
Math 711: Lecture of October 10, 2005

We can now prove the following result: it was asserted without proof in the Theorem
at the bottom of the second page of the Lecture Notes of September 19.

Proposition. An N-graded algebra R finitely generated over R0 = K, where K is a field,
is Cohen-Macaulay (respectively, Gorenstein) if and only if that is true for the local ring
at the homogeneous maximal ideal m.

Proof. Obviously, if R is Cohen-Macaulay then Rm is. If R is not Cohen-Macaulay then
the radical defining ideal of the non-Cohen-Macaulay locus is homogeneous. If it is proper,
it is contained in m, and so Rm is not Cohen-Macaulay. �

Corollary. Let R be N-graded and finitely generated over R0 = K, a field. Let m be the
homogeneous maximal ideal of R. If I ⊆ m and grIR is Cohen-Macaulay (respectively,
Gorenstein), so is R.

Proof. We know that RQ has the specified property for every prime ideal Q ⊆ I, by the
the Theorem on the third page of the Lecture Notes of September 28, and so Rm has the
specified property, which implies that R does. �

We then have:

Theorem. Let R be a Hodge algebra over K on H governed by Σ. A sufficient condition
for R to be Cohen-Macaulay (respectively, Gorenstein) is that K be Cohen-Macaulay (re-
spectively, Gorenstein) and that for every map K → κ, where κ is a field, the corresponding
discrete Hodge algebra over κ be Cohen-Macaulay.

Proof. We already know that it suffices if K and each κ ⊗ R has the specified property.
Therefore, we need only prove that when K = κ is a field, if the discrete Hodge algebra has
the property, then so does R. But, starting with R, there is a sequence of N-graded rings
with degree 0 component equal to K, each finitely generated over K, each the associated
graded ring of its predecessor in the sequence with respect to an ideal generated by a
form of positive degree, and such that the last ring in the sequence is the discrete Hodge
algebra. It follows by iterated use of the preceding Corollary that all of these rings have
the specified property. �

Note that when R is an ASL, the discrete Hodge algebras over fields are face rings over
a field.

We want to be able to determine the Krull dimension of a Hodge algebra. If H is a
finite poset and Σ ⊆ NH is a semigroup ideal, let ∆Σ denote the simplicial complex, with
vertices in the set H, whose simplices are the subsets of H that are not the support of any
element of Σ. If K is a field, and one considers the discrete Hodge algebra on H governed
by Σ, say K[H]/J , where J is generated by monomials with exponent in Σ, then it is easy
to see that (K[H]/J)red ∼= K[∆Σ].
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Proposition. Let R be a Hodge algebra over K on H governed by Σ. Then dim (R) =
dim (K) + dim (∆Σ) + 1.

Proof. Any prime Q of R lies over a prime P of K, and the dimension of RQ is the sum
of the dimensions of KP and of the fiber over P localized at Q. The result now follows
from the fact that all fibers have the same Krull dimension: the fiber over P is the discrete
Hodge algebra over κP on H governed by Σ, and the corresponding reduced ring has the
same dimension as κP [∆Σ], which is dim (∆Σ) + 1. �

We next want to discuss the notion of an F-injective Cohen-Macaulay ring in charac-
teristic p > 0. We shall not define F-injectivity if the ring is not Cohen-Macaulay.

Proposition. Let (R, m, K) be a local ring of positive prime characteristic p or else
let R be an N-graded finitely generated algebra over a field K of characteristic p > 0
with R0 = K. Assume that R is Cohen-Macaulay of Krull dimension d. The following
conditions are equivalent:
(1) For every sequence of elements x1, . . . , xk that is part of a system of parameters (a

homogeneous system of parameters in the graded case), if up ∈ (xp
1, . . . , xp

k) then
u ∈ (x1, . . . , xk)R.

(2) For every sequence of elements x1, . . . , xd that is a system of parameters (a homo-
geneous system of parameters in the graded case), if up ∈ (xp

1, . . . , xp
d) then u ∈

(x1, . . . , xd)R.
(3) For every sequence of elements x1, . . . , xk that is part of a system of parameters (a

homogeneous system of parameters in the graded case), if q = pe is a power of p and
if uq ∈ (xq

1, . . . , xq
k), then u ∈ (x1, . . . , xk)R.

(4) For every sequence of elements x1, . . . , xd that is a system of parameters (a homo-
geneous system of parameters in the graded case), if q = pe is a power of p and if
uq ∈ (xq

1, . . . , xq
d), then u ∈ (x1, . . . , xd)R.

If these equivalent conditions hold, we say that R is F-injective.

Proof. (3) obviously implies (4) and (1), both of which imply (2). Therefore it suffices
to show that (2) implies (1) and that (1) implies (4). Given x1, . . . , xk extend it to
a full (and, in the graded case, homogeneous) system of parameters x1, . . . , xd. Then
(x1, . . . , xk, xN

k+1, . . . , xN
d ) is an ideal generated by a full system of parameters, and since

up ∈ (xp
1, . . . , xp

k, xpN
k+1, . . . , xpN

d )R,

we have that
u ∈ (x1, . . . , xk, xN

k+1, . . . , xN
d )R

for all N . Since every ideal is m-adically closed in a local ring (in the graded case, this is
true for homogeneous ideals by an easy degree argument), we have that u ∈ (x1, . . . , xk)R.
The fact that (1) implies (4) is easy by induction on e. The case e = 1 is given. For the
inductive step, we have that

(upe−1
)p ∈

(
(xpe−1

1 )p, . . . , (xpe−1

k )p
)
R,
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whence, by the case e = 1, we have that

upe−1
∈

(
xpe−1

1 , . . . , xpe−1

k

)
R,

and the result is immediate from the induction hypothesis. �

We shall soon prove that it suffices to check what happens with just one system of
parameters.


