
Math 711: Lecture of October 24, 2005

Let X be an r × s matrix of indeterminates over a base ring K. Here 1 ≤ r and 1 ≤ s,
but we do not need to assume that r ≤ s. We want to put a “non-standard” ASL structure
on the polynomial ring K[X]. To this end, let Z be an r×r matrix of new indeterminates,
and form the concatenation Y = [X |Z]. We shall let xi,j denote the typical entry of Y .
Let Π be the permuation matrix whose columns er, . . . , e1 are the elements of the standard
basis for Kr in reverse order. Then there is a unique K-homomorphism K[Y ] → K[X]
such that the image of the matrix Y is the matrix Y = [X |Π]. Thus, each entry of X is
fixed while Z is specialized to the matrix Π. Let det(Π) = ι, which will be ±1.

This homomorphism induces a surjective homomorphism K[Y/r] � K[Y /r]. Note that
the entry xi,j of X is, up to sign, the determinant of the r × r submatrix of Y whose
columns are the j th column of Y (which is the same as the j th column of X and all the
columns of Z except the one that is ei. It follows that K[Y /r] = K[X], and so we have a
K-algebra surjection K[Y/r] � K[X].

This map θ : K[Y/r] � K[X] takes H, the poset of r × r minors of Y , bijectively onto
H ′ ∪ {±1} where H ′ is the set of t × t minors of X as t varies, 1 ≤ t ≤ min{r, s}, where
each minor may need a sign adjustment. If one views 1 as the determinant of a 0 × 0
submatrix of X, we may think of H ′ ∪ {±1} as the set of all minors of X. The point is
that an r× r minor M of Y whose columns include precisely r− t of the final r columns of
Y , to wit, the columns that map to ej1 , . . . , ejr−t , will map to the t× t minor of X whose
columns have the indices of those columns of M that come from X, and whose rows are
indexed by the integers in the set

{1, . . . , r} − {ej1 , . . . , ejr−t}.

The largest minor ω of Y maps to ι = ±1.

We introduce the following notation for minors of X: X[i1, . . . , it | j1, . . . , jt] denotes
the minor of X formed from the rows numbered with the indices i1, . . . , it and the columns
with the indices j1, . . . , jt. In a standard description of a minor, we assume that

1 ≤ i1 < · · · < it < r and that 1 ≤ j1 < · · · < jt ≤ s.

We can partially order H ′ by the rule that µ ≤ ν, where µ has, up to sign, the stan-
dard description X[i1, . . . , it | j1, . . . , jt], and ν has, up to sign, the standard description
X[i′1, . . . , i′u | j′1, . . . , j′u], precisely if t ≥ u, ia ≤ i′a, 1 ≤ a ≤ u, and ja ≤ j′a, 1 ≤ a ≤ u. It
is easy to verify that θ maps H − {ω} order isomorphically onto H ′ with this order.

Theorem. Let X be an r× s matrix of indeterminates over the ring K, where r ≥ 1 and
s ≥ 1. The K[X] is an ASL on H ′, the set of all minors of X of sizes 1 through min{r, s},
where H ′ has the order described above.

We need some preliminaries before we give the proof. The idea of the proof is deduce
this from the corresponding fact about K[Y/r] and H.
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Lemma. Let Y = [X |Z] be an r × (r + s) matrix of indeterminates as above, and let
ω = det(Z). Let U = (ui,j) be an r × s matrix of new indeterminates. Then K[Y/r]ω ∼=
K[U ][ω, 1/ω], where the ui,j and ω are algebraically independent. The isomorphism is a
K-isomorphism that fixes ω and maps the matrix U to the matrix XZ−1.

Proof. The r × r minors of the matrix Y ′ = [XZ−1 | I] = Y Z−1 are the same as the
corresponding minors of Y with each divided multiplied by det(Z−1) = 1/ω. Therefore
K[Y ′/r][ω, 1/ω] = K[X/r]ω. The entries of XZ−1 all occur as r × r minors of Y ′: to get
the i, j entry of XZ−1 (up to sign) one can take the minor of the submatrix formed by
the j th column of X and all of the columns of the r × r identity matrix I = Ir except ei.
Thus, the result will follow if the entries of XZ−1 and ω are algebraically independent.
This is clear because we can map K[Y ] → K[U,Z] via the map sending X to UZ and Z
to Z, and then Y Z−1 maps to U while ω = det(Z). �

This shows again that when K is a field, dim (K[Y/r]) = dim (K[Yr]ω) = dim (K[U, ω, 1/ω] =
rs + 1, which agrees with the result determined earlier (s + r replaces s).

We can now show:

Lemma. The kernel of the map from θ : K[Y/r] � K[X] described above is the principal
ideal (ω − ι), where ι = ±1 is the image of ω under θ.

Proof. Evidently, the specified ideal is in the kernel, and we have a surjection

K[Y/r]/(ω − ι) � K[X]

that we must prove is injective. Since the image of ω is invertible on both sides, we may
localize at ω without affecting whether this map is an isomorphism, and so we may study
instead the map

K[Y/r]ω/(ω − ι) � K[X].

The result is now obvious when we make use of the fact that

K[Y/r][ω, ω−1] ∼= K[U, ω, ω−1]

as described in the preceding Lemma. �

Proof of the Theorem. We first show that the standard monomials in the elements of H ′

are linearly independent over K. Each such standard monomial lifts in an obvious way to
a standard monomial of K[Y/r] that does not involve ω. Therefore, if independence fails,
we get an element

∑
µ λµµ that is in the kernel, where the λµ are nonzero elements of K,

the set of µ that occur is nonempty, and and no µ involves ω. This leads to an equation∑
µ

λµµ = (ω − ι)(
∑

ν

λ′νν)

where the set of ν that occur is non-empty, each λ′ν is a nonzero element of K, and the ν
are standard monomials that may involve ω. Choose ν1 occurring in the sum on the right
hand side so that the degree with which ω occurs in ν1 is maximum (it may be zero). When
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one uses the distributive law to expand the right hand side, all the products are nonzero
scalars times standard monomials, and the term involving ν1ω cannot be canceled. But
there is no term involving ω on the right.

It remains to show that there is a straightening law. Given two incomparable elements of
H ′, we may lift them to H: thus, we may think of starting with two incomparable elements
h, h′ of H, neither of which is ω. The straightening law for K[Y/r] gives a relation

(∗) hh′ =
∑

t

λth
(1)
t h

(2)
t

where the λt ∈ K, and in each term h
(1)
t ≤ h

(2)
t and h

(1)
t < h, h′. In particular, h

(1)
t is

never ω. When we apply θ, the only change is that in those terms where h
(2)
t = ω, h

(2)
t

is replaced by ι, while h
(1)
t persists. This means that the image of the relation (∗) gives a

straightening relation for the images of h and h′ under θ.
Note that the elements of H ′ are all homogeneous of positive degree, so that K[X] is

appropriately graded, although this grading is not induced by the grading on K[Y/r]. �

A subset H0 of a poset H is called a (poset) ideal if whenever h ∈ H, h0 ∈ H0 and
h ≤ h0, then h ∈ H0. The complement of an ideal is called a co-ideal. H! is a co-ideal if
and only if whenever h1 ∈ H1 and h ∈ H with h ≥ h1, then h ∈ H1. We note the following
easy but important fact:

Proposition. Let R be an ASL over K on H. Let H0 ⊆ H be a poset ideal. Then (H0)R
is the K-span of those standard monomials containing a factor from H0, and R/(H0)R is
an ASL over K on H1 = H −H0.

Proof. Let J be the K-span of the standard monomials containing a factor from H0. It
suffices to prove that for every element h0 ∈ H0, h0R ⊆ J , for J is closed under addition,
and so this will yield that (H0)R ⊆ J . The other inclusion is obvious.

If some h0R is not contained in J , we can choose h0 minimal with respect to this
property, and then the product of h0 with some monomial µ in the elements of H must fail
to be in J . Then h0µ cannot be standard, and so h0 is incomparable to some factor h of µ:
say µ = hν. Then h0hν /∈ J . But h0h is a linear combination of standard monomials, each
with a factor that is strictly less than h0 and necessarily in H0. The result now follows
from the minimality of h0. �

Now consider the poset H ′ of all minors of X. Consider the ideal of elements that are
not ≥ X[1, . . . , t | 1, . . . , t]. This ideal contains all minors that are of size t+1 or greater.
If we reintroduce a greatest element in the complementary coideal, it is a distributive
lattice.

Therefore:

Theorem. With K and X as above, K[X]/It+1(X) is an ASL over K on a poset H (all
minors of size t or smaller) such that H∪{1̂} is a distributive lattice. Therefore, K[X]/It+1

is a Cohen-Macaulay ring whenever K is Cohen-Macaulay, and is reduced whenever K is
reduced.


