
Math 711: Lecture of October 5, 2005

We shall denote by ν(M) the least number of generators of a finitely generated R-
module M . By Nakayama’s Lemma, if (R, m, K) is local (or even quasilocal), ν(M) =
dim K(M/mM).

Theorem. Let (R, m, K) be a regular local ring of dimension n.
(a) K∗ ∼= K. For every finite length R-module M , M and M∗ have the same length. (M

is automatically Cohen-Macaulay.) Moreover, ν(M∗) is dim K

(
Soc(M)

)
, which is the

type of M . Of course, since M∗∗ ∼= M , we also have that ν(M) = dim
(
Soc(M∗)

)
.

(b) Let M be a finitely generated Cohen-Macaulay module of dimension d. Then ν(M∗)
is the type of M .

Proof. For part (a), let x1, . . . , xn be minimal generators of R: they are also a regular
sequence. Then K∗ = Extn(K, R) ∼= HomR(K, R/(x1, . . . , xn)R) = HomR(K, K) ∼= K,
as required. The statement that the lengths of M∗ and M are equal is then immediate by
induction: if M has length 1, then M ∼= K and we have already done this case. Otherwise,
there is a short exact sequence 0 → N → M → Q → 0 where N is a proper nonzero
submodule of M , and then the length of M is the sum of the lengths of N and Q, which
are both nonzero and, hence, both less than the length of M . We have a short exact
sequence 0→ Q∗ →M∗ → N∗ → 0, and so the length of M∗ is the sum of the lengths of
Q∗ and N∗. By the induction hypothesis, these are the same as the lengths of Q and N ,
which add up to the length of M , and we are done.

For the remaining statement note that we have a short exact sequence

0 −→ AnnMm −→M
φ−→M⊕n

where the map φ sends u 7→ (x1u, . . . , xnu). It is clear that the kernel of φ is AnnMm.
Since the functor ∗ is contravariant and exact on zero-dimensional modules, we obtain
an exact sequence:

0←− (AnnMm)∗ ←−M∗ φ∗

←−M∗⊕n

where it is easy to see that φ∗ sends (v1, . . . , vn) 7→
∑n

j=1 xnvn. Thus, it is clear that
Coker (φ∗) ∼= (AnnMm)∗. But the cokernel of φ∗ is evidently M∗/mM∗, and since
(AnnMm)∗ has the same K-vector space dimension as AnnMm, the result follows.

For part (b) note that if x ∈ M is a nonzerodivisor on M , then M/xM has the same
minimum number of generators as M , and its type is also the same as the type of M ,
while (M/xM)∗ ∼= M∗/xM∗, and so the minimal number of generators and the type of
(M/xM)∗ are also unaffected. By iterating, we reduce to the case where M has finite
length, which we settled in part (a). �

Theorem. Let M be a finitely generated Coohen-Macaulay module over a local (R, m, K),
and let P be a prime ideal of R. Then the type of MP is less than or equal to the type of
M .
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Proof. We first consider the case where R is a homomorphic image of a regular local ring
S. We then replace R by S and m and P by their inverse images in S. Thus, we may
assume without loss of generality that R is regular. Then the type of MP is the least
number of generators of (MP )∗ ∼= (M∗)P , and this is evidently at most the number of
generators of M∗, which is the type of M .

In the general case we consider the completion R̂ of R. Let Q be a minimal prime of
PR̂ lying over P in R. The type of M is the same as the type of M̂ over R̂: a system
of parameters for R is also one in R̂, and the quotients will be isomorphic. Since R̂ is a
homomorphic image of a regular local ring, we have that the type of M equals the type
of M̂ , and is greater than or equal to the type of M̂Q. It therefore suffices to show that
the type of M̂Q is at least as large as the type of MP . The following lemma completes the
proof, with B = RP , M = MP , and C = R̂Q.

Lemma. Let M be a Cohen-Macaulay module over a local ring (B, mB ,K), and let B →
C be a flat local homomorphism such that C/mBC is zero-dimensional. Then C ⊗M is
Cohen-Macaulay over C, and its type is bigger than or equal to the type of M .

Proof. Let x1, . . . , xd be a system of parameters for B. Then it is also a system of param-
eters for C. We replace B, C and M with tensor products over B with B/(d1, . . . , d)B,
and so assume that B and C both have dimension 0. If t is the type of M , then Kt embeds
in M as AnnMmB . Applying C ⊗B yields the direct sum of t copies of C/mBC as a
submodule of C ⊗B M , which shows that the dimension of the socle in C ⊗B M over C is
at least the product of the type of M and the type of C/mBC. �

The result below is true under various other hypotheses on R, e.g., if R is excellent or a
homomorphic image of Cohen-Macaulay ring. We shall not not need such great generality
here.

Theorem. Let R be a Noetherian ring that is a homomorphic image of a regular ring.
Let M be a finitely generated R-module. The set {P ∈ Spec (R) : MP is Cohen-Macaulay}
is Zariski open in Spec (R).

Proof. We may replace R by the regular ring that maps onto it without affecting the issue.
Let I = AnnRM . After localizing at P , IRP has pure height h. We want to show that
we can choose a ∈ R − P such that Ma is Cohen-Macaulay, and we are free to localize at
one element of R − P finitely many times to achieve this. We do not change notation as
we localize. First, choose a /∈ P but in all minimal primes of P that do not have height
h. After replacing R, M by Ra, Ma we may assume that I has pure height h. Since R
is regular, M has finite projective dimension s. Consider the modules Exti

R(M, R) for
0 ≤ i ≤ s with i 6= h. When we localize at P , these finitely generated modules all become
0, and so there is a single element a′ /∈ P that kills them all. Replace R,M by Ra′ , Ma′ ,
we may assume that Exti

R(M, R) vanishes except when i = h. This implies that M is
Cohen-Macaulay. To see this, we may assume that we have localized at a single prime
containing I. Call the local ring obtained (R, m, K). The vanishing of Exti

R(M, R) for
i > h shows that pdRM ≤ h by the Lemma below, and so depthmM ≥ dim (R) − h =
dim (R/I) = dim (M). The other inequality always holds. �
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Lemma. Let (R, m, K) be a local ring and M a finitely generated nonzero module of
finite projective dimension d. Then Extd

R(M, R) 6= 0 (while, of course, Exti
R(M, R) = 0

for i > d).

Proof. Consider the last map of nonzero modules f : Rbd → Rbd−1 in a minimal free
resolution of M . If we use this resolution to compute Ext•R(M, R) we see that Extd

R(M, R)
is the cokernel of the map dual to f : the matrix of this map is the transpose of the matrix
of f , and so the matrix has entries in m. It follows that the cokernel is nonzero. �


