Math 711: Lecture of October 12, 2005

Discussion. Let (R, m, K) be a Cohen-Macaulay ring of Krull dimension d. We want to define an R-module $H(R)$ associated canonically with R. (For those familiar with local cohomology, it will turn out that $H(R)=H_{m}^{d}(R)$. We shall attempt to avoid making use of any substantial knowledge of local cohomology theory.)

The key point is that if x_{1}, \ldots, x_{d} and y_{1}, \ldots, y_{d} are two systems of parameters for R, if $\left(x_{1}, \ldots, x_{d}\right) R \supseteq\left(y_{1}, \ldots, y_{d}\right) R$ then there is a canonical map $R /\left(x_{1}, \ldots, x_{d}\right) R \rightarrow$ $R /\left(y_{1}, \ldots, y_{d}\right)$. This should not be confused with the obvious surjection $R /\left(y_{1}, \ldots, y_{d}\right) \rightarrow$ $R /\left(x_{1}, \ldots, x_{d}\right)$ in the other direction: in fact, we shall eventually show that the maps $R /\left(x_{1}, \ldots, x_{d}\right) R \rightarrow R /\left(y_{1}, \ldots, y_{d}\right) R$ are injective.

The map is constructed by choosing a $d \times d$ matrix $A=\left(r_{i j}\right)$ such that $Y=X A$, where Y is the $1 \times d$ row matrix whose entries are y_{1}, \ldots, y_{d}, and X is the $1 \times d$ row matrix whose entries are x_{1}, \ldots, x_{d}. The existence of A is entirely equivalent to the fact that each x_{j} is an R-linear combination of the elements y_{1}, \ldots, y_{d}. The map $R /\left(x_{1}, \ldots, x_{d}\right) \rightarrow$ $R /\left(y_{1}, \ldots, y_{d}\right)$ is then induced by multiplication by $\delta=\operatorname{det}(A)$ acting on the numerators.

Let $\operatorname{adj}(A)$ denote the transpose of the cofactor matrix of A, the classical adjoint of A. A standard identity yields that $A(\operatorname{adj}(A))=\delta I_{d}$, where I_{d} is $d \times d$ identity matrix. Since $Y=X A$, multiplying both sides on the right by $\operatorname{adj}(A)$ yields that $Y \operatorname{adj}(A)=\delta X$, which shows that multiplication by δ takes $\left(x_{1}, \ldots, x_{d}\right) R$ into $\left(y_{1}, \ldots, y_{d}\right) R$. This shows that multiplication by δ does induce a map $R /\left(x_{1}, \ldots, x_{d}\right) R \rightarrow R /\left(y_{1}, \ldots, y_{d}\right) R$.

We next want to show that this map is independent of the choice of the matrix A.
We first recall some facts about the Koszul complex: the point of view we shall take, which is the exterior algebra point of view, is discussed in the Lecture Notes of March 1 from Math 615, Fall 2004.

Consider the Koszul complex $\mathcal{K}_{\bullet}\left(x_{1}, \ldots, x_{d} ; R\right)$ of x_{1}, \ldots, x_{d} on R. If $G=\bigoplus_{j=1}^{d} R u_{j}=$ $\mathcal{K}_{1}\left(x_{1}, \ldots, x_{d} ; R\right)$ is the free module on the free basis u_{1}, \ldots, u_{d} and the differential takes $u_{j} \mapsto x_{j}, 1 \leq j \leq d$, then the differential on the whole complex is the uniqe extension of this map to an exterior algebra derivation on $\Lambda^{\bullet}(G)$. The matrix A induces a map of Koszul complexes:

while if we replace A by another choice A^{\prime} such that $Y=X A^{\prime}$ with $\operatorname{det}\left(A^{\prime}\right)=\delta^{\prime}$, we get another such map of complexes. Since the top row is acyclic and the bottom row consists of projective modules, the two maps of complexes are homotopic: the needed facts about homotopy may be found in the Lecture Notes of February 2 and February 4 from Math

615, Fall 2004. But all we need to know is that this implies that the difference $\bigwedge^{d} A-\bigwedge^{d} A^{\prime}$ of the two maps of complexes in degree d has the form $h \circ d$ where

$$
h: \mathcal{K}_{d-1}\left(y_{1}, \ldots, y_{d} ; R\right) \rightarrow \mathcal{K}_{d}\left(x_{1}, \ldots, x_{d} ; R\right)
$$

and

$$
d: \mathcal{K}_{d}\left(y_{1}, \ldots, y_{d} ; R\right) \rightarrow \mathcal{K}_{d-1}\left(y_{1}, \ldots, y_{d} ; R\right)
$$

is the next to last nonzero map in the Koszul complex $\mathcal{K}_{\bullet}\left(y_{1}, \ldots, y ; R\right)$. We may identify the leftmost two nonzero terms in the two Koszul complexes with R and R^{d} respectively. When we do so, the vertical maps $\bigwedge^{d} A$ and $\bigwedge^{d} A^{\prime}$ are identified with multiplication by $\operatorname{det}(A)=\delta$ and $\operatorname{det}\left(A^{\prime}\right)=\delta^{\prime}$, respectively, and the matrix of the map $d: R \rightarrow R^{d}$ has entries which are, up to sign, the y_{j}. The existence of the homotopy shows therefore shows that $\delta-\delta^{\prime} \in\left(y_{1}, \ldots, y_{d}\right) R$. It follows that the maps $R /\left(x_{1}, \ldots, x_{d}\right) R \rightarrow R /\left(y_{1}, \ldots, y_{d}\right) R$ induced by multiplication by δ and multiplication by δ^{\prime} are the same.

Let (R, m, K) be a Cohen-Macaulay local ring. Whenever we have an containment $\left(x_{1}, \ldots, x_{d}\right) R \supseteq\left(y_{1}, \ldots, y_{d}\right) R$ we have a canonical map

$$
R /\left(x_{1}, \ldots, x_{d}\right) R \rightarrow R /\left(y_{1}, \ldots, y_{d}\right) R .
$$

These maps depend, however, on knowing the choices of parameters, not just on the ideals. For example, when the systems of parameters are x_{1}, x_{2} and x_{2}, x_{1} the map $R /\left(x_{1}, x_{2}\right) R \rightarrow R /\left(x_{2}, x_{1}\right) R$ is multiplication by -1 , not the identity map.

If z_{1}, \ldots, z_{d} is a third system of parameters such that $\left(y_{1}, \ldots, y_{d}\right) \supseteq\left(z_{1}, \ldots, z_{d}\right) R$ we have maps $R /\left(x_{1}, \ldots, x_{d}\right) R \rightarrow R /\left(y_{1}, \ldots, y_{d}\right) R$ and $R /\left(y_{1}, \ldots, y_{d}\right) R \rightarrow R /\left(z_{1}, \ldots, z_{d}\right) R$: their composition is the map $R /\left(x_{1}, \ldots, x_{d}\right) R \rightarrow R /\left(z_{1}, \ldots, z_{d}\right) R$ determined by the systems of parameters z_{1}, \ldots, z_{d} and x_{1}, \ldots, x_{d} and the containment $\left(x_{1}, \ldots, x_{d}\right) R \supseteq$ $\left(z_{1}, \ldots, z_{d}\right) R$. The point is that if $X=Y A$ and $Y=Z B$, then $X=(Z B) A=Z(B A)$, and $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

We next prove that the map $R /\left(x_{1}, \ldots, x_{d}\right) R \rightarrow R /\left(y_{1}, \ldots, y_{d}\right) R$ is injective. To see this, choose $N \gg 0$ such that $\left(y_{1}, \ldots, y_{d}\right) R \supseteq\left(x_{1}^{N}, \ldots, x_{d}^{N}\right) R$. To show that $R /\left(x_{1}, \ldots, x_{d}\right) R \rightarrow R /\left(y_{1}, \ldots, y_{d}\right) R$ is injective, it suffices to show that its composition with $R /\left(y_{1}, \ldots, y_{d}\right) R \rightarrow R /\left(x_{1}^{N}, \ldots, x_{d}^{N}\right) R$ is injective, and this is the map

$$
R /\left(x_{1}, \ldots, x_{d}\right) R \rightarrow R /\left(x_{1}^{N}, \ldots, x_{d}^{N}\right) R .
$$

To see that this map is injective, note that we may choose for the matrix A the diagonal matrix whose j th diagonal entry is x_{j}^{N-1}. The map $R /\left(x_{1}, \ldots, x_{n}\right) \rightarrow R /\left(x_{1}^{N}, \ldots, x_{d}^{N}\right) R$ is induced by multiplication by the determinant of A, which is $x_{1}^{N-1} \cdots x_{d}^{N-1}$. The injectivity of the map then reduces to the assertion that $\left(x_{1}^{N}, \ldots, x_{d}^{N}\right) R:_{R} x_{1}^{N-1} \cdots x_{d}^{N-1}=$ $\left(x_{1}, \ldots, x_{d}\right) R$. This follows from the fact that x_{1}, \ldots, x_{d} is a regular sequence on R. The following Lemma establishes this:
Lemma. Let x_{1}, \ldots, x_{d} be a (possibly improper) regular sequence on an R-module M.
(a) If $u_{1}, \ldots, u_{d} \in M$ are such that $\sum_{i=1}^{d} x_{j} u_{i}=0$ then for every j,

$$
u_{j} \in\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{d}\right) M
$$

(b) Let a_{1}, \ldots, a_{d} be positive integers and b_{1}, \ldots, b_{d} be nonnegative integers. Then $\left(x_{1}^{a_{1}+b_{1}}, \ldots, x_{d}^{a_{d}+b_{d}}\right) M:_{M} \prod_{j=1}^{d} x_{j}^{b_{j}}=\left(x_{1}^{a_{1}}, \ldots, x_{d}^{a_{d}}\right) M$.

Proof. For part (a), if $d=1$ or $j=d$, the result is immediate from the definition of a regular sequence. Use induction on d and assume $j<d$. Then we have $u_{d}=\sum_{i=1}^{d-1} x_{i} v_{i}$, and we can substitute to obtain that $\sum_{i=1}^{d-1} x_{i}\left(u_{i}+x_{d} v_{i}\right)=0$. The induction hypothesis yields that $u_{j}+x_{d} v_{j}$ is in the ideal generated by the other x_{i} times M, and the result follows.

For part (b), note that $M:(I J)=\left(M:_{M} I\right):_{M} J$, since $I J u \subseteq M$ iff $J u \subseteq M:_{M} I$ iff $u \in\left(M:_{M} I\right):_{M} J$. This extends in the obvious way to any finite product of ideals. We therefore only need to prove (b) when at most one of the b_{i}, say b_{j}, is nonzero. The case where $b_{j}=0$ is obvious and we assume that $b_{j}>0$. But if

$$
x_{j}^{b_{j}} u=\sum_{i=1}^{d} x_{i}^{a_{i}+b_{i}} u_{i}
$$

(here, only b_{j} is nonzero) we can move the term $x_{j}^{b_{j}} u$ on the left to the other side, altering the j th term in the summation to become $x_{j}^{b_{j}}\left(x_{j}^{a_{j}} u_{j}-u\right)$, while the other terms are unaffected. We may now apply (a) to get that $x_{j}^{a_{j}} u_{j}-u$ is in the ideal generated by the $x_{i}^{a_{i}}$ for $i \neq j$ times M, which readily yields $u \in\left(x_{1}^{a_{1}}, \ldots, x_{d}^{a_{d}}\right) M$, as required.

Under the injections $R /\left(x_{1}, \ldots, x_{d}\right) \hookrightarrow R /\left(y_{1}, \ldots, y_{d}\right)$ the socle must map into the socle. Since this is an injective map of finite-dimensional K-vector spaces of the same dimension, the map induces an isomorphism of one socle with the other.

Let \mathcal{S} be the set of (ordered) systems of parameters for R. We may now use the maps that we have constructed above to build a direct limit:

$$
\lim _{\longrightarrow} x_{1}, \ldots, x_{d} \in \mathcal{S} \frac{R}{\left(x_{1}, \ldots, x_{d}\right) R}
$$

We denote the limit $H(R)$. Note that every $R /\left(x_{1}, \ldots, x_{d}\right) R$, where x_{1}, \ldots, x_{d} is a system of parameters, embeds in $H(R)$. Also note that if x_{1}, \ldots, x_{d} and y_{1}, \ldots, y_{d} are two systems of parameters, then $R /\left(y_{1}, \ldots, y\right) R$ embeds in $R /\left(x_{1}^{t}, \ldots, x_{d}^{t}\right) R$ for all $t \gg 0$. Therefore, we may fix a system of parameters x_{1}, \ldots, x_{d} and $H(R) \cong{\underset{\longrightarrow}{\lim }}_{t} R /\left(x_{1}^{t}, \ldots, x_{d}^{t}\right) R$. The maps between consecutive terms in this latter direct limit system are induced by multiplication by $x_{1} \cdots x_{d}$.

The maps we have constructed may be viewed in another way. If x_{1}, \ldots, x_{d} is a system of parameters in a regular ring, then the Koszul complex on x_{1}, \ldots, x_{d} may be used to identify $\operatorname{Ext}_{R}^{d}\left(R /\left(x_{1}, \ldots, x_{d}\right) R, R\right)$ with $R /\left(x_{1}, \ldots, x_{d}\right) R$. When $\left(x_{1}, \ldots, x_{d}\right) R \subseteq$ $\left(y_{1}, \ldots, y_{d}\right) R$ the surjection $R /\left(y_{1}, \ldots, y_{d}\right) R \rightarrow R /\left(x_{1}, \ldots, x_{d}\right) R$ induces a map

$$
\operatorname{Ext}_{R}^{d}\left(R /\left(x_{1}, \ldots, x_{d}\right) R, R\right) \rightarrow \operatorname{Ext}_{R}^{d}\left(R /\left(x_{1}, \ldots, x_{d}\right) R, R\right)
$$

After identifying the first module with $R /\left(x_{1}, \ldots, x_{d}\right) R$ and the second module with $R /\left(y_{1}, \ldots, y_{d}\right) R$, this is the map we constructed.

We next want to use $H(R)$ to study F-injective Cohen-Macaulay local rings. Let R be a ring of positive prime characteristic p and let M be an R-module. By an action of Frobenius F on M we mean a \mathbb{Z}-linear map $F: M \rightarrow M$ such that for all $r \in R$ and $u \in M, F(r m)=r^{p} F(m)$.

When R is Cohen-Macaulay local there is a standard action of F on $H(R)$. If $r \in R$ and x_{1}, \ldots, x_{d} is a system of parameters for R, let $\left(r ; x_{1}, \ldots, x_{d}\right)$ denote the image of r in $R /\left(x_{1}, \ldots, x_{d}\right)$ and, hence, in $H(R)$. Every element of $H(R)$ has this form. We let F act by sending $\left(r ; x_{1}, \ldots, x_{d}\right) \mapsto\left(r^{p} ; x_{1}^{p}, \ldots, x_{d}^{p}\right)$. It is easy to check that F is well-defined and gives an action of Frobenius on $H(R)$. We can now prove:

Theorem. The following conditions on a Cohen-Macaulay local ring R of prime characteristic $p>0$ are equivalent.
(a) R is F-injective.
(b) $F: H(M) \rightarrow H(M)$ is injective.
(c) There exists a system of parameters x_{1}, \ldots, x_{d} for R such that if $u \in R$ and $u^{p} \in$ $\left(x_{1}^{p}, \ldots, x_{d}^{p}\right) R$ then $u \in\left(x_{1}, \ldots, x_{d}\right) R$.
(d) There exists a system of parameters x_{1}, \ldots, x_{d} for R such that if $u \in R$ represents an element of the socle of $R /\left(x_{1}, \ldots, x_{d}\right)$ and $u^{p} \in\left(x_{1}^{p}, \ldots, x_{d}^{p}\right) R$ then $u \in$ $\left(x_{1}, \ldots, x_{d}\right) R$.

Proof. The equivalence of (a) and (b) is clear, since the action of f on $\left(r ; x_{1}, \ldots, x_{d}\right)$ maps it to $\left(r^{p} ; x_{1}^{p}, \ldots, x_{d}^{p}\right)$ and this will be zero iff $r^{p} \in\left(x_{1}^{p}, \ldots, x_{d}^{p}\right) R$. It is clear that (a) implies (c) and that (c) implies (d). But (c) is equivalent to (d), for if one has $u \in R-\left(x_{1}, \ldots, x_{d}\right) R$ such that $u^{p} \in\left(x_{1}^{p}, \ldots, x_{d}^{p}\right) R$, one may replace u be a multiple that represents an element of the socle in $R /\left(x_{1}, \ldots, x_{d}\right)$. It therefore suffices to prove that (c) implies (b).

Here, we make use of the fact that $H(R)$ is the direct limit of the submodules $R /\left(x_{1}^{t}, \ldots, x_{d}^{t}\right)$. Hence, we may assume that if some element is killed by F, it has the form $\left(r ; x_{1}^{t}, \ldots, x_{d}^{t}\right)$. Moreover, we may assume that r represents an element of the socle $\bmod \left(x_{1}^{t}, \ldots, x_{d}^{t}\right) R$ (replacing it by a multiple if necessary), and therefore we may assume that it has the form $x_{1}^{t-1} \cdots x_{d}^{t-1} u$, where u represents an element in the socle of $R /\left(x_{1}, \ldots, x_{d}\right) R$. We then find that $\left(x_{1}^{t-1} \cdots x_{d}^{t-1} u\right)^{p} \in\left(x_{1}^{p t}, \ldots, x_{d}^{p t}\right) R$ and so $u^{p} \in\left(x_{1}^{p}, \ldots, x_{d}^{p}\right) R:_{R} x_{1}^{p t-p} \cdots x_{d}^{p t-p}=\left(x_{1}^{p}, \ldots, x_{d}^{p}\right) R$ by part (b) of the Lemma. But then $u \in\left(x_{1}, \ldots, x_{d}\right) R$, and $\left(u ; x_{1}, \ldots, x_{d}\right)=0$.

Parallel to this we have a graded result. Let R be a finitely generated \mathbb{N}-graded algebra over $R_{0}=K$, a field. Let d be the Krull dimension of R. Let \mathcal{S}_{h} denote the set of homogeneous systems of parameters of R. We can define

$$
H(R)={\underset{\longrightarrow}{l}}_{\lim _{1}, \ldots, x_{d} \in \mathcal{S}_{h}} R /\left(x_{1}, \ldots, x_{d}\right) R
$$

exactly as in the local case, although here we have limited the systems of parameters to be homogeneous. It is easy to check that $H(R)$ has a \mathbb{Z}-grading such that the degree
of $\left(r ; x_{1}, \ldots, x_{d}\right)$, where r and x_{1}, \ldots, x_{d} are homogeneous, is $\operatorname{deg}(r)-\sum_{j=1}^{d} \operatorname{deg}\left(x_{j}\right)$. Moreover, if the field has characteristic $p>0$ there is an action of Frobenius on $H(R)$ that multiplies degrees by p, defined exactly as in the local case: $F\left(r ; x_{1}, \ldots, x_{d}\right)=$ $\left(r^{p} ; x_{1}^{p}, \ldots, x_{d}^{p}\right)$.
Theorem. Let R be a finitely generated \mathbb{N}-graded algebra over $R_{0}=K$, a field of characteristic $p>0$. Let m be the homogeneous maximal ideal. Suppose that R is CohenMacaulay. Then $H(R) \cong H\left(R_{m}\right)$. Moreover, the following conditions are equivalent:
(a) R is F-injective.
(b) F acts injectively on $H(R)$.
(c) R_{m} is F-injective.
(d) There exists a homogeneous system of parameters x_{1}, \ldots, x_{d} for R such that if $u \in R$ and $u^{p} \in\left(x_{1}^{p}, \ldots, x_{d}^{p}\right) R$ then $u \in\left(x_{1}, \ldots, x_{d}\right) R$.
(e) There exists a homogeneous system of parameters x_{1}, \ldots, x_{d} for R such if $u \in R$ represents an element of the annihilator of m in $R /\left(x_{1}, \ldots, x_{d}\right)$ and $u^{p} \in\left(x_{1}^{p}, \ldots, x_{d}^{p}\right) R$ then $u \in\left(x_{1}, \ldots, x_{d}\right) R$.

Proof. Fix a homogeneous system of parameters x_{1}, \ldots, x_{d}. For every $t, R /\left(x_{1}^{t}, \ldots, x_{d}^{t}\right) R$ has a unique maximal ideal, the image of m, and so $R /\left(x_{1}^{t}, \ldots, x_{d}^{t}\right) R \cong R_{m} /\left(x_{1}^{t}, \ldots, x_{d}^{t}\right) R_{m}$. Taking the direct limits over t of both sides gives that $H(R) \cong H\left(R_{m}\right)$.

It is immediate from the definition of F-injectivity for R that R is F-injective if and only if F acts injectively on $H(R)$, and we know the corresponding fact for R_{m} and $H\left(R_{m}\right)$. Since $H(R) \cong H\left(R_{m}\right)$ and the Frobenius actions are the same, the equivalence of (a), (b), and (c) follows. Conditions (d) and (e) imply the corresponding condition for R_{m}, since localization at m does not affect $R /\left(x_{1}, \ldots, x_{d}\right) R$, and so the equivalence of (d) with (e) and the other conditions follows from the preceding Theorem.

Note that in the Gorenstein case the socle mod a system of parameters x_{1}, \ldots, x_{d} is isomorphic with K. Any element u of R which is nonzero in the socle is a unit times any other such element, and F-injectivity may be proved by simply checking that $u^{p} \notin$ $\left(x_{1}^{p}, \ldots, x_{d}^{p}\right)$ for this single choice of x_{1}, \ldots, x_{d} and u.

We have the following consequence of the fact that injectivity can be checked using a single system of parameters.

Theorem. Let (R, m, K) be a local ring or let R be a finitely generated algebra over $R_{0}=K$, a field, and assume that R is Cohen-Macaulay of prime characteristic $p>0$. Let x be an element that is part of a system of parameters for R : in the graded case, assume that x is homogeneous. If $R / x R$ is F-injective, then so is R.

Proof. Extend x to a full system of parameters x, x_{2}, \ldots, x_{d} for R, homogeneous in the graded case. Let $u \in R$. We must show that if $u^{p} \in\left(x^{p}, x_{2}^{p}, \ldots, x_{d}^{p}\right)$ then $u \in$ $\left(x, x_{2}, \ldots, x_{d}\right) R$.

We use an overline to indicate images in $R / x R$. Then $\bar{u}^{p} \in\left(\bar{x}_{2}^{p}, \ldots, \bar{x}_{d}^{p}\right)$, and so $\bar{u} \in\left(\bar{x}_{2}, \ldots, \bar{x}_{d}\right)$, from which $u \in\left(x, x_{2}, \ldots, x_{d}\right)$ is immediate.

