
Math 711: Lecture of October 3, 2005

Let S be an additive semigroup with identity 0 (we are assuming that the semigroup
operation is associative). A ring R is S-graded if it has a direct sum decomposition

R =
⊕
s∈S

Rs

such that 1 ∈ R0 and for all s, t ∈ S, RsRt ⊆ Rs+t. If R is S-graded an R-module M is
said to be S-graded if it has a direct sum decomposition M =

⊕
s∈S Ms such that for all

s, t ∈ S, RsMt ⊆ Ms+t. An element of some Rs or Ms is said to be homogeneous of degree
s or a form of degree s. A submodule of N ⊆ M , where M is graded, is called graded or
homogenous if

N =
⊕
s∈S

(N ∩Ms),

or if, equivalently, N is generated by homogeneous elements.
S is said to be a a cancellation semigroup if whenever s+u = t+u for s, t, u ∈ S, one has

that s = t. S is said to have a linear order compatible with addition if it has a linear order ≤
such that for all s, t, u ∈ S, if s ≤ t then s+u ≤ t+u. Note that if s ≤ t and u ≤ v, we have
that s+u ≤ t+v, since s+u ≤ t+u ≤ t+v. Every subsemigroup of a cancellation semigroup
is a cancellation semigroup, and every subsemigroup of a semigroup with a linear order
compatible with its addition has a linear order compatible with its addition: one simply
restricts the linear order on the larger semigroup. In particular, every subsemigroup of Zn

is a cancellation semigroup with a linear order compatible with addition, since this is true
of Zn: cancellation holds because Zn is a group, and for the linear order we may define
(a1, . . . , an) ≤ (b1, . . . , bn) if the two are equal or if there exists i, 1 ≤ i ≤ n, such that
ai = bi for i < j while aj < bj .

Proposition. Let R be a Noetherian ring graded by a semigroup S such that S has can-
cellation and also has a linear order compatible with addition. Let M be an S-graded
R-module. Then any associated prime of M (i.e., any prime of R that is the annihilator
of an element of M) is homogeneous. Hence, the nilradical Rad (0) of R is homogeneous.
More generally, the radical of a homogeneous ideal A is homogeneous.

Proof. The final statement follows from the next to last statement applied to R/A, while
the next to last statement follows from the first statement because it implies that any
minimal prime of R is homogeneous, and an intersection of homogeneous ideals is homo-
geneous. To prove the first statement let u ∈ M − {0} have prime annihilator P . Then
every nonzero multiple of u has annihilator equal to P , for if ru 6= 0 then Pru = 0, while
if r′ /∈ P , rr′u = 0 implies that rr′ ∈ P and so r ∈ P , which implies that ru = 0, a
contradiction.

Among all those elements u having P as annihilator, choose u so that the number k of
its nonzero homogeneous components is minimum. Then we can write u = us1 + · · · +usk

,
where usj ∈ Msj for every j, s1 < · · · < sk, every usj 6= 0, and k is minimum.
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We shall show that all of the ideals AnnRusj are homogeneous, and that they are all
equal. Note that if v is a homogeneous element then v kills a sum of forms of distinct
degrees if and only if v kills each of them: this uses the fact that S is a cancellation
semigroup. It follows that the annihilator of a homegeneous element is a homogeneous
ideal.

Now suppose that v is a homogeneous element of one of the ideals AnnRusj
. If v

does not kill usi
for some i, then vu will be a nonzero multiple of u with fewer nonzero

homogeneous components than u, a contradiction. This shows that all of the homogeneous
ideals AnnRusj are the same. It follows that any element in AnnRusk

kills u and so is in
P .

We shall show that all of these are the same as P . Consider any element r = rt1+ · · ·+rth

of AnnRu, where t1 < · · · < th and each rtν
∈ Rtν

. We shall prove that every rtν
kills

usk
. This will show that r ∈ AnnRusk

, and so P ⊆ AnnRusk
. The point is that when one

expands ru by the distributive law, there is a unique highest degree term rth
usk

, and so
rth

usk
= 0. Since rusk

= 0, we can conclude that rt1 + · · · + rth−1 also kills u, and the
fact that all the rtν

kill usk
now follows by induction on h. �

Example. Some hypothesis on S is needed here. E.g., we may grade the polynomial ring
Z2[x, y] with S = Z2 by letting x have degree 0 and y have degree 1. The degree if the
monomial xayb is 0 if b is even and 1 if b is odd. In this ring, (x + y)2 = x2 + y2 is
homogeneous, but x+y is not. Thus, the radical of the homogeneous ideal (x2 +y2) is not
homogeneous. The problem is that while Z2, a group, has cancellation, it does not have a
linear order compatible with addition.

The polynomial ring R = K[x1, . . . , xn] over any base ring K has an Nn grading, also
referred to as the grading by monomials, such that R(a1, ... ,an) = Kxa1

1 · · · xan
n . The degree

of xi is the i th standard basis vector ei for Nn. The graded ideals with respect to this
grading of R are precisely the ideals generated by monomials.

Corollary. Let K be a field and ∆ a finite simplicial complex with vertices x1, . . . , xn.
Then K[∆] is reduced.

Proof. Since K[∆] = K[x1, . . . , xn]/I∆, it suffices to show that I∆ is radical. Since the
radical of I∆ is homogenous, it suffices to show that if a monomial u has the property that
ut ∈ I∆, t ≥ 1, then u ∈ I∆. But a monomial is in I∆ if and only if the set of variables
occurring with a positive exponent (the support) is not a face of ∆, and this set is the
same for ut and u. �

Coupled with our earlier work, this tells us the primary decomposition of I∆: it is the
intersection of its minimal primes, which are in bijective correspondence with the facets of
∆: each is generated by the set of variables that is the complement of some facet.

Corollary. Let R be a Hodge algebra over K on H governed by Σ, and suppose that K is
a field and each generator of Σ takes on only the values 0 and 1 on H. Then R is reduced.

Proof. There is a sequence of successive associated graded rings that begins with R and
ends with the corresponding discrete Hodge algebra on K with the same data. The con-
dition on the generators of Σ implies that the discrete Hodge algebra is a quotient of the
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polynomial ring on variables corresponding to the elements of H by an ideal that is gen-
erated by square-free monomials, and so the discrete Hodge algebra is a face ring. It is
therefore reduced. By induction on the number of associated graded algebras in the chain,
we see that each of them is reduced. �

Corollary. If R is an ASL over the field K then R is reduced.

Proof. In this case Σ is generated by functions on H that take the value 1 on two incom-
parable elements of H and are 0 elsewhere. �

Given a poset H, there is an associated simplicial complex whose vertices are the el-
ements of H: it consists of all subsets of H that are linearly ordered. This simplicial
complex is called the order complex of H. The discrete Hodge algebra associated with an
ASL R over K is the face ring over K of the order complex of H.

We want to make similar deductions for the Cohen-Macaulay and Gorenstein properties.
In order to do so, we need to study the Gorenstein property further, and to do so we use
the notion of Ext-duals of Cohen-Macaulay modules over regular rings.

We begin by reviewing some properties of Cohen-Macaulay modules.
We first consider the case where the ring is local.

Proposition. Let (R, m, K) be a local ring and let M be a finitely generated R-module
with Krull dimension d and annihilator I. The following conditions are equivalent:
(1) M is Cohen-Macaulay.
(2) depthmM = d.
(3) M is Cohen-Macaulay as an R/I-module.
(4) Some system of parameters for R/I is a regular sequence on M .
(5) Every system of parameters for R/I is a regular sequence on M .
(6) A sequence of elements of R is a regular sequence on M if and only if its image in

R/I it is part of a system of parameters for R/I.
(7) For every ideal J ⊆ M , the depth of M on J is the same as the height of J(R/I) in
R/I.

If these equivalent conditions hold, then we also have:
(a) For every prime ideal P of R, MP is Cohen-Macaulay over RP .
(b) If x1, . . . , xk ∈ m are such that their images in R/I are part of a system of parameters,

then M/(x1, . . . , xk)M is Cohen-Macaulay of dimension d− k.
(c) Every nonzero submodule of M has dimension d. Thus, if P is an associated prime
of M , then R/P has dimenson d. Consequently, M has no embedded primes, and the
associated primes of M are the same as the minimal primes of I.

If R is regular, M is Cohen-Macaulay and if and only if pdRM = depthIR (which is
the same as the height of I, since R is Cohen-Macaulay). Moreover, in this case, if h is
the height of I, Exti

R(M, R) vanishes except when i = h.

Proof. (2) is the definition of Cohen-Macaulay, and neither the depth nor dimension of M
is affected when we replace R by R/I. Thus, the first three conditions are equivalent. In
proving the remaining equivalences we replace R by R/I, so that dim (R) = dim (M) = d.
The depth of M on an ideal only depends on the radical. We now make use of the
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results relating depth and Koszul homology from the Lecture Notes from February 18
from Math 615, Fall 2004. If x1, . . . , xd is one system of parameters then depthmM = d
if and only if depth(x1, ... ,xd)M = d if and only if all of the higher Koszul homology of
K•(x1, . . . , xd; M) vanishes, and this holds for a finitely generated module over a local
ring iff x1, . . . , xd is a regular sequence on m. Thus, (4) ⇒ (3) ⇒ (5) ⇒ (4) is clear.
To see that (6) is equivalent to the others, first note that since any regular sequence
can be extended to a maximal regular sequence of length d, all we need to show is that
a maximal regular sequence on M must consist of parameters for R. We know that
if x is a nonzerodivisor on M , then dim (M/xM) = dim (M) − 1. Hence, with N =
R/(x1, . . . , xd)R, we have that dim (M⊗RN) = dim

(
M/(x1, . . . , xd)M

)
= dim (M)−d =

0, which shows that M ⊗R N has finite length and therefore is supported only at m. Now
Supp (M ⊗R N) = Supp (M)∩ Supp (N) = Spec (R)∩ Supp (N) = Supp (N), and the fact
that Supp

(
R/(x1, . . . , xd)R

)
= {m} implies that Rad (x1, . . . , xd)R = m, which in turn

yields that x1, . . . , xd is a system of parameters for R. (Keep in mind that we have passed
to the case where I = 0, i.e., where M is faithful over R.)

It is clear that (7) ⇒ (2), since we may take J = m. We postpone the proof of the
converse implication until we have proved statement (c) about Cohen-Macaulay modules.

To prove (c), suppose that M is Cohen-Macaulay but has a nonzero submodule N of
lower dimension. Then it has a maximal such submodule. Since the sum of two such
submodules has the same property, we may assume that N is maximum. If di(M) = 0
there result is obvious, and so we may assume that dim (M) > 0. It is clear that M/N
has no submodule of dimension smaller than M or we could enlarge N . In particular, m
is not an associated prime of M/N , and we can therefore choose x ∈ M so as to avoid the
associated primes of M/N and the minimal primes of R. It follows that x is a nonzero
divisor on both M and M/N . The short exact sequence

0 → N → M → M/N → 0

therefore remains exact when we apply R/xR ⊗R , and so we have an embedding
N/xN ↪→ M/xM . But dim (N/xN) = dim (N) − 1 < dim (M) − 1 = dim (M/xM),
and this produces a counter-example in the Cohen-Macaulay module M/xM of lower di-
mension than M . Note here that with N 6= 0, we have N/xN 6= 0 by Nakayama’s Lemma.
The statement about associated primes follows because P is associated if and only if R/P
embeds in M . Thus, the associated primes of M are the same as the minimal primes of
M , and these minimal primes in Supp (M) = V (I) are the same as the minimal primes of
I.

Thus, the minimal primes of R/I all have quotients of dimenson d = dim (R/I). With
this hypothesis on R/I, we claim that the height of J(R/I) is the same as the length of the
longest sequence x1, . . . , xk in J(R/I) that is part of a system of parameters. We leave
this statement as an exercise. The equivalence of the first six conditions with (7) is now
immediate.

To prove (a), again replace R by R/I and P by P/I. Suppose that P has height h.
Then, by the preceding paragraph, there is part of a system of parameters x1, . . . , xh in
P , and these elements form a regular sequence on M . Thus, there images in RP form
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a regular sequence of length h on MP , and depthPRP
MP ≥ h = dim (RP ). The other

inequality always holds, and so MP is Cohen-Macaulay over RP .
Part (b) is clear.

Now consider the case where R is regular. Then M is Cohen-Macaulay if and only if

depthmM = dim (M) = dim (R/I) = dim (R)− height (I).

Since
pdRM = depth(R)− depthm(M) = dim (R)− depthm(M),

the Cohen-Macaulay condition becomes that

dim (R)− pdRM = dim (M) = dim (R)− height (I),

and this is eqivalent to the condition that pdRM = height (I). Note that since R is regular,
R is Cohen-Macaulay, and height (I) = depthIR.

Finally, Exti
R(M, R) vanishes for i > pdRM = h, and also for i < depthAnnRMR =

depthIR = h as well. �

If R is Noetherian, a finitely generated R-module MN is called Cohen-Macaulay if MP

is Cohen-Macaulay over RP for every prime (equivalently, for every maximal) ideal P of
R. Evidently, if W is a multiplicative system in R, then W−1M is Cohen-Macaulay over
W−1R. Note that if the annihilator of M is height unmixed and W−1M 6= 0, then the
annihilator of W−1M is height unmixed in W−1R: one gets the expansions of the minimal
primes of M that do not meet W .

When R is regular, there is still a strong tendency for I = AnnRM to be height unmixed,
i.e., for all minimal primes to have the same height. Specifically:

Proposition. Let R be a regular ring and let M be a Cohen-Macaulay module over R
with annihilator I. If Supp (M), which is V (I), is connected, then I is height unmixed,
i.e., all minimal primes of I have the same height.

Proof. Suppose that the minimal primes of I have more than one height. Let P1, . . . , Ps

be the minimal primes of height h, and let Q1, . . . , Qt be the minimal primes of other
height. Let J =

⋂s
i=1 Pi and J ′ =

⋂t
j=1 Qj . Then V (I) = V (J ∩ J ′) = V (J) ∪ V (J ′), and

V (J), V (J ′) are disjoint: if a prime m were in both, Mm, a Cohen-Macaulay module over
Rm, would have minimal primes PiRm and QjRm of different heights, and we already know
that this is impossible in the local case. This shows that Supp (M) is not connected. �

Now let M be a Cohen-Macaulay module over a regular ring R such that AnnRM has
pure height h. For such a module M , we define the Ext dual M∗ of M as Exth

R(M, R).
Evidently, M∗ is a finitely generated R-module. We shall see that it is Cohen-Macaulay,
with the same annihilator as M , and that its dual is M .

The following two results summarize many of the important properties of the Ext dual.



6

Theorem. Let R be a regular Noetherian ring and let M , M ′, M ′′ be Cohen-Macaulay
modules with annihilators of pure height h. Let N be Cohen-Macaulay with annihilator of
pure height h + 1.
(a) M∗ is Cohen-Macaulay with the same annihilator as M .
(b) There is a natural isomorphism M → M∗∗. Thus, up to isomorphism, each of M and

M∗ is the dual of the other.
(c) If 0 → M ′ → M → M ′′ → 0 is exact then 0 → M ′′∗ → M∗ → M ′∗ → 0 is exact.
(d) 0 → M ′ → M → N → 0 is exact then 0 → M∗ → M ′∗ → N∗ → 0 is exact.
(e) If x is a nonzerodivisor on M and xM 6= M , then M/xM is Cohen-Macaulay with

annihilator of pure height h + 1, x is not a zerodivisor on M∗, and (M/xM)∗ ∼=
M∗/xM∗.

(f) If W is a multiplicative system in R and W−1M 6= 0, then it is Cohen-Macaulay of
pure height h and (W−1M)∗ ∼= W−1(M∗).

Proof. Part (f) follows from the fact that localization commutes with Ext when the first
module is finitely presented.

We shall next prove (b). Note that when one localizes at any prime M , if M is not
killed, it becomes Cohen-Macaulay with annihilator of pure height h. Thus, locally, M is
either 0 or of projective dimension h. It follows that pdRM = h. Consider any projecitve
resoluton

0 → Gh → · · · → G0 → 0

of M of shortest possible length h, where the Gi are finitely generated projective modules.
The higher homology of G• is 0, while H0(G•) = M .

Note that for finitely generated projective modules G, the natural map G → G∗∗ that
sends u to the map whose value on f ∈ G∗ is f(u) is an isomorphism, i.e., G is reflexive.
(Here, G∗ is HomR(G, R), but in this case that agrees with the Ext dual. R is easily
checked to be reflexive, and the direct sum of two modules is reflexive if and only if both
are. Thus, finite rank free modules are reflexive, and, hence, so are their direct summands.
Moreover, the dual of a finitely generated free module is free, and so the dual of a finitely
generated projective module is projective.) As in the local case, Exti

R(M, R) = 0 except
when i = h: this is obviously true when we localize at primes that do not contain I, and
it is true if P ⊇ I by the local results. The complex

0 → G∗
0 → · · · → G∗

h → 0,

with the numbering reversed, is therefore acyclic (the higher homology is Exti
R(M, R) for

i < h) with augmentation M∗. It is now clear that if we use this projective resolution to
calculate M∗∗, then we obtain the augmentation of the complex which is the double dual
into R of G•: there is a natural isomorphism from G• to its double dual. This induces an
isomorphism M ∼= M∗∗.

This is independent of the choice of length h projective resolution of M . Given
two such, there are maps between them such that the composition in either direction is
homotopic to the identity. Dualizing into R provides maps of the dual complexes with the
same property. It is easy to check that the usual identifications of (first M∗ and then)
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M∗∗ computed from the two different projective resolutions are compatible with the two
identifications of M with M∗∗.

Since AnnRM kills M∗, AnnRM ⊆ AnnRM∗. Similarly, AnnRM∗ ⊆ AnnRM∗∗ =
AnnRM .

To prove that M∗ is Cohen-Macaulay, we may pass to the local case of a local ring
(R, m, K), by (f ). Since M and M∗ have the same annihilator, they have the same
dimension. The resolution G∗

• exhibited for M∗ shows that pdRM∗ ≤ h. Subtracting
from dim (R) shows that depthmM∗ ≥ depthmM = dim (M) = dim (M∗), and the other
inequality always holds.

Parts (c) and (d) are immediate from the long exact sequence for Ext and the fact that
a Cohen-Macaulay module with annihilator of pure height h has a unique non-vanishing
Ext into R. Part (e) is then a special case of (d) once we show that the annihilator of
M/xM has pure height h + 1. Localize at a minimal prime P of the annihilator. The
annihilator of MP still has pure height h, and we are now in the case of a regular local
ring, where the result is obvious. �


