
Math 711: Lecture of November 18, 2005

Bass raised the following question: if a local ring has a nonzero finitely generated
module of finite injective dimension, must the ring be Cohen-Macaulay. We are aiming to
prove next a result of Peskine and Szpiro, which is that the intersection theorem implies
an affirmative answer to Bass’s question. It is the case, as we shall see below, that a
Cohen-Macaulay local ring always has such a module.

We first summarize some basic facts about injective modules over a Noetherian ring.

An extension of modules M ⊆ Q is called essential if, equivalently:
(1) Every nonzero submodule of Q has nonzero intersection with M .
(2) Every nonzero element of Q has a nonzero multiple in M .
(3) Every R-linear map defined on Q that is injective when restricted to M is injective

on Q.
We note that if M ↪→ Q is essential, Ass (Q) = Ass (M), for if u ∈ Q is such that

Ru ∼= R/P , the nonzero multiple of u in M also has annihilator P .

By the the final Theorem in the Lecture Notes from March 19, Math 615, Fall 2004,
every R-module M can be embedded in an injective module E. Within E, by Zorn’s
lemma, there is a maximal essential extension E0 of M . But E0 is then a maximal essential
extension of M in an absolute sense, for if E0 → W were a proper essential extension, the
map E0 → E would extend to W and be injective on W by (3), so that E0 would have a
proper essential extension within E.

A submodule E1 of E maximal with respect to being disjoint from E0 must be a com-
plement of E0, i.e., E0 ⊕ E1 = E: if the map E0 → E/E1 were not an isomorphism, it
would be a proper essential extension of E0, by the maximality of E1. Thus, we have
shown that E0 is injective, and so we have prove that an essential extension of M that
is injective always exists, and is a direct summand of any injective module containing M .
E0d is unique up to non-unique isomorphism, and is called an injective hull of M over R.
We write ER(M) or simply E(M) for an injective hull of M over R.

We say that an acyclic complex

0 → E0 → E1 → · · · → Ei → · · ·

is a minimal injective resolution of M if the Ei are all injective, i ≥ 0,

0 → M → E0 → E1

is exact, M ↪→ E0 is an injective hull of M , and, for all i ≥ 1, Ei is an injective hull
of the image of Ei−1. Minimal injecctive resolutions always exist, and are unique up to
nonunique isomorphism.

We now consider the case where the ring is Noetherian. Note that an essential extension
M ↪→ Q remains essential after localization at a multiplicative system W : if u/w ∈ W−1Q
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is nonzero, where u ∈ Q and w ∈ W , then u has a nonzero multiple v in R such that the
annihilator of v/1 ∈ W−1Q is a prime ideal P of R disjoint from W . Then Ru ∩M 6= 0,
and if y ∈ Ru ∩M − {0}, its annihilator in R is P , and so y/1 ∈ W−1Q is nonzero.

Over a Noetherian ring, a direct sum of injective modules is injective, and every injective
module is a direct sum of modules of the form E(R/P ), where P is prime. When P is prime,
ER(R/P ) has, in a unique way, the structure of an RP module, and is also ERP

(RP /PRP ).
P is the only associated prime of E(R/P ), since the assassinator of E(R/P ) is the same
as Ass (R/P ). Moreover, every element of E(R/P ) is killed by a power of P . Therefore,
this module is also a module over the (PRP )-adic completion (S, m) of RP , and it is also
ES(S/m).

For every pair of prime ideals P and Q of R either P ⊆ Q and E(R/P )Q
∼= E(R/P )

or there is an element of P not in Q, in which case E(R/P )Q = 0. It follows that the
localization of an injective R-module at a prime Q is again injective, both over R and over
RQ. It also follows that when one localizes a minimal injective resolution at a prime P , it
remains a minimal injective resolution over RP .

Thus, given any module M over a Noetherian ring R, it has a minimal injective resolu-
tion 0 → E0 → E1 → · · ·Ei → · · · and, for each i, Ei has the form⊕

P∈Spec(R)

E(R/P )⊕µi(P,M)

for suitable cardinal numbers µi(P,M), which may be infinite. We want to see that these
are independent of any choices made, and that if M is finitely generated the numbers
µi(P, M) are finite. Since one obtains a minimal injective resolution of MP over RP when
one localizes at P , it suffices to show that the µi(P,M) are well-defined when (R, m, K)
is local and P = m.

Let (R, m, K) be local. Then the socle in any module M is the same as the socle in
E(M), since any nonzero element of E(M) has a nozero multiple in M . It follows that in
an injective resolution of M , every element of the socle in any injective maps to 0 in the
next injective. Therefore, when we compute Ext•R(K, M) by applying HomR(K, ) to a
minimal injective resolution of M , we get a complex of K-vector spaces in which the maps
are all 0. Note that

HomR(W,
⊕
λ∈Λ

Vλ) ∼=
⊕
λ∈Λ

HomR(W, Vλ)

even when Λ is infinite provided that W is finitely generated. Hence,

HomR

(
K,

⊕
P∈Spec(R)

E(R/P )⊕µi(P,M)
) ∼= ⊕

P∈Spec(R)

HomR

(
K, E(R/P )

)⊕µi(P,M)
.

If P 6= m, then then no nonzero element of E(R/P ) is killed by P , and therefore we
have that HomR

(
K, E(R/P )

)
= 0. If P = m, HomR

(
K, E(R/m)

) ∼= K. It follows that
HomR(K, Ei) ∼= K⊕µi(m, M). As already mentioned, this is a complex of K-vector spaces
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in which all the maps are 0. It follows from the definition that Exti
R(K, M) ∼= K⊕µi(m,M),

which gives the uniqueness result we want for the numbers µi(m, M).

The number µi(P, M) of copies of E(R/P ) occurring in the direct sum that gives Ei,
the i th term of a minimal injective resolution of M , is likewise unique, by the localization
argument mentioned above. With κ = κP = RP /PRP , we may recover this number as
dimκ Exti

RP
(κ, MP ): we are applying the result already obtained for the maximal ideal

to MP over the ring RP . When M is finitely generated, it follows that µi(P, M) is finite,
and is referred to as the i th Bass number µi(P, M) of M with respect to P . If R is local
and P is omitted from the notation, P is understood to be the maximal ideal m of R.

We now want to discuss briefly the situation for Cohen-Macaulay rings. We first consider
the case where (R, m, K), of dimension d, is a homomorphic image of a Gorenstein local
ring S of dimension n. In this case, one can define a so-called canonical module ω as
Extn−d

S (R, S). One can show that Hd
m(ω) ∼= ER(K) = E and that HomR(ω, E) ∼= Hd

m(R).
Thus, if x = x1, . . . , xd is a system of parameters for R, C•(x∞;R), numbered backwards,
is a flat resolution of Hd

m(R) = HomR(ω, E), and so Hj
m(M) ∼= TorR

d−j

(
M, Hd

m(R)
)
. If

M is finitely generated, this is the same as Extd−j
R (M, ω)∨, where ∨ denotes the functor

HomR( , E), by exactly the same argument as in our earlier proof of local duality (the
Theorem at the bottom of the third page of the Lecture Notes from November 4). We
state this explicitly:

Theorem (local duality for Cohen-Macaulay rings). If (R, m, K) is a Cohen-
Macaulay local ring with canonical module ω as described in the paragraph above, and ∨ is
HomR

(
, ER(K)

)
, then for every finitely generated module M , Hj

m(M) ∼= Extd−j(M, ω)∨

for all integers j.

We recall from the third Proposition on page 5 of the Lecture Notes from March 22,
Math 615, Winter 2004, that idRN ≤ k if and only if Extj

R(R/I, N) = 0 for every ideal I
of R and for all j ≥ k+1. The fact that idRN ≤ k is also characterized by the vanishing of
Extj

R(M,N) for all R-modules M and all j ≥ k +1, or for all finitely generated R-modules
M . In the Noetherian case, since every finitely generated R-module has a prime cyclic
filtration, and since one has the long exact sequence for Ext, it suffices to impose the same
condition when I is a prime ideal of R. Note that we have, in consequence:

Corollary. If R is a Cohen-Macaulay local ring of Krull dmension d with canonical mod-
ule ω, then ω is a finitely generated R-module of finite injective dimension.

Proof. For j > d, if M is finitely generated, Extj
R(M,ω) has dual Hd−j

m (M) = 0, and so
Extj

R(M, ω) = 0 for every finitely generated R-module M if j > d. �

Now, if M has finite projective dimension over the Cohen-Macaulay ring R with canon-
ical module ω then, simply because ω has depth d = dim (R), TorR

i (M,ω) = 0 for i ≥ 1.
Therefore, if M is a finitely generated R-module of finite projective dimension, one has
that M ⊗R ω has a finite resolution by direct sums of copies of ω, obtained by tensoring
the finite free resolution of M with ω over R. It follows that each such module M ⊗R ω
is finitely genereated of finite injective dimension. In fact, it turns out that over the
Cohen-Macaulay ring R, if there is a canonical module ω, the functors M 7→ M ⊗R ω and
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N 7→ HomR(ω, N) give a covariant equivalence between the category of finitely generated
modules of finite projective dimension over R and the category of finitely generated mod-
ules of finite injective dimension over R. This gives a reasonably complete understanding
of what the finitely generated modules of finite injective dimension are. Even when there is
not necessarily a canonical module, ER/(x)R(K) is a finite length module of finite injective
dimension over R. In fact, if ω denotes a canonical module for R̂, this is the same as
ω/(x)ω, which evidently has finite injective dimension over R̂. We shall see in part (f) of
the Theorem below that this implies its injective dimension over R is finite.

It turns out to be quite difficult, however, to show that when a local ring R has a
finitely generated nonzero module of finite injective dimension, then R is Cohen-Macaulay.
We begin the needed analysis now. Our first goal is to show that whenever a local ring
(R, m, K) possesses a finitely generated module N 6= 0 with idRN < ∞, we have idRN =
depthmR. The proof needs several lemmas.

Lemma. Let (R, m, K) be local and suppose that M is finitely generated with pdRM = 1.
If N is finitely generated and Ext1R(M, N) = 0, then N = 0.

Proof. Let 0 −→ Rb A−→ Ra → M −→ 0 be a minimal free resolution of M : then A has
entries in M . But Ext1R(M, N) is the cokernel of Na A∗

−−→ N b, where A∗ is the transpose
of the matrix A. The image of the map is contained in mN b. By Nakayama’s lemma, if
the cokernel vanishes then N b = 0 and so N = 0. �

Lemma. Let (R, m, K) be local with depthmR = d, and let N 6= 0 be a finitely generated
R-module with idRN < ∞. Then idRN ≥ d.

Proof. Assume that idRN < d. Let M = syzd−1R/(x)R, where x = (x1, . . . , xd) is a max-
imal regular sequence in M . Then pdRM = 1, and Ext1(M, N) ∼= Extd(R/(x)R, N) = 0,
since idRN < d, contradicting the preceding Lemma. �

We shall prove the other inequality a bit later. We next note:

Theorem. Let (R, m, K) be local and let N be a finitely generated R-module.
(a) If Extj

R(R/Q, N) = 0 for all j ≥ s+1 (respectively, for j = s+1), and for all primes
Q strictly containing a prime P , then Extj

R(R/P, N) = 0 for all j ≥ s (respectively,
for j = s).

(b) In particular, if Exts+1
R (K, N) = 0, then for every prime P such that dim (R/P ) = 1,

Exts
R(R/P, N) = 0.

(c) If Extj
R(K, N) = 0 for all j ≥ s + 1, where s ∈ N, then idR(N) ≤ s.

(d) If P ⊂ Q are distinct primes of R with no prime strictly between them, and µk(P,N) 6=
0, then µk+1(Q,N) 6= 0.

(e) If P ⊆ Q are primes with dim (RQ/PRQ) = h, then µk(P,M) 6= 0 implies that
µk+h(Q,M) 6= 0.

(f) The module N has finite injective dimension over R if and only if N̂ has finite injective
dimension over R̂, and the injective dimensions are the same.
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Proof. (a) Since there are primes strictly containing P , we con choose x ∈ m − P , and
then there is a short exact sequence

(∗) 0 −→ R/P
x−→ R/P −→ R/(P + xR) −→ 0.

Then M = R/(P + xR) has a prime cyclic filtration by primes strictly containing P . It
follows that Extj+1(M,N) = 0, from the long exact sequence for Ext. But then the short
exact sequence displayed yields a long exact sequence part of which is:

· · · −→ Extj
R(R/P, N) x−→ Extj

R(R/P, N) −→ Extj+1
R (M,N) −→ · · ·

and, since the third term is 0, we obtain that Extj
R(R/P, N) = xExtj

R(R/P, N). By
Nakayama’s lemma, we have that Extj

R(R/P, N) = 0. (b) is a special case of (a), since m
is the only prime of R strictly containing P .

(c) follows from (a) because we may show by induction on i that Extj(R/P,N) = 0 for
all P such that R/P has height i and all j ≥ s + 1.

For part (d), we may replace R and N by RQ and NQ, and so assume that Q = m. If
µk+1(m,N) = 0, then Extk+1

R (K, N) = 0, and we obtain from the parenthetical form of
part (a) that Extk

R(R/P, N) = 0. This remains true when we localize at P , which shows
that µk(R/P,N) = 0, a contradiction.

Part (e) is immediate from part (d): there is a saturated chain of length h, say P =
Q0 ⊂ Q1 ⊂ · · · ⊂ Qh = Q, joining P to Q, where the inclusions are strict and there is no
prime strictly between Qi and Qi+1 for each i, and the result follows by induction on h.

Part (f) follows from part (c), since the modules Extj
RR(K, N), which are finite-dimensional

K-vector spaces, are essentially unchanged by completion. �

We can now prove:

Theorem. Let (R, m, K) be local and let N 6= 0 be a finitely generated module with
idRN < ∞. Then idRN = depthmR.

Proof. We have already shown that idRN ≥ d = depthmR. To get the opposite inequality,
suppose that idRN = s > d. Then Extj(K, N) = 0 for j > s while Exts(K, N) 6= 0. Let
x = x1, . . . , xd be a maximal regular sequence in R. Then R/(x) has depth 0, and so we
have a short exact sequence 0 → K → R/(x) → C → 0 for some R-module C. The long
exact sequence for Ext then yields

· · · → Exts
R(R/(x), N) → Exts

R(K, N) → Exts+1(C, N) → · · · .

The term on the left vanishes because pdRR/(x) = d < s, while the term on the right
vanishes because s + 1 > idRN . It follows that Exts

R(K, N) = 0, a contradiction. �


