be no smaller prime that contains I within @,
since it would have to contain the complement of a larger face.

Note that every quotient ring R of K[z1, ... ,xz,] obtained by killing square-free mono-
mials has the form K[A]: let A consist of all subsets of the variables the image of whose
product is not 0 in R.

Think of x4, ... ,z, as coordinate functions on A%, where K is a field. By a coordinate
k-plane we mean a k-dimensional vector subspace of K™ = A% defined by the vanishing of
a subset of the coordinate functions: n— k coordinate functions will be needed. Then, with
K afield, V(Ia) € A% is the union of the coordinate k-planes (where k& may vary) defined
by the vanishing of the variables in the complements of the facets of A. For example, when
n = 3 and the facets of A are {z1, x2}, {z1, 23}, and {2, 23}, V(Ia) is the union of the
three planes V(x1), V(z2), and V(z3).

If the field is the real numbers, and C' denotes the standard simplex which is the convex
hull of the standard basis ey, ... , e,, then V(IA)NC is the same as the geometric realization
|A] of A.

We next want to describe Reisner’s criterion for when the ring K[A] is a Cohen-Macaulay
ring. In order to do so, we introduce the concept of a link within a simplicial complex.

Let A be a simplicial complex and ¢ € A. We define the link of 0 in A to be the
simplicial complex {7 € A:7No =0 and 7Uo € A}. One defines the link of a vertex x;
to be the same as the link of {x;}. The link of {) is simply A. The link of 0 = {z;,, ..., z;,}
may also be obtained recursively as follows: take the link of z;, in A to produce A;. At
the the (¢ + 1) st stage take the link of z;, ., in A; to produce Ay ;. Then Ay is the link
of 0.

For example, if A is the triangulation of the disk obtained from a convex polygon
(including its interior) by joining an interior point x to each vertex on the boundary, the
link of z in A consists of the boundary: it is one-dimensional.

We shall eventually prove:

Theorem (Reisner’s criterion). Let K be a field and A a finite simplicial complez.
Then K[A] is Cohen-Macaulay if and only if for every A which is either A itself or a link

of a simplex of A, if A has dimension h then ITL;(A; K)=0,0<i<h-1.

Mentioning that A itself satisfies the condition is redundant here, since it is the link of
(), but the statement about A is included for emphasis. If |A| is a manifold with boundary,
the condition on smaller links is automatically satisfied. Although it is not immediately
obvious, the condition given is topological, i.e., it depends only on |A|. We note that if A



arises from a triangulation of the real projective plane, then K[A] is Cohen-Macaulay if
and only if the characteristic of K is different from 2.

We next want to prove that when K is a field, the rings K[A] are reduced, and that if

K has positive characteristic p, then K[A] is F-pure: we need to explain the meaning of
this notion.



