
Math 711: Lecture of October 7, 2005

For the purpose of the next theorem, we make the convention that the type of the 0 mod-
ule over a local ring R is≤ 1. (It should be the vector space dimension of Ext−1

R (K, M) = 0,
i.e., it should be 0.)

Theorem. Let R be a homomorphic image of a regular ring, and let M be a finitely
generated R-module. Let t ≥ 1 be a fixed integer. Then the set

{P ∈ Spec (R) : MP is Cohen-Macaulay of type ≤ t}

is Zariski open in Spec (R).

Proof. Let R = S/J , where S is regular. Then Spec (R) is homeomorphic with the closed
set V (J) ⊆ Spec (S): if we identify Spec (R) with V (J), the locus we want in Spec (R) is
the locus for Spec (S) intersected with V (J). Thus, it suffices to consider the problem for
S instead, and we may assume without loss of generality that R is regular.

Let P be a prime of R such that MP is Cohen-Macaulay of type at most t. If MP

is 0, this will be true on a Zariski neighborhood of P , and we assume MP 6= 0. By the
preceding result, we may localize at one element of R−P so that M will be Cohen-Macaulay
with annihilator of pure height h. Then Exth

R(M, R)P
∼= Exth

RP
(MP , RP ) = M∗

P can be
generated by t or fewer elements, and by clearing denominators we may assume that these
elements have the form u1/1, . . . , ut/1 where ui ∈ Exth

R(M, R) for all i. (If fewer than t
generators are needed we may take some of the ui to be 0.) Let N be the R-span of the
ui. Then

(
Exth

R(M, R)/N
)
P

= 0 and so we can localize at one element of R−P that kills
Exth

R(M, R)/N . After this localization, we have that Exth
R(M, R) = N is generated by at

most t elements, and so for all Q,

Exth
RM, R)Q

∼= Exth
RQ

(MQ, RQ) = M∗
Q

has at most t generators. But this implies that the type of MQ is at most t, as required. �

Corollary. Let R be a homomorphic image of a regular ring. Then

{P ∈ Spec (R) : RP is Gorenstein}

is Zariski open in Spec (R).

Proof. We may apply the preceding result with M = R. The fact that the type of RP is
at most one implies that it is exactly one. �

We have already proved for a local flat homomorphism (R, m, K) → (S, n, L) of local
rings that S is Cohen-Macaulay (respectively, Gorenstein) if and only if both R and S/mS
are Gorenstein. We next want to give a global version of this result that also describes
the behavior of the loci where these properties fail. We treat the Cohen-Macaulay and
Gorenstein cases simultaneously by axiomatizing the properties we need.
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Recall that if R → S is a ring homorphism, its fiber over P ∈ Spec (R) is κP ⊗R S,
where κP = RP /PRP

∼= frac (R/P ), the fraction field of R/P . Thus, the fiber may also
be described as (R − P )−1S/PS. The map S → (R − P )−1S/PS induces an injection
Spec

(
(R− P )−1S/PS

)
↪→ Spec (S) whose image is the set of prime ideals of S lying over

P in R. Thus, the primes in the spectrum of the fiber are in bijective correspondence with
the prime ideals of S that contract to P .

Theorem. Let P denote a property of Noetherian rings such that:
(1) If a local ring R has P, so does its localization at any prime.
(2) R has P if and only if its localization at every maximal ideal has P (it then follows

that all of its localizations have P).
(3) If (R, m, K) → (S, n, L) is a local map of local rings, then S has P if and only if R

has P.
Then the following statements hold:

(a) If S is faithfully flat over R, then S has P if and only if R has P and every fiber of
R → S has P.

(b) If R → S is flat, all of the fibers have P, and I is an ideal of S such that V (I) is the
set of primes of R that do not have property P, then V (IS) is the set of primes of S
that do not have property P.

In particular, these results hold when P is the property of being Cohen-Macaulay and
when P is the property of being Gorenstein.

Proof. We first consider part (a). Assume that S has P. For every prime P of R there is
a prime Q of S lying over P . Since SQ has P, so does RP . Therefore, S has P implies
that R has P. Each prime of the fiber (R − P )−1(S/PS) corresponds to a prime Q of S
lying over P , and it suffices to show that every ring

(
(R−P )−1(S/PS)

)
Q

has P. But this
ring ∼= SQ/PSQ, which has P because S does.

Now assume that R and all fibers have P. Let Q be a prime of S lying over P in R. It
suffices to show that SQ has P . This is true because RP and SQ/PSQ both have P: the
latter is a localization of (R− P )−1S/PS.

To prove (b), let Q be a prime ideal of S and let P be its contraction to R. Note that
Q ∈ V (IS) ⇔ P ∈ V (I). If SQ has P, so does RP , and so P /∈ V (I) and Q /∈ V (IS). If
Q ∈ V (IS) then P ∈ V (I), so that RP does not have P and SQ does not have P. �

Note that when R is a Hodge algebra over K on H governed by Σ, arbitrary base change
on K produces a new Hodge algebra with the same data. More precisely, if K → K ′ is any
ring homomorphism, R′ = K ′ ⊗K R, H ′ is the image of H in R′ under the map sending
h 7→ 1 ⊗ h, and Σ′ is the semigroup corresponding to Σ under the obvious isomorphism
NH → NH′

, then R′ is a Hodge algebra over K ′ on H ′ governed by Σ′. The free basis of
standard monomials for R evidently maps bijectively to a free basis for R′ over K ′, and
the straightening relations for R map to the required straightening relations for R′. In
particular, each fiber κP ⊗K R is a Hodge algebra over a field.

Corollary. A Hodge algebra over a Noetherian ring K is Cohen-Macaulay (respectively,
Gorrenstein) if and only if K is Cohen-Macaulay (respectively, Gorenstein) and each fiber



3

is Cohen-Macaulay (respectively, Gorenstein). The same holds for any property of rings
P satisfying the three conditions in the Theorem above.

The condition that each fiber is Cohen-Macaulay (respectively, Gorenstein) is equivalent
to the condition that for every field κ to which K maps, κ ⊗K R is Cohen-Macaulay
(respectively, Gorenstein).

Proof. The Hodge algebra is a free over K on a basis containing 1, and is therefore faithfully
flat over K. The result is immediate from part (a) of the Theorem just above. The
final statement follows from the fact that if P is the kernel of K → κ the map to κ
factors through the fiber KP /PKP . The final statement now follows from the Lemma just
following. �

Lemma. Let B be a finitely generated κ-algebra. Then B is Cohen-Macaulay (respectively,
Gorenstein) if and only if B′ = κ′ ⊗κ B has the specified property for every field extension
κ′ of κ.

Proof. B′ is faithfully flat over B and so the “if” part follows. Now assume that B has
the specified property. The result will follow if each fiber is Gorenstein (the fibers are then
Cohen-Macaulay as well). Each fiber has the form κ′⊗κ L where L has the form BP /PBP

and so is a field finitely generated over κ′. We proceed by induction on the number of
generators of the field L over κ. If κ ⊆ L0 ⊆ L, we have that

κ′ ⊗κ L ∼= (κ′ ⊗κ L0)⊗L0 L.

Therefore, it suffices to show that if C is a Gorenstein algebra containing a field L0 and L
is s field generated over L0 by one element, then D = C ⊗L0 L is Gorenstein. There are
two cases. If L = L0(x) where x is transcendental over L0, then C⊗L0 L is a localization of
C[x], and this is Gorenstein, since it is flat over C with Gorenstein fibers. If L is generated
by one element θ over L0 and is algebraic, let f be the minimal monic polynomial of θ
over L0. Then D ∼= C ⊗L0 L0[x]/(f) ∼= C[x]/(f). But C[x] is Gorenstein, and the monic
polynomial f is a nonzerodivisor. Thus, the quotient is also Gorenstein. �

The following theorem gives that the defining radical ideal of the closed set of primes
where a graded ring is not Cohen-Macaulay or not Gorenstein is homogeneous. We need
a preliminary fact.

Lemma. If T is flat over a reduced ring R and the fibers are reduced then T is reduced.

Proof. If T has a nilpotent element other than 0, we may localize at a minimal prime Q of
its annihilator, and if Q lies over P we may study RP → TQ instead. Then TQ has depth
0, and so RP has depth 0. Since this ring is reduced and local, it must be a field. But
then TQ is the fiber over P (a localization of the original fiber over P ) and is reduced. �

Theorem. Let S ⊆ Nh be a semigroup and let R be a Noetherian ring graded by S.
Suppose that the set of primes such that RP is not Cohen-Macaulay (respectively, not
Gorenstein) is closed. Then the radical ideal I defining this locus is homogeneous in the
S-grading.

Proof. There is no loss of generality in assuming that S = Nh: we can enlarge S, and
define the new graded pieces to be 0. For each i, 1 ≤ i ≤ h, we can put a Z-grading on
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R as follows: let R
(i)
t be the sum of all components Rs of R such that the i th coordinate

of s is t. It will suffice to show the result when h = 1, for if u is an element of I and
(s1, . . . , sh) ∈ Nh, we define recursively a sequence of elements v0 = u, v1, . . . , vh by
letting vj+1 be the sj component of vj with respect to the j th Z-grading. By induction,
each of the vj is in I, and vh is us. Thus, every S-homogeneous component of every element
of I is in I.

It remains to handle the case where S = Z, i.e., h = 1. Let u ∈ I and suppose
u = ua+1 + · · · + ua+n is the decomposition of u as a sum of forms: here ui has degree i.

If α is a unit of R0, we can define an endomorphism θα : R → R by letting it act on
Rs by mutliplication by αs, where s ∈ Z. This clearly gives an R0-linear map R → R,
and one can see easily that multiplication is preserved because degrees add when one
multiplies forms. Moreover, if β = α−1, then θα and θβ are inverses, and so each θα is an
automorphism of R. Every automorphism of R must map I to itself.

If R0 contains n distinct units αj such that the differences αi − αj for i 6= j are also
units, then we obtain for each j that

n∑
i=1

αn+i
j uj = rj

where rj ∈ I. The result now follows because the n×n matrix A = (αn+i
j ) is invertible. To

see this, We may factor the unit αn+1
j from the j th column. It therefore suffices to see that

the Van der Monde matrix (αi−1
j ) is invertible. This follows because the determinant of

this matrix is D =
∏

i<j(αj −αi). It suffices to prove this when the αj are indeterminates
over the integers Z. In this case note that if αi = αj two columns are equal and the
determinant vanishes. Thus, the determinant is divisible by every αj −αi. Since these are
relatively prime in pairs and the polynomial ring is a UFD, the determinant is a multiple
of D. The degree of both D and the determinant is

(
n
2

)
. Therefore, the multiplier is a

constant. The product of the terms on the main diagonal is the same as the product of
the first terms from factors αj − αi for i < j, and this term does not occur elsewhere in
either expansion. Therefore the multiplier is 1.

It remains to consider the case where R0 does not have sufficiently many units as
described. Again, fix u as described above in I, with at most n consecutive possibly
nonzero homogeneous components. Adjoin n indeterminates zj to R0 and localize at the
element g which is the product of the zj and the zj − zi for j 6= i. The resulting ring R′

0

is faithfully flat over R0. Then T = R′
0 ⊗R0 R ∼= R[z1, . . . , zd]g, and each fiber over R is a

localized polynomial ring. It follows that IT is a defining ideal of the locus of primes of T
lacking the specified property, and IT is still radical (by the preceding Lemma applied to
R/I and T/IT ) and therefore mapped to itself by every automorphism of T . The argument
given above shows that every homogeneous component of u is in IT ∩R = I, by the faithful
flatness of T over R. �


