
Math 711: Lecture of September 26, 2005

Note that the straightening relations for a Hodge algebra are homogeneous: if the terms
on the right do not all have the same degree as v, fix a degree different from that of v for
which there are nonzero terms of that degree. Then the sum of all the terms of that degree
on the right must be zero, a contradiction, for the standard monomials must be linearly
indepenendent over K.

If c ∈ Nh we write ch instead of c(h), so that the monomial hc corresponding to c is∏
h∈H hch .

No matter what the base ring K is, there is a bijection between the semigroup ideals
Σ ⊆ NH and the nonzero monomial ideals of K[H], the polynomial ring with the elements
of H as the variables. This bijection takes Σ to the ideal which is the K-span of the
monomials hc for c ∈ Σ. Conversely, if I is any nonzero ideal generated by monomials in
K[H], I is the K-span of the set of monomials contained in I, and the set of exponents
of the monomials in I is a semigroup ideal in NH . A minimal set of monomial generators
for such an ideal I is unique, and the exponents correspond to the generators of Σ in the
sense defined earlier. Since all of this holds when K is Noetherian, it follows that the set
of generators of Σ is finite. Of course, it is also possible to prove this without using any
ring theory.

If H is a poset and h ∈ H, we define dim (h) as the supremum of lengths t of strictly
ascending chains h = h0 < h1 < · · · < ht with h as the first element. (For example, the
dimension of a prime ideal P in the poset of prime ideals of a ring R is the same as the Krull
dimension of R/P .) Note that in a finite poset H, if h1 < h2 then dim (h1) > dim (h2),
since a longest chain starting with h2 will yield a chain of length one more if we insert h1

at the beginning.
We next note the following:

Theorem. Let R be a Hodge algebra on H over K governed by Σ. Then the standard
monomials are a free K-basis for R, and R is the quotient of a polynomial ring in variables
corresponding to the elements of H by the ideal generated by the straightening relations.
More precisely, if we introduce an indeterminate Xh over K for every element of H then
R is the quotient of K[Xh : h ∈ H] by the ideal J generated by the straightening relations,
each translated into a relation on the indeterminates Xh: for each exponent c that is a
generator of Σ, we include one generator∏
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Xch

h −
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(u)
h
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in J , where c(u) ∈ NH − Σ is the exponent corresponding to u.

Proof. Let d be the supremum of the sums
∑
h∈H

ch for c that is a generator of Σ, and let

the weight of an element h ∈ H be defined as (d + 1)dim (h). Extend the weight function
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to the exponent c′ by letting the weight of c′ be∑
h∈H

c′hweight(h).

Then, for any two exponents c1, c2, the weight of their sum is the sum of their weights.
Assume the result is false and that some monomial of degree N cannot be expressed as a

linear combination of standard monomials as a consequence of the straightening relations.
Choose such a monomial whose exponent is of greatest weight. This monomial v′ can be
written as vw where v corresponds to an exponent c that is a minimal generator of Σ. It
suffices to show that v′ is a linear combination of monomials of degree N corresponding to
exponents of greater weight.

It will therefore be enough to prove this for v, since multiplying by w will preserve
the necessary qualities of the relation: the weight of the exponent for each monomial is
increased by the weight of the exponent chosen for w.

Consider the straightening relation

v =
∑

u∈M
λuu

where each of the standard monomials u that occurs has the same degree as v. It will
suffice to show that the weight of the exponent c(u) of each u that occurs is strictly larger
than the weight of v. Recall that v = hc. Choose h0 in the support of c of largest possible
dimension: call this dimension b. Then the weight of c is∑

h∈H

ch(d + 1)dim (h)

and whenever ch 6= 0 we have that dim (h) ≤ b, which shows that the sum is bounded by

(#)
∑
h∈H

ch(d + 1)b = (
∑
h∈H

ch)(d + 1)b ≤ d(d + 1)b < (d + 1)b+1.

Now consider the weight of u = hc(u)
occurring in the straightening relation. Then

c(u) is supported at an element h1 ∈ H such that h1 < h0. Then the weight of c(u) is
at least the weight of h1, which is (d + 1)dim (h1). Since dim (h1) > dim (h0) = b, this
is ≥ (d + 1)b+1, which we showed in (#) above is strictly larger than the weight of c, as
required. �

We shall say that two Hodge algebbras have the same data if their posets H and H ′

are isomorphic, say φ : H ∼= H ′ is the order isomorphism, in such a way that the induced
semigroup isomorphism NH ∼= NH′

carries the semigroup ideal Σ for the first Hodge
algebra isomorphically onto the semigroup ideal Σ′ for the second Hodge alagebra. The
simplest case is when H = H ′ and Σ = Σ′.

We define theindiscrete part Ind(R) of the Hodge algebra R over K on H governed by
Σ to be the subset of elements h ∈ H such that h is in the support of a standard monomial
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u occurring with nonzero coefficient in a straightening relation for R over K. Thus, R is
discrete if and only if the indiscrete part Ind(R) of R is empty.

Our strategy is the following: we shall show that if R is not discrete and h0 is minimal
in Ind(R), then, with I = h0R, the associated graded ring grI(R) is a Hodge algebra over
K on H governed by Σ such that

Ind
(
grI(R)

)
⊆ Ind(R)− {h0}.

Once we have shown this it follows immediately that one may form successive associated
graded rings in this way until one reaches a discrete Hodge algebra. Technically, the
description above is not fully accurate: the poset and semigroup at each stage are the
same as the ones at the previous stage only up to an obvious isomorphsim. However, we
do reach a discrete Hodge algebra over K with the same data. This will enable us to prove
substantial theorems about the properties of R by proving corresponding properties for
the discrete Hodge algebra instead.


