
Math 711: Lecture of November 4, 2005

We extend the definition of local cohomolgy. Let I be an ideal of a Noetherian ring R
and let M be any R-module, not necessarily finitely generated. We define

Hj
I (M) = lim

−→ t Extj
R(R/It, M).

This is called the i th local cohomology module of M with support in I.

H0
I (M) = lim

−→ t HomR(R/It, M)

which may be identified with
⋃

t AnnMIt ⊆ M . Every element of Hj
I (M) is killed by a

power of I. Evidently, if M is injective then Hj
I (M) = 0 for j ≥ 1. By a taking a direct

limit over t of long exact sequences for Ext, we see that if 0 → M ′ → M → M ′′ → 0 is
exact there is a functorial long exact sequence for local cohomology:

0 → H0
I (M ′) → H0

I (M) → H0
I (M ′′) → · · · → Hj

I (M ′) → Hj
I (M) → Hj

I (M ′′) → · · · .

It follows that Hj
I ( ) is the j th right derived functor of H0

I ( ). In the definition we may
use instead of the ideals It any decreasing sequence of ideals cofinal with the powers of I.
It follows that if I and J have the same radical, then Hi

I(M) ∼= Hi
J(M) for all i.

Theorem. If M is a finitely generated R-module over the Noetherian ring R, then Hi
I(M) 6=

0 for some i if and only if IM 6= M , in which case the least integer I such that Hi
I(M) 6= 0

is depthIM .

Proof. IM = M iff I + AnnRM = R, and every element of every Hj
I (M) is killed by some

power IN of I and by AnnRM : their sum must be the unit ideal, and so all the local
cohomology vanishes in this case.

Now suppose that IM 6= M , so that the depth d is a well-defined integer in N. We use
induction on d. If d = 0, some nonzero element of M is killed by I, and so H0

I (M) 6= 0. If
d > 0 choose an element x ∈ I that is not a zerodivisor on M , and consider the long exact
sequence for local cohomology arising from the short exact sequence

0 −→ M
x−→ M −→ M/xM → 0.

From the induction hypothesis, Hj
I (M/xM) = 0 for j < d − 1 and Hd−1

I (M/xM) 6= 0.
The long exact sequence therefore yields the injectivity of the map

Hj+1
I (M) x−→ Hj+1

I (M)

for j < d− 1. But every element of Hj+1
I (M) is killed by a power of I and, in particular,

by a power of x. This implies that Hj+1
I (M) = 0 for j < d− 1. Since

Hd−1
I (M) → Hd−1

I (M/xM) → Hd
I (M)
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is exact, Hd−1
I (M), which we know is not 0, injects into Hd

I (M). �

Now let f = f1, . . . , fn generate an ideal with the same radical as I. Let C•(f∞; R)
denote the total tensor product of the complexes 0 → R → Rfj → 0, which gives a complex
of flat R-modules:

0 → R →
⊕

j

Rfj
→

⊕
j1<j2

Rfj1fj2
→ · · · → Rf1···fn

→ 0.

Let C•(f∞; M) = C•(f∞; R)⊗R M , which looks like this:

0 → M →
⊕

j

Mfj →
⊕

j1<j2

Mfj1fj2
→ · · · → Mf1···fn → 0.

We temporarily denote the cohomology of this complex as H•f (M). It turns out to be the
same, functorially, as H•

I (M). We shall not give a complete argument here but we note
several key points. First, H0

f (M) = Ker (M →
⊕

j Mfj
) is the same as the submodule

of M consisting of all elements killed by a power of fj for every j, and this is easily
seen to be the same as H0

I (M). Second, by tensoring a short exact sequence of modules
0 → M ′ → M → M ′′ → 0 with the complex C•(f∞; R) we get a short exact sequence
of complexes. This leads to a functorial long exact sequence for H•f ( ). These two facts
imply an isomorphism of the functors H•

I ( ) and H•f ( ) provided that we can show that

Hj
f (M) = 0 for j ≥ 1 when M is injective. We indicate how the argument goes, but we

shall assume some basic facts about the structure of injective modules over Noetherian
rings.

First note that if one has a map R → S and an S-module M , then if g is the image of f
in S, we have H•

f (M) = H•
g (M). This has an important consequence for local cohomology

once we establish that the two theories are the same: see the Corollary below.

Every injective module over a Noetherian ring R is a direct sum of injective hulls E(R/P )
for various primes P . E(R/P ) is the same as the injective hull of the reisdue class field of
the local ring RP . This, we may assume without loss of generality that (R, m, K) is local
and that M is the injective hull of K. This enables to reduce to the case where M has
finite length over R, and then, using the long exact sequence, to the case where M = K,
since M has a finite filtration such that all the factors are K. Thus, we may assume that
M = K. The complex C•(f∞; R) is then a tensor product of complexs of the the form
0 → R → R → 0 and 0 → R → 0 → 0. If we have only the latter the complex has no
terms in higher degree, while if there are some of the former we get a cohomogical Koszul
complex K•(g1, . . . , gn;K) where at least one gj 6= 0. But then (g1, . . . , gn)K = K kills
all the Koszul cohomology. Thus, we get vanishing of higher cohomology in either case. It
follows that H•f ( ) and H•

I ( ) are isomorphic functors, and we drop the first notation,
except in the proof of the Corollary just below.
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Corollary. If R → S is a homomorphism of Noetherian rings, M is an S-module, and
RM denotes M viewed as an R-module via restriction of scalars, then for every ideal I of
R, H•

I (RM) ∼= H•
IS(M).

Proof. Let f1, . . . , fn generate I, and let g1, . . . , gn be the images of these elements in S:
they generated IS. We have H•

I (RM) ∼= H•f (RM) ∼= H•g(M) ∼= H•
IS(M). �

We note that the complex 0 → R → Rf → 0 is isomorphic to the direct limit of the
cohomological Koszul complexes K•(f t;R), where the maps between consecutive complexes
are given by the identity on the degree 0 copy of R and by multiplication by f on the degree
1 copy of R — note the commutativity of the diagram:

0 −−−−→ R
ft+1

−−−−→ R −−−−→ 0

id

x xf

0 −−−−→ R
ft

−−−−→ R −−−−→ 0

.

Tensoring these Koszul complexes together as f runs through f1, . . . , fn, we see that

C•(f∞; M) = lim
−→ tK•(f t

1, . . . , f t
n; M).

Hence, whenever f1, . . . , fn generate I up to radicals, taking cohomology yields

H•
I (M) ∼= lim

−→ t H•(f t
1, . . . , f t

n; M).

When R is a Cohen-Macaulay ring of Krull dimension d and x1, . . . , xd is a system of
parameters, this yields Hd

m(R) = lim
−→ t R/(xt

1, . . . , xt
d)R, which was our definition of H(R)

in this case.

We next recall that when (R, m, K) is a complete local ring and E = ER(K) is an
injective hull of the residue class field (this means that K ⊆ E and every nonzero submodule
of E meets K), there is duality between modules with ACC over R and modules with DCC:
if M satsifies one of the chain conditions then M∨ = HomR(M, E) satisfies the other, and
the canonical map M → M∨∨ is an isomorphism in either case. In particular, when R
is complete local, the obvious map R → HomR(E,E) is an isomorphism. An Artin local
ring R with a one-dimensional socle is injective as a module over itself, and, in this case,
ER(K) = R. If R is Gorenstein and x1, . . . , xd is a system of parameters, one has that
each Rt = R/(xt

1, . . . , xt
d)R is Artin with a one-dimensional socle, and one can show that

in this case ER(K) ∼= Hd
M (R). Knowing this, we can prove a local duality theorem for

local cohomology when R is Gorenstein.

Theorem. Let (R, m, K) be a Gorenstein local ring of Krull dimension d, and let E =
Hd

m(R), which is also an injective hull for K. Let M be a finitely generated R-module.
Then for every integer j, Hj

m(M) = Extd−j
R (M, R)∨.

Proof. Let x1, . . . , xd be a system of parameters for R. In the Cohen-Macaulay case, the
local cohomology of R vanishes for i < d, and so C•(x∞;R), numbered backwards, is a flat
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resolution of E. Thus, Hj
m(M) ∼= TorR

d−j(M, E). Let G• be a projective resoultion of M by
finitely generated projective R-modules. Then Extd−j

R (M, R)∨ ∼= Hd−j
(
HomR(G•, R), E

)
(since E is injective, HomR( , E) commutes with the calculation of cohomology). The
functor HomR

(
HomR( , R), E

)
is isomorphic with the functor ⊗ E when restricted

to finitely generated projective modules G. To see this, observe that for every G there is
an R-bilinear map G×E → HomR

(
HomR(G, R), E

)
that sends (g, u) (where g ∈ G and

u ∈ E) to the map whose value on f : G → R is f(g)u. This map is an isomorphism when
G = R, and commutes with direct sum, so that it is also an isomorphism when G is finitely
generated and free, and, likewise, when G is a direct summand of a finitely generated free
module. But then Extd−j

R (M, R)∨ ∼= Hd−j(G•⊗E) ∼= TorR
d−j(M, E), which is ∼= Hj

m(M),
as already observed. �

Note that if R is a finitely generated N-graded K-algebra of Krull dimension d such
that R0 = K, a field, and R = K[R1], then with X = Proj(R), we have that

Hi(X, OX) ∼= [Hi+1
m (R)]0

for i ≥ 1. This follows from the fact that if f1, . . . , fd is a homogeneous system of
parameters for R then [H•

m(R)]0 is the cohomology of [C•(x∞;R)]0, and this complex, with
the first term dropped and degrees decreased by one, is the same as the Cech complex for
the sheaf OX with respect to the affine open cover of X consisting of the Xfj

. Therefore,
the fact that the a-invariant of X is negative implies the vanishing of Hd−1(X, OX).

If X and Y are Noetherian schemes over a field K and F , G are coherent sheaves on X
and Y respectively, then one has the Künneth formula

Hk(X × Y, F ⊗K G) ∼=
⊕

i+j=k

Hi(X, F)⊗K Hj(Y, G).

This permits a geometric explanation of why Segre products with R tend not to be Cohen-
Macaulay in any instance where Hd−1(X, OX) 6= 0. For simplicity we only consider the
case where R = K[R1] while R0 = K. Then R©s K K[s, t] has dimension d + 1. Let
Z = Proj(R©s K K[s, t]) ∼= X ×K P1

K . If R were Cohen-Macaulay then we would have
Hd
M(R©s K K[s, t]) = 0, where M is the homogeneous maximal ideal of R©s K K[s, t],

and so Hd−1(Z, OZ) = 0. Then OZ = OX ⊗K OY , and so, by the Künneth formula,
Hd−1(Z, OZ) is a direct sum of terms, one of which is Hd−1(X, OX)⊗K H0(P1

K , OP1
K

) ∼=
Hd−1(X, OX)⊗K K ∼= Hd−1(X, OX). Thus, R©s K K[s, t] cannot be Cohen-Macaulay if
Hd−1(X, OX) 6= 0.

We next want to prove Reisner’s result, stated earlier, concerning when face rings K[∆]
are Cohen-Macaulay. We need some preliminaries.

We first show that the result can be reduced to the case where the field K has charac-
teristic p > 0.

Lemma. Let R be a finitely generated N-graded algebra over R0 = Z. Then Q ⊗Z R is
Cohen-Macaulay if and only if (Z/pZ) ⊗Z R is Cohen-Macaulay for all but finitely many
positive prime integers p.
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Proof. By clearing denominators, we may choose homogeneous elements f1, . . . , fd of
positive degree such that the images of f1, . . . , fd form a homogeneous system of pa-
rameters for Q ⊗Z R. After inverting one nonzero integer a we may assume that Ra

and the Koszul homology H•(f1, . . . , fd; Ra) ∼= H•(f1, . . . , fd; R)a consists of torsion-
free Za-modules: since the homogeneous components are finitely generated over Za, all
of these are Za-free. For any prime p not dividing a, Za/pZa

∼= Z/pZ. Since the Koszul
complex K(f1, . . . , fd; Ra) and its homology consists of Za-free modules, the calcula-
tion of homology commutes with tensoring with any Za-module. Thus, f1, . . . , fd is
a regular sequence in Q ⊗Z R if and only if its image in Z/pZ ⊗Z R is is a regular
sequence for all p not dividing a. The fact that f1, . . . , fd is a homogeneous system
of parameters implies that Q ⊗Z H0(f1, . . . , fd; R) is a finite-dimensional vector space
over Q. This implies that H0(f1, . . . , fd; Ra) is a finite rank free Za-module, and then
Z/pZ⊗Z H0(f1, . . . , fd;Ra) ∼= H0(f1, . . . , fd; R/pR) will be finite-dimensional over Z/pZ
for all p not dividing a. �

We need one more preliminary result.

Lemma. Let R be a finitely generated N-graded algebra with R0 = K, a field, and suppose
that there are elements xj in the homogeneous maximal ideal m of R generating an ideal
primary to m such that each Rxj is Cohen-Macaulay. Suppose also that R is of pure
dimension d. The for all j < d, Hj

m(R) has finite length.

Proof. Let T be a polynomial ring in n variables such that R = T/I, where I is ho-
mogeneous, and let M be the homogeneous maximal of T . Then all minimal primes
of I have height n − d. Moreover, Hj

m(R) ∼= Hj
m(Rm) ∼= Hj

M(Rm) is dual, working
over TM, to Extn−j

TM
(Rm, TQ). It therefore suffices to prove that W = Extn−j

TM
(Rm, TM)

has finite length. Let Q strictly contained in M be any prime ideal containing I (lo-
calizing at a prime not containing I kills R, and therefore certainly kills W ), and let
P = Q/I. Then WQ = Extn−j

TQ
(RP , TQ), and if heightQ = k, this is dual over TQ to

H
k−(n−j)
QTQ

(RP ) = Hk+j−n
PRP

(RP ) = 0: since RP is Cohen-Macaulay, its only nonvanishing
local cohomology module with support in its maxmal ideal occurs when the exponent is
dim (RP ) = k − (n− d) = k + d− n, and k + d− n > k + j − n since j < d. �

We are now ready to prove Reisner’s theorem. Note that, since we are working over a
field, it does not matter whether we use homology or cohomology in the statement of the
result: they are dual over K.

Theorem (Reisner’s criterion). Let K be a field and let ∆ be a finite simplicial complex
over K with vertices x1, . . . , xn. Then K[∆] is Cohen-Macaulay if and only if for every
link Λ of ∆, the reduced simplicial cohomology with coefficients in K, H̃i(Λ,K), vanishes
for 0 ≤ i < dim(Λ). Here, ∆ itself is to be included among the choices for Λ, as the link
of the empty simplex.

Proof. Only the characteristic of the field matters in determining whether K[∆] is Cohen-
Macaulay. By applying the preceding Lemma to Z[∆], we may assume that the field has
characteristic p. The Cohen-Macaulay hypothesis implies that K[∆] has pure dimension.
The same is true of Reisner’s criterion: this comes down to verifying that ∆ has pure
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dimension. We use induction. If the dimension of ∆ is 0, this is clear. If it is positive,
H̃0(∆,K) = 0, and so ∆ is connected. If two facets have different dimensions, we can find
a finite chain of facets from one to the other such that any two consecutive terms have
a common vertex. Then two consecutive terms must have different dimensions, and this
will also hold for the link of the vertex they have in common, contradicting the induction
hypothesis, for the link also satisfies Reisner’s criterion.

Now, for each variable xj , K[∆]xj
∼= K[Λj ][xj , x−1

j ], where Λj is the link of xj , and xj

is an indeterminate over K[Λj ]. If K[∆] is Cohen-Macaulay, it follows that all the rings
K[Λj ] are, and we may assume inductively that all the rings K[Λj ] are Cohen-Macaulay
if Reisner’s criterion holds.

Thus, in proving the equivalence we may assume that K[∆] is of pure dimension and
that its local cohomology, Hj

m(K[∆]), has finite length j < d = dim (K[∆]). We shall show
that under these assumptions, the vanishing of Hj

m(K[∆]) for j < d (which is equivalent
to the Cohen-Macaulay property for K[∆] ) is equivalent to the vanishing of H̃j(∆,K)
for j < d + 1 = dim (∆). There are two key points: one is that K[∆] is F-split, and
the other is that Hj

m(K[∆]) has a Zn-grading. We have already established that K[∆]
is F-split. The Zn-grading is a consequence of the fact that the local cohomology is
the cohomology of the complex C•(x∞; K[∆]). It is easy to check that the action of
Frobenius on this complex and its cohomology multiplies degrees in Zn by p. This action
is also injective, in all degrees, because F : Hj

m(K[∆]) → Hj
m(K[∆]) may be thought of

instead as the map Hj
m(K[∆]) → Hj

m(K[∆]1/p) induced by the inclusion K[∆] ⊆ K[∆]1/p,
and this inclusion is split. Since the local cohomology has finite length, no element can
have a nonzero component except in degree (0, 0, . . . , 0): a nonzero component in any
other degree will produce nonzero components in infinitely many degrees as we apply F
repeatedly, contradicting finite length. Therefore, Hj

m(∆) vanishes for j < d if and only if
Hj([C•(x∞; K[∆])](0, 0, ... , 0)) vanishes for j, d.

But a typical term occurring as a direct summand in Cj(x;∞ ; K[∆]) has the form
K[∆]xi1 ···xij

(where the j subscripts are distinct), and this does not vanish if and only
if {xi1 , . . . , xij} is a (j − 1)-simplex of ∆. Beyond that, the (0, 0, . . . , 0)-homogeneous
component of K[∆]xi1 ···xij

is the K-vector space K spanned by the identity element. Hence
the complex [C•(x∞; K[∆])](0, 0, ... , 0) is the same as the complex one uses to compute
reduced simplicial cohomology, with degrees decreased by 1. The result now follows. �


