
Math 711: Lecture of September 28, 2005

The following fact will prove critical:

Lemma. Let R be a Hodge algebra with notation as above, let h0 be minimal in Ind(R),
and let I = h0R. Then for every positive integer j, IjR is the free K-module spanned by
those standard monomials hc, c ∈ NH − Σ, such that ch0 ≥ j, i.e., such that the standard
monomial has hj

0 as a factor.

Proof. Since R is spanned over K by the standard monomials it is clear that Ij = hj
0R is

spanned over R by the elements hj
0h

c for c ∈ NH −Σ. We claim that each such monomial
is either 0 or else is standard itself. Let e denote the element of NH that is 1 on h0 and 0
elsewhere. If c + je does not yield a standard monomial, we have that c + je is in Σ, and
so is the sum of a standard generator c′ and some element f ∈ NH , i.e., c + je = c′ + f .
We claim that c′ must have a positive value on h0: if not, then the value of f on h0 is at
least j, and we can write c = c′ + (f − je), which shows that c ∈ Σ, a contradiction.

Now consider a straightening relation for hc′ : since c′ is positive on h0, each nonzero
term λuu on the right involveds a standard monomial u whose support contains an element
of H, call it h′0, with h′0 < h0. Since h0 is minimal in Ind(R), such an h′0 does not exist,
and it follows that hc′ = 0, and so hj

0h
c′ = 0 as well. �

We keep the notations of the Lemma in force, with h0 a fixed minimal element of Ind(R).
If r is nonzero element of R, there is a largest integer j ≥ 0 such that r ∈ Ij (by a degree
argument, for example), and then r ∈ Ij − Ij+1. We call j the order of r with respect to
I (or with respect to h0) and use ord I(r) = ord (r) to denote this order. It is clear that
ord (rs) ≥ ord (r)+ord (s). This generalizes by induction to the case of a product of several
elements. If ord (r) = j we write r∗ for the element r + Ij+1 ∈ Ij/Ij+1 ⊆ grI(R): r∗ is
called the leading form of r. Then if ord (rs) = ord (r)+ord (s), we have that (rs)∗ = r∗s∗.
Again, this generalizes by induction to the case of a product of several elements. We can
now state an important consequence of the Lemma above.

Corollary. With notation as above, Ij/Ij+1 has a free K-basis the elements u∗, where u
is standard monomial whose exponent has value j on h0. Thus, the elements u∗, as u runs
through all standard monomials, are a free K-basis for grIR.

The order of h0 is 1, while for all h ∈ H−{h0}, ord (h) = 0. Moreover, for any standard
monomial u with exponent c, u∗ =

∏
h∈H h∗ch . �

Keeping these notations, we next observe that we can give grIR the structure of a graded
algebra (not the one come from the fact that it is an associated graded ring) as follows. We
simply let the graded piece in degree i be the K-span of all the u∗ such that u is a standard
monomial of degree i in R. We need to check that if u and u′ are standard monomials of
degrees i and i′, respectively, then u∗u′

∗ is a K-linear combination of elements v∗ where v
is standard of degree i + i′.

Suppose that u has order m with respect to I and v has order m′. Then then u∗u′
∗ in

grIR is the class of uu′ in Im+m′
/Im+m′+1, by the definition of multiplication for grI(R).
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But uu′ will be a K-linear combination of standard monomials each of which is a multiple
of hm+m′

0 , and each of which has degree i + i′. Say

uu′ =
∑

w∈M
λww.

It follows that
u∗u′

∗ =
∑

w∈M, ordI(w)=m+m′

λww∗,

and since every w has degree i + i′, we have proved what we need.

We now have that grI(R) is an N-graded K-algebra generated by H∗ = {h∗ : h ∈ H}.
We use the bijective map h 7→ h∗ to give a partial ordering on H∗, and we let Σ∗ be the
image of Σ under the obvious isomorphism NH ∼= NH∗

induced by the order isomorphism
H ∼= H∗. We claim that, with the grading described just above, grIR is a Hodge algebra
over K on H∗ governed by Σ∗, and that

Ind(grIR) ⊆ {h∗ : h ∈ Ind(R)} − {h∗0}.

To see this, suppose that c ∈ Σ is a generator, that v is the element with this exponent
in R, and that w is the corresponding element in gr(I) obtained from H∗ by using the
same exponent. Then we have a straightening relation

(∗) v =
∑

u∈M
λuu

in R. We want to show that from (∗) we can derive a corresponding relation in grIR, and
we need to compare the indiscrete parts. There are two cases. If c is positive on h0 then
the right hand side of (∗) must be 0, and we see that we have the relation w = 0 in grI(R).
No elements from H∗ are used on the right. Now suppose that c is 0 on h0, so that v is a
product of elements of H of order 0. Then in grIR we have the relation:

(∗′) w =
∑

u∈M, ordI(u)=0

λuu∗,

and all the elements of H∗ occurring as factors of the various u∗ are in

{h∗ : h ∈ Ind(R)} − {h∗0},

which is exactly what we need. We have therefore proved:

Theorem. Let R be a Hodge algebra over K on H governed by Σ. Let h0 be minimal
in Ind(R). Then with H∗, Σ∗ as above and the grading defined on grI above, so that
deg(u∗) = deg(u) when u is standard, grIR is a Hodge algebra over K on H∗ governed by
Σ∗ (hence, with the same data as R). Moreover,

Ind(grIR) ⊆ {h∗ : h ∈ Ind(R)} − {h∗0}. �

We can now take the associated graded ring with respect to the ideal generated by a
minimal element of the indiscrete part of the new algebra again, and do so repeatedly.
Each repetition decreases the cardinality of the indiscrete part by at least one. We must
eventually reach the discrete Hodge algebra over K on H governed by Σ.
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Corollary. Let R be a Hodge algebra over K on H governed by Σ. Then there is a finite
sequence of Hodge algebras over K with the same data, each of which is the associated
graded ring of its predecessor with respect to a principal homogenous ideal, and such that
the last element in the sequence is, up to isomorphism, the discrete Hodge algebra over K
on H governed by Σ. �

We shall embark on a program of getting information about a Hodge algebra from
information about the corresponding discrete Hodge algebra. For the Cohen-Macaulay
property, the following fact will be useful. Note that if (R, m, K) is local, R(t) will denote
the localization of the polynomial ring in one variable R[t] at mR[t], which is faithfully
flat over R, with closed fiber k(t).

Theorem. Let P be a property of Noetherian rings such that:
(1) R has property P if and only if all local rings of R have property P.
(2) If x is a nonzerodivisor in m, and R/xR has property P, then R has property P.
(3) If R(t) has property P then R does.

The Cohen-Macaulay property is an example.
Let I be an ideal of R such that grI(R) has property P. Then RQ has property P for

every prime ideal Q of R such that Q + I is a proper ideal of R, and, in particular, for
every prime ideal of R that contains I.

Before giving the proof we recall that if I is an ideal of R and t is an indeterminate
then the Rees ring of I is R[It] ⊆ R[t] which may also be written as

R + It + I2t2 + I3t3 + · · · .

Let v = 1/t in R[t]t = R[t, 1/t]. The second Rees ring of I is R[It][v] ⊆ R[t, 1/t] which is
easily seen to be:

· · ·+ Rv3 + Rv2 + Rv + R + It + I2t2 + I3t3 + · · · .

Then
vR[It, v] = · · ·+ Rv3 + Rv2 + Rv + I + I2t + I3t2 + I4t3 + · · · ,

and we see that R[It, v]/(v) may be identified with

R/I + (I/I2)t + (I2/I3)t2 + (I3/I4)t3 + · · · .

Here, the powers of t are just “place holders.” This ring is grIR. Moreover, since v is a
unit in R[t, 1/t], it is evidently a nonzerodivisor in this ring and in R[It, v]. We use v to
denote 1/t here as a reminder that v is generally not a unit in R[It, v], since t is not in
the ring. We are now ready to give the proof of the theorem stated above.

Proof. If Q+I is proper it is contained in a maximal ideal m of R. Since RQ is a localization
of Rm, it suffices to show that Rm has the required property. Since

grIRm
Rm

∼=
(
grIR

)
m

,
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we may replace R by Rm. We henceforth assume that (R, m, K) is local with I ⊆ m. Let

Q = · · ·+ Rv3 + Rv2 + Rv + m + It + I2t2 + I3t3 + · · · ,

which is the kernel of the composite map

R[It, v] � R[It, v]/(v) ∼= grIR � R/I � R/m.

Let
P = · · ·+ mv3 + mv2 + mv + m + It + I2t2 + I3t3 + · · ·

which is the contraction of mR[t, 1/t] to R[It, v] and is the kernel of a surjection R[It, v] �
K[v]. Note that P ⊆ Q. Then v is a nonzerodivisor in the maximal ideal of R[It, v]Q, and
the quotient may be identified with

(
R[It, v]/(v)

)
Q
∼= grI(r)Q. Since this is a localization

of grI(R), it has property P, and then (2) implies that R[It, v]Q has property P. Since
P ⊆ Q, we see that R[It, v]P has property P. In this ring, since v /∈ P it acquires an
inverse in the localization, i.e., t is in the ring, and so this ring isomorphic with R[t, v]P ′ ,
where P ′ denotes the expansion of P . But P ′ = mR[t, v], and so R[t, v]P ′ ∼= R(t). Since
R(t) has the property P, R has the property P. �


