
Math 711: Lecture of November 9, 2005

We also note:

Proposition. Let (R, m, K) be a local ring of Krull dimension d.
(a) The canonical element ηR is nonzero if and only if for every map φ• from a Koszul

complex K• = K(x; R) on a system of parameters x = x1, . . . , xd to a free resolution
G• of K lifting the canonical surjection R/(x) � K, the map φd : R → Gd is nonzero.

(b) The the canonical element ηR is nonzero if and only if for every nonnegative left
complex G• of finitely generated free R-modules of length at least d with augmentation
M = H0(G•) 6= 0, for every system of parameters x = x1, . . . , xd of R, and for
every map φ• of the Koszul complex K• = K(x;R) to G• such that the image in M of
1 ∈ R = K0 is a minimal generator of M , the map φd : R → Gd is nonzero.

Proof. Part (a) follows from the fact that the near the d th spots the map of complexes
looks likes this:

· · · → Gd � syzd(K) ↪→ Gd−1 → · · ·
↑ ↑

· · · → Kd −−−−−−→ Kd−1 → · · ·

If the map φd is 0, we may use the composition of φd and the surjection Gd � syzd(K)
to give a map to the truncated resolution which is 0 at the d th spot. On the other hand,
given a map to the truncated resolution such that the map Kd → syzd(K) is 0, we can
obviously use it to give a map to the free resolution in which the map K → Gd is 0.

The condition in part (b) is obviously sufficient from part (a), even if G• is restricted
to be a free resolution of K. We shall show that (a) implies (b). In the situation of (b), the
image of 1 ∈ R = K0 in M/mM is nonzero, and so we can choose a surjection M � K so
that this element maps to 1 ∈ K. This surjection M → K lifts to a map from G• to a free
resolution G′

• of K. The composition of the given map K• → G• with this map G• → G′
•

contradicts (a). �

As a corollary of this result we have:

Proposition. Let (R, m, K) → (S, n, L) be a map a local map of local rings of the same
dimension such that mS is primary to n. If ηS 6= 0, then ηR 6= 0.

Proof. The hypotheses imply that a system of parameters for R maps to a system of
parameters for S. Suppose that one has a map from the Koszul complex K• of a system
of parameters of R to a free resolution of K over R such that the map at the d th spot is
0. Simply apply S ⊗R to contradict part (b) of the preceding Proposition over S. �

Corollary. Let (R, m, K) be a complete local ring of Krull dimension d such that ηR = 0,
let R̂ denote the completion of R, let S be the quotient of R̂ by a minimal prime such that
dim (S) = d, and let T be the normalization of S, which is a complete normal local domain.
If ηR = 0, then η

R̂
= 0, ηS = 0, and ηT = 0.

Hence, if the canonical element conjecture holds for complete normal local domains,
then it holds for all local rings.
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Proof. All of the maps R → R̂ → S → T satisfy the conditions of the preceding Proposi-
tion. �

We shall now develop a variant of the Koszul complex which is always acyclic when
the residual characteristic is p > 0, and which we shall use to show that a family of special
cases of the direct summand conjecture implies the canonical element conjecture. In fact,
we shall show that this family of cases, the canonical element conjecture, the monomial
conjecture, and the direct summand conjecture are all equivalent.

Until further notice, let (R, m, K) denote a complete local domain of residual char-
acteristic p > 0, and let S denote either R+ (which can be used either in the mixed
characteristic case or in the case where R has characteristic p > 0) or R∞ (which can be
used in the characteristic p > 0 case). The property of S that we really need is that it
be a quasilocal domain that is integral over R, and that is closed under extraction of all
pe th roots. Moreover, in the mixed characteristic case, it is convenient to assume that S
contains all pe th roots of unity.

If x ∈ S is not zero, we write (x∞) for the ideal⋃
e∈N

x1/pe

S.

Since S contains all pe th roots of unity, it does not matter which choice of x1/pe

we make
in describing the principal ideal x1/pe

S. Evidently, (x∞) is an increasing union of principal
ideals of S, which are free S-modules, and so every (x∞) is a flat ideal of S. We note the
following properties of these ideals.

Proposition. Let notation be as in the preceding paragraph.
(a) For all nonzero x, y ∈ S,

(x∞) ∩ (y∞) = (x∞)(y∞) =
(
(xy)∞

)
,

and these are all isomorphic with (x∞)⊗S (y∞), a flat ideal of S.
(b) For any finite set x1, . . . , xk of nonzero elements of S,

k∏
j=1

(xj
∞) =

k⋂
j=1

(xj
∞) =

(
(

k∏
j=1

xj)∞
)
,

and all of these are isomorphic with (x1
∞)⊗S · · · ⊗S (xk

∞), a flat ideal of S.
(c) For any nonzero x, (x∞) is a radical ideal of S.

Proof. First note that if u ∈ (x∞), then u1/pe ∈ (x∞) for all e, since (sx1/pn

)1/pe

has the
form s1/pe

x1/pn+e

. Part (c) is immediate, since if uN ∈ (x∞), by increasing N if necessary
we may assume that it has the form pe.

For part (a), if u ∈ (x∞) ∩ (y∞) we also have that u1/p ∈ (x∞) ∩ (y∞), and so
u = u1/p(u1/p)p−1 ∈ (x∞)(y∞), and it is easy to see that this is the same as

(
(xy)∞

)
.
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Quite generally if I is a flat ideal of R and J is any ideal, then we may apply I ⊗R to
the inclusion 0 → J ↪→ R to obatin 0 → I ⊗R J ↪→ J , and the image of this injection is
evidently IJ , so that I ⊗R J ∼= IJ . When J is flat as well, I ⊗R J is flat. (b) follows at
once by a straightforward induction. �

In characteristic p, we have a stronger result:

Proposition. Let T be a ring of positive prime characteristic p such that the Frobenius
endomorphism is an automorphism. This means that T is reduced and that every element
has unique pe th roots for all e. For every element x ∈ T , let

(x∞) =
⋃
e∈N

x1/pe

.

Then an ideal of T is radical if and only if it is a (possibly) infinite sum of ideals of the
form (x∞). Moreover for any two radical ideals I and J , I∩J = IJ , and the corresponding
fact holds for finitely many radical ideals.

Proof. If a radical ideal contains x, it obviously must contain x1/pe

for all e, and so
contains (x∞). To see that a sum of ideals (x∞) is radical, observe that, by a direct limit
argument, it suffices to see this for finitely may. By induction, it then suffices to prove
this for two ideals. But if uN ∈ (x, y)T , we can replace N by a larger integer of the
form pe, and, if upe

= t1x + t2y, then u = t
1/pe

1 x1/pe

+ t
1/pe

2 y1/pe ∈ (x∞) + (y∞), so that
(x∞) + (y∞) = Rad (x, y) is radical. �

The usual Koszul complex of elements x1, . . . , xd in S may be thought of as the
tensor product over S of the d complexes 0 −→ S

xj−→ S → 0. When each of the xj is not a
zerodivisor, we can instead think of these complexes as 0 −→ xjS ↪→ S → 0, and the k th
term of the tensor product can be thought of as the direct sum of all the k-fold tensor
products

xj1S ⊗S · · · ⊗S xjk
S

where j1 < · · · < jk. The displayed ideal may be identified with the prinicipal ideal
xj1 · · ·xjk

S.

It is therefore natural to consider a similar construction with xjS replaced by (xj
∞):

we tensor together the d complexes 0 → (xj
∞) ↪→ S → 0. This produces a complex in

which the k th term may be thought of as

(xj1
∞)⊗S · · · ⊗S (xjk

∞),

and, again, the tensor product may be replaced by the product (or, in this case, the
intersection) of the ideals. Note that every module occurring is a direct sum of flat ideals,
and therefore every term is flat. We denote this complex K•((x1

∞), . . . , (xd
∞), S). We

shall see that, unlike ordinary Koszul complexes, these complexes are always acyclic! We
shall likewise see that the residue class field of S has finite Tor dimension over S.


