
Math 711: Lecture of September 30, 2005

We next note:

Proposition. Let R be a ring and I an ideal of R. If
⋂

n In = 0 (which is always true if

R is N-graded and I ⊆
∞⊕

j=1

Rj), then:

(a) If grIR is reduced, then R is reduced.
(b) If grIR is a domain, then R is a domain.

Proof. For part (a), suppose r ∈ R − {0} and rt = 0. Choose j such that r ∈ Ij − Ij+1.
Then [r] ∈ Ij/Ij+1 is a nonzero element of degree j in grIR, and then [r]t is the image of
rt in Ijt/Ijt+1, and so is 0. Similarly, for part (b), if r, s are nonzero elements of R such
that rs = 0 we can choose j such that r ∈ Ij− Ij+1 and s ∈ Ik− Ik+1. Then [r] ∈ Ij/Ij+1

and [s] ∈ Ik/Ik+1 are nonzero elements of degrees j and k respectively such that [r][s] is
0 in Ij+k/Ij+k+1, since it is represented by rs = 0. �

By the socle Soc(M) of a module M over a local ring (R, m, K) we mean AnnMm ∼=
HomR(K, M), which is a K-vector space.

Recall that a finitely generated module M over a local ring R is Cohen-Macaulay if
depthmM = dim (M): we always have that depthmM ≤ dim (M), where dim (M) =
dim (R/AnnRM). When R is Cohen-Macaulay over R, it is also Cohen-Macaulay over
R/AnnRM , and the maximal regular sequences in m on M are the sequences of elements
whose images in R/AnnRM form a system of parameters for R/AnnRM. By the type of
a Cohen-Macaulay module M of dimension d over a local ring (R, m, K) we mean the
K-vector space dimension of the K-vector space Extd

R(K, M). If x is a nonzerodivisor in
R on M , the short exact sequence

0 → M
x−→ M −→ M/xM −→ 0

yields a long exact sequence when we apply HomR(K, ). In general, Exti
R(N, M) van-

ishes for i < depthAnnRNM , and so Exti
R(K, M) vanishes for i < d, while Exti

R(K, M/xM)
vanishes for i < d−1. The first few nonzero terms in the long exact sequence for Ext have
the form:

0 −→ Extd−1
R (K, M/xM) −→ Extd(K, M) x−→ Extd(K, M).

Since x ∈ AnnRK = m, x kills Extd
R(K, M), and so we get an isomorphism

Extd−1
R (K, M/xM) ∼= Extd(K, M)

It follows that the type of M is the same as the type of M/xM . Iterating, we find that if
x1, . . . , xd is a maximal regular sequence on M , the type of M is the same as the type of
M/(x1, . . . , xd)M , which is

dim K

(
HomR(K, M/(x1, . . . , xd)M)

)
= dim K

(
Soc(M/(x1, . . . , xd)M

)
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The type of a Cohen-Macaulay local ring is simply its type as a module over itself. We
define a local ring to be Gorenstein if it is Cohen-Macaulay of type 1. There are many
other characterizations.

The next theorem will prove extremely valuable. We need a lemma first.

Lemma. Let M be a flat R-module and let I be a finitely generated ideal of R. Then

AnnMI = (AnnRI)M ∼= (AnnRI)⊗R M.

Proof. Let I = (f1, . . . , fh)R. Let A be the the 1×h matrix (f1 f2 · · · fh). Then we have
an exact sequence

0 −→ AnnRI −→ R
A−→ Rh.

Since M is flat, applying M ⊗R yields an exact sequence

0 −→ (AnnRI)⊗R M −→ M
idM⊗A−−−−−→ Mh,

while the kernel of idM ⊗R A : M → M⊕h is, evidently, AnnMI. The identification of
J⊗M , where J = AnnRI, with JM is a consequence of the injectivity of the map obtained
from 0 → J ⊆ R by applying ⊗R M : we have an injection 0 → J ⊗R M ↪→ M whose
image is JM . �

We are now ready to prove:

Theorem. Let (R, m, K) → (S, n, L) be a local homomorphism and let M be a finitely
generarted S-module that is R-flat. (The most important case is when M = S is R-flat.)
Then:
(a) dim (M) = dim (R) + dim (M/mM).
(b) depthnM = depthmR + depthnM/mM .
(c) An element x ∈ n is a nonzero divisor on M/mM if and only if it is a nonzerodivisor

on M/IM for every ideal I ⊆ m of R. Moreover, if x is a nonzerodivisor on M/mM
then M/xM is R-flat.

(d) If depthmR = 0, then x ∈ n is a nonzero divisor on M if and only if it is a nonzero
divisor on M/mM .

(e) M Cohen-Macaulay if and only if R and M/mM are both Cohen-Macaulay.
(f) If M is Cohen-Macaulay, the type of M is the product of the types of R and M/mS.

Proof. We observe for parts (a) and (b) that when we replace R by R/J , S by S/JS,
and M by (R/J) ⊗R M ∼= M/JM , we still have that M/JM is flat over R/J and the
closed fiber of M over R, namely M/mM , is not affected. For parts (a) and (b) we use
Noetherian induction, and assume that R has been replaced by R/J , where J is maximal
with respect to the property of giving a counter-example. Thus, we may assume that the
result holds when R is replaced by any proper quotient.

For part (a), we note first that R must be reduced, for if we take J to be the nilradical of
R, R/J and M/JM have the same dimensions as R and M , while M/mM does not change
when we replace R by R/J . Therefore we may assume that R is reduced. If dim (R) = 0
then R = K, m = 0, M/mM = M , and the result is obvious.
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If R has positive dimension then, since R is reduced, we can choose a nonzerodivisor x ∈
m. Since M is R-flat, x is also a nonzerodivisor on M , so that dim (R/xR) = dim (R)− 1
and dim (M/xM) = dim (M)− 1. Since the result holds for R/xR, S/xS, and M/xM by
the induction hypothesis, we have that

dim (M)−1 = dim (M/xM) = dim (R/xR)+dim (M/mM) = dim (R)−1−dim (M/mM),

and the required result follows by adding 1 to both sides.
Before proving (b), we prove (c) and then (d). To prove the statement in (c) we assume

that x ∈ n is a nonzerodivisor on M/m. We replace R byR/J where J is maximal with
respect to giving a counter-example, and so we may assume the result holds for every ideal
of R except possibly 0. If depthRm = 0, we let J be uR, where u is a nonzero element
of m killed by m. Then R has a filtration with the factors J ∼= K and R/J , and so
M has a filration with the factors J ⊗R M and (R/J) ⊗R M = M/JM . The former is
K ⊗R M = M/mM , and x is not a zerodivisor on this module by hypothesis. But x is
also not a zerodivisor on M/JM by the hypothesis of Noetherian induction, and so x is
not a zerodivisor on M .

If depthmR > 0, we can choose y in m such that y is not a zerodivisor in R. Since M
is R-flat, y is not a zerodivisor on M . By the hypothesis of Noetherian induction, x is not
a zerodivisor on M/yM . But then y, x is a regular sequence in S on M . Since S is local
and M is finitely generated over S, regular sequences are permutable, and x, y is a regular
sequence on M . But this shows that x is not a zerodivisor on M .

This establishes all but the last statement in part (c). To prove that M/xM is again
R-flat, it suffices to prove that TorR

1 (R/I, M/xM) = 0 for every ideal I of R. Apply
(R/I)⊗R to the short exact sequence 0 → M → M → M/xM → 0, where M → M is
multiplication by x. Then the long exact sequence for Tor yields an exact sequence:

TorR
1 (R/I, M) → TorR

1 (R/I, M/xM) → M/IM → M/IM

where the map M/IM → M/IM is multiplication by x and so is injective by what we have
already shown. Since M is R-flat, TorR

1 (R/I, M) = 0, and so Tor1(R/I, M/xM) = 0, as
required.

This completes the proof of (c). For part (d), it suffices to show that if R has depth 0,
and x is not a zerodivisor on M then x is not a zerodivisor on M/mM : the converse, in
a much stronger form, has already been proved in part (c). The fact that depthmR = 0
implies that there is an embedding K ↪→ R. Applying M ⊗R yields an embedding of
M/mM ↪→ M . The fact that x is a nonzerodivisor on M implies that is a nonzerodivisor
on every submodule of M , and, hence, on M/mM , as required.

We can now prove (b). We use inductnion on depth(R)+depth(M/mM). If depthmR >
0 then we can choos x ∈ m that is a nonzerodivisor in R and, hence, on M . We pass to
R/xR, S/xS, and M/xM . The depths of R and M decrease by 1, while M/mM stays the
same. Then

depthnM − 1 = depthnM/xM = depthmR/xR + depthnM/mM



4

by the induction hypothesis. The latter is depthmR − 1 + depthnM/xM, and the result
follows.

Now assume that depthmR = 0. By part (d), depthnM > 0 iff depthnM/mM > 0. If
both are 0, the result is clear. If both are positive, then we can choose x ∈ n that is a
nonzerodivisor on M/mM , and then x is a nonzerodivisor on M as well, by part (c). By
part (c), M/xM is R-flat. We can apply the induction hypothesis to R, S, and M/xM .
The new closed fiber is (M/xM)/m(M/xM) ∼= (M/mM)/x(M/mM), and since x is a
nonzerodivisor on M/mM , we have

depthnM − 1 = depthnM/xM = depthmR + depthn(M/mM)/x(M/mM)

by the induction hypothesis. The latter is depthmR+depthnM−1, and the result follows.
To prove (e) we note that we have, general:

depthmR ≤ dim (R)

and
depthnM/mM ≤ dim (M/mM).

If both are equalities we may add and apply parts (a) and (b) to get that depthnM =
dim (M). If either inequality is strict we may add and apply parts (a) and (b) to get the
strict inequality depth)nM < dim (M).

For part (f), assume that M is Cohen-Macaulay, so that both R and M/mM are Cohen-
Macaulay. Let x1, . . . , xd be a maximal regular sequence in R, which is a regular sequence
on M . We pass to R/(x1, . . . , xd)R, S/(x1, . . . , xd)S, and M/(x1, . . . , xd)M . The types
of R and M don’t change, and M/mM does not change. Therefore we may assume that
R is an Artin local ring. If M/mM is not zero-dimensional we can choose x ∈ n not a
zerodivisor on it, and pass to R, S/xS, M/xM . The type of M does not change. Iterating,
we see that we may assume that dim (M/mM) = 0.

The annihilator of n in M is contained in AnnMm, which, by the Lemma, may be
identified with (AnnRm) ⊗R M . But AnnRm ∼= Kt is the type of R. Thus, AnnMn
may be identified with AnnKt⊗RMn, and Kt ⊗R M ∼= (M/mM)⊕t, and so we need only
determine the annihilator of n in this module. Since the annihilator of N in M/mM

is isomorphic with Lt′ , where t′ is the type of M/mM , we obtain (Lt′) ⊕ t ∼= Ltt′ , as
required. �

Corollary. If (R, m, K) → (S, n, L) is a flat local homormorphism then S is Cohen-
Macaulay if and only if both R and S/mS are Cohen-Macaulay, and S is Gorenstein if
and only if both R and S/mS are Gorenstein.

Proof. The first statement is a special case of part (e) of the preceding theorem, and the
second statement follows from part (f) of the preceding theorem, since the type of S is the
product of the types of R and S/mS when S is Cohen-Macaulay. �


