
Math 711: Lecture of October 21, 2005

A poset is called pure if any two maximal chains have the same length.

Proposition. Let H be a finite poset.
(a) If H is a distributive lattice then H is locally upper semimodular.
(b) If H is locally upper semimodular and H0 is a subposet such that whenever x ∈ H0,

y ∈ H and x ≤ y, then y ∈ H0, then H0 is locally upper semimodular.
(c) If H is locally upper semimodular then the subposet consisting of all elements ≤ x ∈ H

is locally upper semimodular.
(d) If H is locally upper semimodular and x ≤ y are elements of H, then the subposet

{z ∈ H : x ≤ z ≤ y} is bounded and locally upper semimodular.
(e) If H is bounded and locally upper semimodular then H is pure.
(f) If H is a locally upper semimodular and x ≤ y in H, then any two saturated chains

joining x to y have the same length.

Proof. For (a), suppose that H is a distributive lattice and that y, z are covers of x, and
y, z < v. If y = z any element ≤ v minimal with respect to being > x is a common cover. If
x 6= y, we shall show that w = y∨z is a cover of y: it is a cover of z by symmetry. Evidently,
w > y. Suppose w > h > y. Then h = h∧w = h & (y∨z) = (h∧y)∨(h∧z) = y∨(h∧z),
and so it suffices to see that h∧ z = x. Clearly, x ≤ h∧ z ∧ z, and z is a cover of x, h∧ z is
either x or z. In the second case, h ≥ y and h ≥ z implies h ≥ w, so we are done in either
case.

Parts (b) and (c) are immediate from the definition, and together they imply (d). To
prove (e), we use induction on the size of the poset. Consider any two maximal chains of
supposedly different length, which must go from the least element, call it 0, to the greatest
element, call it 1. Suppose one of the chains, of length L, has y as its smallest nonzero term
and the other, of length L′, has z as its smallest nonzero term. If y = z we get a smaller
counterexample in the poset of elements between y and 1. If not, let w be a common cover,
and choose any saturated chain C from w to 1. Then y together with C gives a saturated
chain from y to 1, which, by the induction hypothesis, has the same length L − 1 as our
original chain with its first term, 0, deleted. But, by the same reasoning, z together with
C has length L′ − 1, and so L− 1 = L′ − 1.

Part (f) is immediate from part (e). �

If H is a poset we may want to introduce a new element, which we denote 0̂, to serve as
a least element, and/or a new element, which we denote 1̂, to serve as a greatest element.

Lemma. Let H be a finite poset with a greatest element. Then H ∪ {0̂} is locally up-
per semimodular if and only if H is locally upper semimodular and for any two minimal
elements x, y of H with x, y < v, there is a common cover w of x and y with w ≤ v.

Proof. The fact that if H ∪ {0̂} is locally upper semimodular then H is locally upper
semimodular follows from part (b) of the Proposition just above. The condition on pairs
of minimal elements of H must hold if H ∪ {0̂} is locally upper semimodular because any
two are covers of 0̂ in H ∪ {0̂}. The “if” part is straightforward from the definition. �
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Lemma. Let H be a poset. Let ∆H be the order complex of H. Let H ′ be the union of
H and a subset of {0̂, 1̂}. Then, for any ring K, K[∆H ] is Cohen-Macaulay if and only if
K[∆H′ ] is Cohen-Macaulay. In fact, K[∆H′ ] is a polynomial ring over K[∆H ] in variables
corresponding to the elements of H ′ −H.

Proof. Because 0̂ and 1̂ (whichever are present) are comparable to every element of H ′,
they do not kill any monomial of K[∆H ] or K[∆H′ ], from which the final statement is
clear. �

Theorem. Let H be a finite poset with order complex ∆ = ∆H , and let K be a Cohen-
Macaulay ring. Then if
(1) H is bounded and is locally upper semimodular or
(2) H has a greatest element and H ∪ {0̂} is locally upper semimodular or
(3) H ∪ {0̂, 1̂} is locally upper semimodular
then K[∆] is Cohen-Macaulay.

Proof. It suffices to do the case where K is a field.
We shall prove (1) and (2) (statement (1) for H is equivalent to statement (2) for

H − {h0}, where h0 is the least element of H, by the preceding Lemma). Note that (3)
follows from (1) by the preceding Lemma. We use induction on the cardinality of H. If
H has a minimum element h0 we pass to statement (2) for H − {h0}. If this poset has a
least element we are in the case of statement (1) again and may repeat this step.

Therefore, we may assume that H1 = H − {h0} has several minimal elements. H1 is
pure: its maximal chains are all one less in length than a maximal chains of H. The
minimal elements of H1 are the height one elements of H, and these are the same as the
covers of h0. Let R = K[∆H1 ]. Choose one of the minimal elements: call it h1. Let T
be the set of minimal elements of H1 other than h1. Let I ⊆ R be the ideal generated
by the set S of elements h ∈ H1 such that h ≥ h1 but is not comparable to any other
minimal element. Let J ⊆ R be generated by the set T ′ of elements of H1 incomparable
to h1: note that T ⊆ T ′. Then R/I is the face ring over K of the order complex of H1−S,
whose minimal elements are simply the elements of the set T , and which is locally upper
semimodular by part (b) of the first Proposition. Call the dimension of this ring n: it is the
same as the dimension of R. Then R/I is Cohen-Macaulay by the induction hypothesis.
Moreover, R/J is the face ring over K of the order complex of H1 − T ′: this is the set
of elements ≥ h1, and is bounded and locally upper semimodular giving another ring of
dimension n that is Cohen-Macaulay.

Finally, consider R/(I + J). The elements of H1 that remain are those that are ≥ h1

and also ≥ some element of T . For any such v we have v ≥ w where w is a common cover
of h1 and an element of T . It follows that the common covers C of h1 and another element
of T are the minimal elements of the poset H1−S−T ′, and the latter can be described as
consisting of all elements ≥ an element of C. Because any two of these minimal elements
are covers of h1, it follows that H1−S−T satisfies the condition in (2), and so R/(I + J)
is Cohen-Macaulay of dimension n− 1. Because all elements of T ′ are incomparable to all
elements of S, I ∩ J = 0. Therefore there is a short exact sequence

0 → R → R/I ⊕R/J → R/(I + J) → 0
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where the middle term is Cohen-Macaulay and has depth n on the homogeneous maximal
ideal of R, the rightmost term is Cohen-Macaulay and has dimension n−1, and the leftmost
term has dimension n. It follows as in the argument in the middle of page 2 of the Lecture
Notes of September 12 or on page 1 of the Lecture Notes of September 19 that R has depth
n on its homogenous maximal ideal, and so is Cohen-Macaulay. �

We have at once:

Theorem. Let R be an ASL over K on H where H satisfies on of the three conditions
of the preceding Theorem. In particular, it suffices if H is a distributive lattice. If K is
Cohen-Macaulay, then R is Cohen-Macaulay. �

Since we have already seen that the r × r minors form a distributive lattice, we have:

Theorem. Let X be an r×s matrix of indeterminates, 1 ≤ r ≤ s, over a Cohen-Macaulay
ring K. Then K[X/r] is Cohen-Macaulay. �


