Math 711: Lecture of September 30, 2005

We next note:

Proposition. Let R be a ring and I an ideal of R. If (), I™ = 0 (which is always true if

R is N-graded and I C @Rj), then:
j=1
(a) If gr;R is reduced, then R is reduced.
(b) If gr;R is a domain, then R is a domain.

Proof. For part (a), suppose 7 € R — {0} and r* = 0. Choose j such that r € I/ — [7+1.
Then [r] € I’ /171 is a nonzero element of degree j in gr; R, and then [r] is the image of
rtin 17t /17%F1 and so is 0. Similarly, for part (b), if 7, s are nonzero elements of R such
that 7s = 0 we can choose j such that r € I/ — ["*! and s € I¥ — [¥*1. Then [r] € I7/[7+!
and [s] € I*/I**! are nonzero elements of degrees j and k respectively such that [r][s] is
0 in [7+k/[7+k+1 gince it is represented by rs = 0. [

By the socle Soc(M) of a module M over a local ring (R, m, K) we mean Annysm =
Homp (K, M), which is a K-vector space.

Recall that a finitely generated module M over a local ring R is Cohen-Macaulay if
depth,, M = dim (M): we always have that depth,, M < dim (M), where dim (M) =
dim (R/AnngM). When R is Cohen-Macaulay over R, it is also Cohen-Macaulay over
R/Anngp M, and the maximal regular sequences in m on M are the sequences of elements
whose images in R/Anng M form a system of parameters for R/Anng M. By the type of
a Cohen-Macaulay module M of dimension d over a local ring (R, m, K) we mean the
K-vector space dimension of the K-vector space Exth(K, M). If z is a nonzerodivisor in
R on M, the short exact sequence

0—-M5M— M/zM — 0

yields a long exact sequence when we apply Hompg (K, _). In general, Ext%_(N , M) van-
ishes for i < depthpyy, M, and so Extip (K, M) vanishes for i < d, while Extp (K, M/xM)

vanishes for ¢ < d — 1. The first few nonzero terms in the long exact sequence for Ext have

the form:
0 — Extb (K, M/aM) — Ext(K, M) % Ext®(K, M).

Since x € Anng K = m, x kills Ext‘}%(K , M), and so we get an isomorphism
Extb (K, M/xM) = Ext*(K, M)

It follows that the type of M is the same as the type of M /xM. Tterating, we find that if
1, ... ,xq is a maximal regular sequence on M, the type of M is the same as the type of
M/(xy, ... ,xq)M, which is

dim g (Homp (K, M/(z1, ... ,xd)Ml)) = dim g (Soc(M/(z1, ... ,za)M)



The type of a Cohen-Macaulay local ring is simply its type as a module over itself. We
define a local ring to be Gorenstein if it is Cohen-Macaulay of type 1. There are many
other characterizations.

The next theorem will prove extremely valuable. We need a lemma first.

Lemma. Let M be a flat R-module and let I be a finitely generated ideal of R. Then

Annp, I = (Anngl)M = (Anngl) ®p M.

Proof. Let I = (f1, ..., fn)R. Let A be the the 1 x h matrix (f1 fa --- fn). Then we have
an exact sequence

O—>AnnRI—>Ri>Rh.

Since M is flat, applying M ®r _ yields an exact sequence

0 — (Anngl) Sp M — M A4,

Mh

while the kernel of idy; ®r A : M — M®" is, evidently, Annj;I. The identification of
J® M, where J = Anngl, with JM is a consequence of the injectivity of the map obtained
from 0 — J C R by applying _ ®r M: we have an injection 0 — J ®r M — M whose
image is JM. U

We are now ready to prove:

Theorem. Let (R, m, K) — (S, n, L) be a local homomorphism and let M be a finitely
generarted S-module that is R-flat. (The most important case is when M = S is R-flat.)
Then:

(a) dim (M) = dim (R) + dim (M /mM).

(b) depth,, M = depth,, R 4+ depth,, M/mM.

(¢) An element x € n is a nonzero divisor on M /mM if and only if it is a nonzerodivisor
on M/IM for every ideal I C m of R. Moreover, if x is a nonzerodivisor on M /mM
then M/xM is R-flat.

(d) If depth,, R = 0, then = € n is a nonzero divisor on M if and only if it is a nonzero
divisor on M /mM .

(e) M Cohen-Macaulay if and only if R and M/mM are both Cohen-Macaulay.

(f) If M is Cohen-Macaulay, the type of M is the product of the types of R and M/mS.

Proof. We observe for parts (a) and (b) that when we replace R by R/J, S by S/JS,
and M by (R/J) @g M = M/JM, we still have that M/JM is flat over R/J and the
closed fiber of M over R, namely M/mM, is not affected. For parts (a) and (b) we use
Noetherian induction, and assume that R has been replaced by R/.J, where J is maximal
with respect to the property of giving a counter-example. Thus, we may assume that the
result holds when R is replaced by any proper quotient.

For part (a), we note first that R must be reduced, for if we take J to be the nilradical of
R, R/J and M /JM have the same dimensions as R and M, while M /mM does not change
when we replace R by R/J. Therefore we may assume that R is reduced. If dim (R) =0
then R = K, m =0, M/mM = M, and the result is obvious.
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If R has positive dimension then, since R is reduced, we can choose a nonzerodivisor x €
m. Since M is R-flat, = is also a nonzerodivisor on M, so that dim (R/zR) = dim (R) — 1
and dim (M /xM) = dim (M) — 1. Since the result holds for R/zR, S/xS, and M/xM by
the induction hypothesis, we have that

dim (M)—1=dim (M/zM) = dim (R/zR)+dim (M /mM) = dim (R)—1—dim (M/mM),

and the required result follows by adding 1 to both sides.

Before proving (b), we prove (c¢) and then (d). To prove the statement in (¢) we assume
that € n is a nonzerodivisor on M/m. We replace R byR/J where J is maximal with
respect to giving a counter-example, and so we may assume the result holds for every ideal
of R except possibly 0. If depthpm = 0, we let J be uR, where u is a nonzero element
of m killed by m. Then R has a filtration with the factors J = K and R/J, and so
M has a filration with the factors J ® g M and (R/J) ®g M = M/JM. The former is
K ®r M = M/mM, and x is not a zerodivisor on this module by hypothesis. But z is
also not a zerodivisor on M/JM by the hypothesis of Noetherian induction, and so z is
not a zerodivisor on M.

If depth,,, R > 0, we can choose y in m such that y is not a zerodivisor in R. Since M
is R-flat, y is not a zerodivisor on M. By the hypothesis of Noetherian induction, z is not
a zerodivisor on M /yM. But then y, z is a regular sequence in S on M. Since S is local
and M is finitely generated over S, regular sequences are permutable, and x, y is a regular
sequence on M. But this shows that x is not a zerodivisor on M.

This establishes all but the last statement in part (c). To prove that M/xM is again
R-flat, it suffices to prove that Torl(R/I, M/xzM) = 0 for every ideal I of R. Apply
(R/I) ®p _ to the short exact sequence 0 — M — M — M/xM — 0, where M — M is
multiplication by z. Then the long exact sequence for Tor yields an exact sequence:

Torf(R/I, M) — Tor®(R/I, M/xM) — M/IM — M/IM

where the map M /IM — M /IM is multiplication by x and so is injective by what we have
already shown. Since M is R-flat, Tor®(R/I, M) = 0, and so Tor;(R/I, M/zM) = 0, as
required.

This completes the proof of (c). For part (d), it suffices to show that if R has depth 0,
and z is not a zerodivisor on M then z is not a zerodivisor on M /mM: the converse, in
a much stronger form, has already been proved in part (c). The fact that depth,,R = 0
implies that there is an embedding K — R. Applying M ®p _ yields an embedding of
M/mM — M. The fact that z is a nonzerodivisor on M implies that is a nonzerodivisor
on every submodule of M, and, hence, on M/mM, as required.

We can now prove (b). We use inductnion on depth(R)-+depth(M/mM). If depth,, R >
0 then we can choos x € m that is a nonzerodivisor in R and, hence, on M. We pass to
R/xR, S/xS, and M /xM. The depths of R and M decrease by 1, while M /mM stays the
same. Then

depth,, M — 1 = depth,, M /xM = depth,, R/xR + depth,, M /mM
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by the induction hypothesis. The latter is depth,, R — 1 + depth,, M /M, and the result
follows.

Now assume that depth,,R = 0. By part (d), depth, M > 0 iff depth,, M/mM > 0. If
both are 0, the result is clear. If both are positive, then we can choose x € n that is a
nonzerodivisor on M/mM, and then z is a nonzerodivisor on M as well, by part (c). By
part (c), M/xM is R-flat. We can apply the induction hypothesis to R, S, and M/zM.
The new closed fiber is (M/xM)/m(M/xM) = (M/mM)/z(M/mM), and since z is a
nonzerodivisor on M /mM  we have

depth, M — 1 = depth,, M /xM = depth,,, R + depth,,(M/mM)/x(M/mM)

by the induction hypothesis. The latter is depth,,, R+ depth,, M — 1, and the result follows.
To prove (e) we note that we have, general:

depth,,, R < dim (R)

and
depth, M/mM < dim (M/mM).

If both are equalities we may add and apply parts (a) and (b) to get that depth, M =
dim (M). If either inequality is strict we may add and apply parts (a) and (b) to get the
strict inequality depth), M < dim (M).

For part (f), assume that M is Cohen-Macaulay, so that both R and M /mM are Cohen-
Macaulay. Let x1, ..., x4 be a maximal regular sequence in R, which is a regular sequence
on M. We pass to R/(x1, ... ,xq)R, S/(z1, ... ,xq)S, and M/(z1, ... ,xzq)M. The types
of R and M don’t change, and M /mM does not change. Therefore we may assume that
R is an Artin local ring. If M/mM is not zero-dimensional we can choose x € n not a
zerodivisor on it, and pass to R, S/xS, M/xM. The type of M does not change. Iterating,
we see that we may assume that dim (M/mM) = 0.

The annihilator of n in M is contained in Annp;m, which, by the Lemma, may be
identified with (Anngm) ®gr M. But Anngm = K' is the type of R. Thus, Annymn
may be identified with Anngeg ,yn, and K' @ g M = (M/mM)®', and so we need only
determine the annihilator of n in this module. Since the annihilator of N in M/mM
is isomorphic with L!', where ¢ is the type of M/mM, we obtain (L') &t = L' as
required. [

Corollary. If (R, m, K) — (S, n, L) is a flat local homormorphism then S is Cohen-
Macaulay if and only if both R and S/mS are Cohen-Macaulay, and S is Gorenstein if
and only if both R and S/mS are Gorenstein.

Proof. The first statement is a special case of part (e) of the preceding theorem, and the
second statement follows from part (f) of the preceding theorem, since the type of S is the
product of the types of R and S/mS when S is Cohen-Macaulay. O



