Math 711: Lecture of September 21, 2005

We continue to review some basic facts about simplicial complexes.

The convex hull of a finite set $v_1, \ldots, v_k \subseteq \mathbb{R}^n$ is the smallest convex set that contains it; it may also be characterized as

$$\{r_1v_1 + \dots + r_kv_k : 0 \le r_i \le 1, \ r_1 + \dots + r_k = 1\}.$$

Let e_1, \ldots, e_n be the standard basis for \mathbb{R}^n . The geometric realization $|\Delta|$ of a finite simplicial complex Δ with vertices x_1, \ldots, x_n may be defined as the topological subspace of \mathbb{R}^n obtained as the union of the convex hulls of the sets $\{e_{i_1}, \ldots, e_{i_k}\}$ such that $\{x_{i_1}, \ldots, x_{i_k}\}$ is a face of Δ .

Then the dimension of Δ is the same as the dimension of the real topological space $|\Delta|$.

We also recall the notion of the simplicial homology $H_{\bullet}(\Delta; K)$ of Δ with coefficients in a commutative ring K. We form a free complex \mathcal{C}_{\bullet} such that $\mathcal{C}_j, j \geq 0$ is the free K-module on the free basis consisting of simplices of Δ of dimension j. To define the differential we need only specify its value on a typical j-simplex $\sigma = \{x_{i_1}, \ldots, x_{i_{j+1}}\}$. We do this by letting

$$d\sigma = \sum_{t=1}^{j+1} (-1)^{t-1} (\sigma - \{x_{i_t}\}).$$

Then $H_{\bullet}(\Delta; K)$ is defined as the homology of this complex, and is a topological invariant of $|\Delta|$ and, in fact, only depends on the homotopy type of $|\Delta|$, but the proof of this is outside the scope of these lectures.

We also define the reduced simplicial homology $\widetilde{H}_{\bullet}(\Delta; K)$ as the homology of the complex obtained by modifying the complex \mathcal{C}_{\bullet} above to include a term in degree -1: the additional term is the free module on one generator corresponding to the unique simplex of dimension -1, to wit, the empty simplex \emptyset . The value of d on every $\{x_i\}$ is \emptyset . Note that $\widetilde{H}_i(\Delta; K) \cong H_i(\Delta; K)$ for $i \ge 1$. The rank of $\widetilde{H}_0(\Delta; K)$ is one less than the rank of $H_0(\Delta; K)$. The rank of the latter is the number of connected components of $|\Delta|$. In particular, when $|\Delta|$ is connected, $\widetilde{H}_0(X) = 0$.

Proposition. Let K be an integral domain and Δ a finite simplicial complex with vertices x_1, \ldots, x_n . There is a bijection between the facets σ of Δ and the minimal primes of $K[\Delta]$ (equivalently, of I_{Δ}) in which the minimal prime corresponding to σ is generated by the images of the variables not in σ . The quotient by the minimal prime corresponding to σ may be identified with the polynomial ring over K in variables corresponding bijectively with the vertices of σ .

Hence, if K is a field, dim $(K[\Delta]) = \dim(\Delta) + 1$. More generally, dim $(K[\Delta]) = \dim(K) + \dim(\Delta) + 1$.

Proof. The final statement about dimension follows from the analysis of the minimal primes, and the fact that the dimension of $K[x_1, \ldots, x_k]$ is dim (K) + k when K is Noetherian.

We may analyze the minimal primes of $I = I_{\Delta}$ as follows. Consider any prime P containing I_{Δ} . Note that for each subset of x_1, \ldots, x_n that is not a face, the product of the variables in that subset is 0, and so at least one of them is in P. But a subset S of the vertices meets every subset that is not a face if and only if its complement is a face. (If the complement were not a face, it would have to meet it, a contradiction. On the other hand, if the complement of the face σ fails to meet a set, the set must be contained in σ , and therefore is a face.) Thus, any prime $P \supseteq I$ contains the variables in the complement of a facet generated a prime Q that contains I (each generator of I is divisible by one of variables in Q), and there can be no smaller prime that contains I within Q, since it would have to contain the complement of a larger face. \Box

Note that every quotient ring R of $K[x_1, \ldots, x_n]$ obtained by killing square-free monomials has the form $K[\Delta]$: let Δ consist of all subsets of the variables the image of whose product is not 0 in R.

Think of x_1, \ldots, x_n as coordinate functions on \mathbb{A}_K^n , where K is a field. By a coordinate k-plane we mean a k-dimensional vector subspace of $K^n = \mathbb{A}_K^n$ defined by the vanishing of a subset of the coordinate functions: n-k coordinate functions will be needed. Then, with K a field, $V(I_\Delta) \subseteq \mathbb{A}_K^n$ is the union of the coordinate k-planes (where k may vary) defined by the vanishing of the variables in the complements of the facets of Δ . For example, when n = 3 and the facets of Δ are $\{x_1, x_2\}, \{x_1, x_3\},$ and $\{x_2, x_3\}, V(I_\Delta)$ is the union of the three planes $V(x_1), V(x_2),$ and $V(x_3)$.

If the field is the real numbers, and C denotes the standard simplex which is the convex hull of the standard basis e_1, \ldots, e_n , then $V(I_{\Delta}) \cap C$ is the same as the geometric realization $|\Delta|$ of Δ .

We next want to describe Reisner's criterion for when the ring $K[\Delta]$ is a Cohen-Macaulay ring. In order to do so, we introduce the concept of a link within a simplicial complex.

Let Δ be a simplicial complex and $\sigma \in \Delta$. We define the *link* of σ in Δ to be the simplicial complex $\{\tau \in \Delta : \tau \cap \sigma = \emptyset \text{ and } \tau \cup \sigma \in \Delta\}$. One defines the link of a vertex x_i to be the same as the link of $\{x_i\}$. The link of \emptyset is simply Δ . The link of $\sigma = \{x_{i_1}, \ldots, x_{i_k}\}$ may also be obtained recursively as follows: take the link of x_{i_1} in Δ to produce Δ_1 . At the the (t+1) st stage take the link of $x_{i_{t+1}}$ in Δ_t to produce Δ_{t+1} . Then Δ_k is the link of σ .

For example, if Δ is the triangulation of the disk obtained from a convex polygon (including its interior) by joining an interior point x to each vertex on the boundary, the link of x in Δ consists of the boundary: it is one-dimensional.

We shall eventually prove:

Theorem (Reisner's criterion). Let K be a field and Δ a finite simplicial complex. Then $K[\Delta]$ is Cohen-Macaulay if and only if for every Λ which is either Δ itself or a link of a simplex of Δ , if Λ has dimension h then $\widetilde{H}_i(\Lambda; K) = 0, 0 \leq i \leq h - 1$.

Mentioning that Δ itself satisfies the condition is redundant here, since it is the link of \emptyset , but the statement about Δ is included for emphasis. If $|\Delta|$ is a manifold with boundary, the condition on smaller links is automatically satisfied. Although it is not immediately obvious, the condition given is topological, i.e., it depends only on $|\Delta|$. We note that if Δ

arises from a triangulation of the real projective plane, then $K[\Delta]$ is Cohen-Macaulay if and only if the characteristic of K is different from 2.

We next want to prove that when K is a field, the rings $K[\Delta]$ are reduced, and that if K has positive characteristic p, then $K[\Delta]$ is F-pure: we need to explain the meaning of this notion.