
Math 711: Lecture of October 14, 2005

We next observe:

Proposition. Let R be a Cohen-Macaulay local ring of characteristic p and suppose that
R is F-injective.
(a) For every prime ideal P of R, RP is Cohen-Macaulay and F-injective.
(b) If A → R is a flat local homomorphism, then A is Cohen-Macaulay and F-injective.

Proof. For part (a), suppose that P has height k. We can choose x1, . . . , xk ∈ P that are
part of a system of parameters for R. Their images will be a system of parameters for
RP . Now suppose that u ∈ R is such that u/1 ∈ (xp

1, . . . , xp
k)RP (we may assume that

u ∈ R, since every element of RP is a unit times an element of R). Then we can choose
w ∈ R − P such that wup ∈ (xp

1, . . . , xp
k)R, and it follows that (wu)p ∈ (xp

1, . . . , xp
k)R as

well. But then wu ∈ (x1, . . . , xk)R, and so u ∈ (x1, . . . , xd)RP . This proves part (a).
For part (b), note that we immediately know that A is Cohen-Macaulay. Let x1, . . . , xk

be a system of parameters for A, and suppose that u ∈ A is such that up ∈ (xp
1, . . . , xp

k)A.
Then the images of x1, . . . , xk form part of a system of parameters for R, and up ∈
(xp

1, . . . , xp
k)R implies that u ∈ (x1, . . . , xk)R ∩ A = (x1, . . . , xk)A, as required, since R

is faithfully flat over A. he �

We can now prove:

Theorem. Let R be a Noetherian ring of positive prime characteristic p, and suppose
either that (R, m, K) is local or that R is finitely generated N-graded over R0 = K, a
field, and that m is the homogeneous maximal ideal. Let I ⊆ m be an ideal. Let M be the
maximal ideal of grIR that is the kernel of the composite surjection grIR � R/I � R/m,
and suppose that (grIR)M is Cohen-Macaulay F-injective. Then R is Cohen-Macaulay
F-injective.

Proof. The argument is quite similar to the one given for the Cohen-Macaulay and Goren-
stein properties in the Theorem on page 3 of the Lecture Notes for September 28. One
forms the second Rees ring S = R[It, v], which maps onto S/vS ∼= grIR, and localizes at
the contraction of M, which we call Q. Then SQ/(v) ∼= (grIR)M is F-injective Cohen-
Macaulay, and so SQ is as well. Let P ⊆ Q be the prime described in the proof of the
Theorem on page 3 of the Lecture Notes of September 28. By part (a) of the Proposition
above, SP

∼= R(t) is Cohen-Macaulay F-injective, since it is a localization of SQ. Hence R
is Cohen-Macaulay F-injective, by part (b) of the Proposition above. �

Corollary. Let R be a Hodge algebra over a field K of characteristic p > 0, and suppose
that the corresponding discrete Hodge algebra is Cohen-Macaulay and reduced: the condi-
tion that the discrete Hodge algebra be reduced holds whenever R is an ASL. Then R is
Cohen-Macaulay and F-injective.

Proof. When it is reduced, the corresponding discrete Hodge algebra is a face ring, and we
have seen that face rings over a field are F-split and therefore F-injective in characteristic
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p > 0. The result now follows from the Theorem above, and the fact that there is a sequence
of associated graded rings from R to the corresponding discrete Hodge algebra. �

Let X = (xij) be an r×s matrix of indeterminates, where 1 ≤ r ≤ s, over a base ring K,
and let K[X/r] be the subring of the polynomial ring K[X] in the indeterminates generated
by the r×r minors of X. As mentioned earlier, this is the homogeneous coordinate ring of
the Grassmann variety of r-dimensional subspaces of Ks. We want to prove that this ring
is an ASL on the poset H of minors. We shall write X[a1, . . . , ar] for the determinant of
the matrix formed from the columns of X indexed by the integers a1, . . . , ar, which are
required to be integers satisfying 1 ≤ aj ≤ s. In the standard description of a minor we
shall assume that a1 < a2 < · · · < ar. However, the symbol X[a1, . . . , ar] has meaning
in any case: if aj = ak for j 6= k, then X[a1, . . . , ar] = 0, and if π is a permutation
of the integers 1, . . . , r, then X[aπ(1), aπ(2), . . . , aπ(r)] = sgn (π)X[a1, . . . , ar], where
sgn (π) ∈ {±1} is the sign of the permutation π. Recall that H is partiall ordered so that
when a1 < a2 < · · · < ar and b1 < b2 < · · · < br, X[a1, . . . , ar] ≤ X[b1, . . . , br] means
that aj ≤ bj for 1 ≤ j ≤ r. The standard monomials are those such that the set of minors
occurring is linearly ordered.

We first want to show that the standard monomials are linearly independent over K.
In order to prove this, we introduce several matrices Yh, one for each element h ∈ H, the
poset of minors. Specifically, let Y = (yij) be a matrix of indeterminates, and suppose
that we are given h ∈ H, say h = X[a1, . . . , ar] where a1 < a2 < · · · < ar. We define Yh to
be the matrix obtained from Y by replacing the ai − 1 leftmost variables yi1, . . . , yi,ai−1

of the i th row by 0, while leaving all other entries of the i th row unchanged. Then
there is a K-algebra homomorphism K[X] → K[Yh] that maps each entry of X to the
corresponding entry of Yh: xij 7→ 0 if j < ai, and xij 7→ yij if j ≥ ai. This map restricts
to a map θh : K[X/r] → K[Yh/r]. Also note that if h ≤ h′, where h′ = X[b1, . . . , br]
with b1 < · · · < br, then there is a K-alghebra map K[Yh] → K[Y ′h] that sends yij 7→ 0
if ai ≤ j < bi and yij 7→ yij if j ≥ bi. Again, this induces a K-algebra homomorphism
λh,h′ : K[Yh] → K[Yh′ ] when h ≤ h′, and it is clear that λh,h′ ◦ θh = θ′h.

Let Mh denote the set of standard monomials that are ≥ h. We shall prove that for all
h ∈ H, the elements {θh(µ) : µ ∈ Mh} is a K-linearly independent set indexed by Mh.
If we take h0 = X[1, . . . , r], the minimum element of H, we find that the images of the
standard monomials under θh0 are linearly independent over K, and it follows that the
standard monomials themselves are linearly independent over K.

We first note that θh has the following critical property:

(∗∗) θh kills every minor h′ = X[b1, . . . , br] with b1 < · · · <, br such that h′ is not ≥ h.

The reason is that for some i, we have that bi < ai. This implies that the i th row of the
matrix consisting of the columns of Yh indexed by b1, . . . , bi is 0, and so this matrix, which
has i columns, has rank ≤ i−1. But then the r−i additional columns indexed bi+1, . . . , br

can increase the rank at most to i− 1 + (r − i) = r − 1, and so Yh[b1, . . . , br] = 0.
To prove the result, we use a sort of reverse induction on h. Choose h maximal in H for

which the result is false, and suppose there is nonzero K-relation on the images of certain
standard monomials µ1, . . . , µn: we may take these of smallest possible degree, and we
may assume that every µj occurs with nonzero coefficient.
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We consider two cases. The first case is that each of the µj has h as a factor and can be
written hνj . Note that θh(h) = ya1 · · · yar

is not a zerodivisor in K[Yh], nor in K[Yh/r]. It
follows that we get a K-relation on the elements θh(νj), and the degrees have decreased.

Therefore we may assume that there is at least one element µ′ that is not divisible by
h: call its smallest factor h′. We now apply λh,h′ to this relation. This has the same
effect as applying θh′ to the original relation. This does not kill the term in the linear
combination that is the image of a multiple of µ′ with nonzero coefficient from K, but it
does kill all terms that involve an element h′′ ∈ H that is not ≥ h′ by property (∗∗) proved
above. This gives a nonzero relation on elements that are in the image of Mh′ under θh′ ,
a contradiction. �

Our next objective is to describe the Plücker relations on the minors of a matrix. We
assume that we are given nonnegative integers a, t, u, b such that a+t = r, u+b = r, t, u >
0, and t+u = m > r. We also assume given indices i1, . . . , ia, j1, . . . , jm, k1, . . . , kb. Let
N denote the set of permutations ν of 1, . . . , m such that, writing νc for ν(c), we have
jν1 < · · · < jνt and jνt+1 < · · · < jνm . Then∑

ν∈N
sgn (ν)X[i1, . . . , ia, jν1 , . . . jνt

]X[jνt+1 , . . . , jνm
, k1, . . . , kb] = 0.

This is a typical Plücker relation. We shall prove the validity of these determinantal
identities, and then show that they suffice to give straightening relations for K[X/r]. Note
that in order to prove these relations, it suffices to do the case where the entries of the
matrix X are indeterminates over Z, and then we may pass to the field of fractions Q(X)
of Z[X]. Therefore, it suffices to prove that these identities when the matrix has entries in
a field L of characteristic 0.


