
Math 711: Lecture of September 23, 2005

We recall that a map of R-modules f : N → M is called pure over R if for every R-
module Q, Q⊗R N → Q⊗M is injective. In particular, N → M must itself be injective.
If N → M splits, so that N is a direct summand of M , then the inclusion N → M is pure,
i.e., maps of the form N → N ⊕Q are pure. Purity should be thought of as a weakening
of the condition of being a direct summand.

Theorem. If N → M is pure and M/N is finitely presented then N → M splits.

Since tensor product commutes with direct limit, if one has a direct limit of pure maps
(where a map from Ni → Mi to Nj → Mj is a commutative diagram

Nj −−−−→ Mjx x
Ni −−−−→ Mi

)

the direct limit map is also pure. It is obvious that if N ⊆ M is pure then N ⊆ M0 is pure
for every M0 between N and M . By the fact stated for direct limits, we have that N ⊆ M
is pure if and only if N ⊆ M0 is pure for every M0 with N ⊆ M0 ⊆ M such that M0/N is
finitely generated. When the base ring R is Noetherian, so that M0/N is finitely presented
whenever it is finitely generated, we have that N ⊆ M is pure if and only if N ⊆ M0 splits
for every M0 such that N ⊆ M0 ⊆ M and M0/N is finitely generated.

Purity is obviously preserved by base change: this is immediate from the associativity
of tensor product.

A map of rings R → S is pure if it is pure as a map of R-modules. We also say that
S is a pure R-algebra in this case. When R ↪→ S is pure, every ideal I of R is contracted
from S: this is because when one tenors R → S with R/I, the resulting map R/I → S/IS
is injective.

The composition of two pure maps is pure. If we have a ring homomorphism R → S
and an S-linear map M → N that is pure over S, then it is also pure over R when we
restrict scalars to R. We leave this as an exercise. If we have algebras R → S → T such
that R → S is pure and S → T is pure, then R → T is pure, since S → T is also pure as
a map of R-modules, and we may compose.

A ring R of prime characteristic p > 0 is called F -pure (respectively, F -split) if the
Frobenius endomorphism F : R → R is pure (respectively, split). Here, for r ∈ R,
F (r) = rp. Since we may compose, R is F -pure (respectively, F -split) if and only if all
the iterations F e are pure (respectively, split). Of course, if R is F-split then it is F-pure.
Note that the Frobenius endomorphism is injective if and only if R is reduced.

Let q = pe. Then the expansion of the ideal I under F e : R → R (note that F e(r) = rq)
is denoted I [q]: it is the ideal of R generated by all q th powers of elements of I, and it is
also generated by the q th powers of the elements in any set of generators of I.
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Note that if R is F-pure and r ∈ R is such that rq ∈ I [q], where q = pe, then r ∈ I. This
is equivalent to the fact that I is contracted from the second copy of R under F e : R → R.

Note that if K is a field, any nonzero map K → S is split over K and, hence, every
nonzero K-algebra is pure. The point is that the image of 1 ∈ K may be extended to a
vector space basis for S over K, and there is a K-linear map S → K that has the value 1
on 1 and is 0 on the rest of the basis (the specification of values on the rest of the basis
does not matter: any specification gives the required splitting).

It will be convenient to refer to the support of a monomial as the set of variables occurring
with a positive exponent in the monomial.

Proposition. Let K be a field of characteristic p > 0 and let ∆ be a finite simplicial
complex. Then K[∆] is F-split and, hence, F-pure.

Proof. It is clear that F is injective, since the image of
∑

µ cµµ as µ runs through some
finite set of monomials with support in ∆ and each cµ 6= 0 is

∑
µ cp

µµp. The key point is that
support of a monomial does not change when one takes its p th power. The image of the
map is therefore spanned over Kp = {cp : c ∈ K} by the set of monomials M with support
in ∆ such that every exponent is divisible by p. LetN be the set of monomials with support
in ∆ but such that some exponent is not divisible by p. We know that Kp → K splits over
Kp. Call the splitting θ. We now define a Kp-linear map K[∆] → (K[∆])p = Span KpM
by sending Kµ to 0 if µ ∈ N and sending cµ, where c ∈ K and µ ∈ M, to θ(c)µ. This
map is clearly Kp-linear and a retraction. Linearity over K[∆]p is easy to verify using the
additional fact that the product of a monomial in M and a monomial in N is in N . �

We next want to define Hodge algebras and the subclass of Hodge algebras called alge-
bras with straightening law. But before we give the rather long and technical definition,
we want to give an example of an important class of rings which turn out to be Hodge
algebras.

Let K be a field, let 1 ≤ r ≤ s be integers, and let X denote an r × s matrix of
indeterminates over K. We shall denote by K[X/r] the subring of the polynomial ring
K[X] generated by the r× r minors of X. If j = (j1, . . . , jr) where 1 ≤ j1 < · · · < jr ≤ s

are integers, one can form an r× r submatrix Yj of X, and the determinants of these
(

s

r

)
submatrices generate K[X/r].

This ring is the homogeneous coordinate ring of the Grassmann variety of r-dimensional
vector subspaces of Ks. The corresponding projective variety parametrizes such subspaces.
(Given an r-dimensional subspace W of Ks one may choose a basis for W and make the
basis elements into the rows of an r×s matrix M whose row space is W . The r× r minors
of this matrix, at least one of which is not 0, form the Plücker coordinates of the subspace.
If one chooses a different basis for W , the new matrix obtained has the form AM where A
is an invertible r× r matrix, and the Plücker coordinates are all multiplied by det(A) 6= 0,

so that the Plc̆ker coordinates give a well-defined point of P(s
r)−1

K . These points obviously
satisfy the same relations that are satisfied by the minors of a matrix of indeterminates.

Connversely, by a theorem, any
(

s

r

)
scalars satisfying those relations do arise as Plücker
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coordinates of some subspace.)
Let H be the set of r × r minors of X. We partially order H by Yj ≤ Yk precisely if

jt ≤ kt, 1 ≤ t ≤ r. It turns out that the monomials in the minors such that the set of
minors occurring is linearly ordered under this ordering of H is a basis for K[X/r] over K.
Moreover, the product of any two incomparable minors h and h′ is a K-linear combination
of products of pairs of comparable minors αβ such that α < h and α < h′. We shall prove
all of this eventually: for the moment just want to have one concrete illustration for the
axioms we will soon introduce.

Note that monomials in the elements of H can be indexed by N-valued functions on H:
the function corresponding to a given monomial u assigns to each h ∈ H the exponent
with which it occurs in u.

A non-empty subset Σ of NH is called a semigroup ideal if whenever h ∈ Σ and h′ ∈ NH

then h + h′ ∈ Σ. By a generator of a semigroup ideal Σ we simply mean a minimal
element of Σ, i.e., one which cannot be written h + h′ for h ∈ H and h′ ∈ NH − {0}. Any
Hodge algebra will have a set of standard monomials that are a basis: the exponents that
correspond to other monomials will form a semigroup ideal. In the case of K[X/r] , Σ
consists of all of elements of NH that are nonzero on two distinct incomparable elements
of H.

We are now ready to give our axiomatized generalization of this set-up. A word of
caution: in the literature, Hodge algebras and algebras with straightening law (ASLs)
are defined without necessarily being graded. However, this level of generality has not
proved very useful. We shall work entirely in the graded case, and so for us the terms
“Hodge algebra” and “algebra with straightening law” are synonymous with “graded Hodge
algebra” and “graded algebra with straightening law” as used by some authors.

Let K be a ring, R an N-graded K-algebra, and let H ⊆ R be a finite set of forms of
positive degree such that R = K[H]. Assume that a partial ordering ≤ on H is given,
and a semigroup ideal Σ ⊆ NH . If c ∈ NH , we write ch for c(h) and hc for the monomial∏

h∈H hch . We say that hc is the monomial corresponding to c and that c is the exponent
of hc (this notion turns out to be well-defined in important cases because of axiom (1)
below). We refer to the set {h ∈ H : ch 6= 0} as the support of c and also as the support of
hc, in cases where it is unique (again, see the comments in (1) below). We say that R is a
Hodge algebra over K on H governed by Σ if the following two axioms hold:
(1) The function NH → R sending c to

∏
h∈H hch is injective on NH − Σ, and its values

are linearly independent over K. (The values are called the standard monomials. Note
that a standard monomial u has a unique support coming from its representation hc using
c ∈ NH−Σ, and we always mean this support when talking about the support of a standard
monomial )
( 2) If v = hc is a monomial corresponding to an exponent c that is a generator of Σ, it
has a representation

(∗) v =
∑

u∈M
λuu

where M is a finite set of standard monomials (it may be empty, in which case the right
hand side is interpreted as 0), every λu ∈ K − {0}, and such that for every u and every h
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in the support of c, for some element h′ in the support of u, h′ < h.
The representations given by (2) are called the straightening relations of the Hodge

algebra. A Hodge algebra is called discrete if all the right hand sides are 0 in (2). A
discrete Hodge algebra is isomorphic with the a quotient of a polynomial ring K[h : h ∈ H]
by the ideal generated by all the monomials {hc : c ∈ Σ}. In particular, the face rings
K[∆] are discrete Hodge algebras.

A key point in the theory of Hodge algebras is that one may take associated graded
rings repeatedly, until one eventually obtains a discrete Hodge algebra. Properties of the
discrete Hodge algebra so obtained can, in many cases, be shown to hold for the Hodge
algebra itself. In particular, this holds for the Cohen-Macaulay property. We shall use this
method to prove that the ring K[X/r] is Cohen-Macaulay, and to give a new proof that
rings of the form K[X]/It(X) are Cohen-Macaulay.

A Hodge algebra is called an algebra with straightening law or ASL if Σ consists of all
elements of NH whose support contains at least two incomparable elements. In this case,
NH − Σ consists of all functions whose support is a linearly ordered subset of H: the
corresponding standard monomials are the monomials involving a linearly ordered subset
of H. We shall prove that K[X/r] is an ASL. In an ASL, the straightening law permits a
stronger conclusion: since each monomial u occurring on the right hand side is a product
of elements in a linearly ordered subset of H, there is a least element of H that occurs in
each such u, and this element must be less than every element in the support of c, where
v = hc in (∗) of (2).


