
Math 711: Lecture of December 5, 2005

We have reduced the study of the vanishing conjecture to the case where A → R → S
are complete local domains with A and S regular such that A→ S (and, hence, R→ S) is
surjective, and such that R is module-finite over S. If P and Q are the respective kernels
of the maps A → S and R → S, we also know that P is generated by part of a regular
system of parameters for A and, moreover, that R = A+P . Beyond that, we may assume
that M = A/I, and then the vanishing conjecture asserts that I ∩ IQ = IP .

We next want to reduce to the case where P has just one generator. In the course of
this reduction, we lose the hypothesis that the the rings are complete local, but we can get
back to that case afterward. The method we use to reduce to the case where P has just
one generator is to replace A by the second Rees ring A[Pt, v] ⊆ A[t, 1/t], where v = 1/t,
and R by R′ = R[PRt, v]: this is a homomorphic image of R ⊗A A′ and is therefore still
module-finite over A′. The quotient of A′ by vA′ is grPA, a polynomial ring over A/P ,
and is still regular. The quotient of R′ by vR′ is

R/PR⊕ PR/P 2R⊕ · · · ⊕ P jR/P j+1R⊕ · · · ,

and this is an N-graded ring. In this ring, R/PR − Q/PR is a multiplicative system,
disjoint from the expansion of Q/PR, and Q/PR becomes nilpotent if we localize at this
multiplicative system because Q is a minimal prime of PR. There is therefore a minimal
prime of vR′ whose intersection with R is Q, and which is necessarily graded. Call this
ideal Q′. Working with Q′ and vA′, we have from the vanishing conjecture for the rings

A′ → A′ +Q′ � (A′ +Q′)/Q′(∼= A′/vA′)

that for all ideals of I of A, with I ′ = IA′, I ′Q′ ∩ I ′ = I ′vA′ or IQ′ ∩ IA′ = IvA′. This
means that IQ∩A ⊆ (IvA[Pt, v])0 = IP . It follows that the general case of the vanishing
conjecture reduces to the case where I is principal. We have lost the condition that the
rings A, R, and S be local and complete, but we may repeat the earlier argument to reduce
to this case again.

Thus, the vanishing conjecture for maps of Tor is equivalent to the conjecture that when
Ax is a principal prime of the complete regular local ring A such that A/xA is regular and
Q is a height one prime of a local domain R that is a module-finite extension of A such
that R = A+Q, then for every ideal I of A, IQ ∩ I = Ix.

We next note that if W is a module over a regular local ring A and w ∈ W , then
condition that the map A → W sending 1 7→ w split is that for every ideal I of A, the
contraction of IW to A is I. (The condition is clearly necessary, for if g : W → A is a
splitting, and b 7→ bw ∈ IW , then applying g yields that

b = g(bw) ∈ g(IW ) ⊆ Ig(W ) ⊆ IA = I.
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For the converse, we show that if x1, . . . , xd is a regular system of parameters for A, it
suffices for all of the ideals It = xt

1, . . . , x
t
d to be contracted. Both this condition and the

splitting condition are unaffected by completion. The condition yields that

A/It →W ⊗A (A/It) ∼= W/ItW

is injective for all t, and we may take a direct limit to conclude that E → W ⊗A E is
injective, where E = EE(K) is the injective hull of the residue class field K of A. This
yields that HomA(W⊗E , E) → HomA(E, E) is surjective, and, by the adjointness of tensor
and Hom, that

HomA

(
W, HomA(E, E)

)
→ HomA(E, E)

is surjective. By Matlis duality, this means that HomA(W, A) → A as surjective, as
required.)

We can now complete the proof of the equivalence of the vanishing conjecture and the
strong direct summand conjecture. Since both imply the direct summand conjecture, we
may assume that the direct summand conjecture holds, and this implies that for every ideal
I of A, IQ∩A ⊆ IR∩A ⊆ I, and therefore IQ∩A = IQ∩I. But since IQ∩A ⊆ Q∩A = Ax,
we also have that IQ ∩A = IQ ∩Ax = IQ ∩ I.

Now, Ax splits from Q if and only if IQ ∩ Ax = Ix for all I. By the calculation in
the preceding paragraph, this is equivalent to the condition that IQ ∩ I = Ix for every I,
and we have already seen that this is equivalent to the vanishing conjecture for maps of
Tor. �

There has been a partially successful “metaconjecture” that asserts that a result about
regular rings should generalize to arbitrary Noetherian rings if the assumption of regularity
is replaced by the hypothesis that certain modules have finite projective dimension.

One can generalize the vanishing conjecture for maps of Tor in this way. Instead of
assuming that A is regular, one assumes that M is a Noetherian module of finite projective
dimension over A, and that ideals of depth at least k in A have height at least k in Rmodulo
every minimal prime of R. Under these hypotheses and rather weak conditions on the rings,
one can show that if G• is a finite projective resolution of M over R, then the cycles are
in the tight closure of the boundaries in the complex G•⊗AR in degree one or more. This
implies that cycles become boundaries when one tensors further with a weakly F-regular
ring. However, we shall not attempt to give the best such result here, but rather refer the
reader to [M. Hochster and C. Huneke, Phantom Homology, Memoirs of the Amer. Math.
Soc. Vol. 103 Number 490, 1993, Amer. Math. Soc., Providence, R.I.], Theorem 4.13 (the
case where T = S considerably generalizes the result we discussed here).

From the point of view of this “metaconjecture,” it is reasonable to ask whether, when
R is any Noetherian ring, a module-finite algebra extension R ↪→ S such that pdRS <∞
has the property that R→ S splits. This question was raised by J. Koh in his thesis [J. H.
Koh, The direct summand conjecture and behavior of codimension in graded extensions,
Ph.D. Thesis, University of Michigan, 1983]. The result is true when R contains a field
of characteristic 0, but false in general otherwise: counter-examples were given in Juan
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Vélez in characteristic 2 and in mixed characteristic 2: cf. [J. D. Velez, Splitting results in
module-finite extension rings and Koh’s conjecture J. Algebra 172 (1995), pp. 454–469].

The proof in the equal characteristic 0 case depends on developing a notion of trace.
We want to assign a trace to every endomorphism of every finitely generated R-module M
of finite projective dimension, at least when R is a Noetherian ring such that Spec (R) is
connected.

We begin with the case where M is free. In this case, the trace TrR(f) = Tr(f) of
f : M →M may be defined as the sum of the diagonal entries of a matrix representing f .
The matrix depends on the choice of a free basis for M , but the trace does not, because
change of basis corresponds to replacing the matrix A by UAU−1, and the trace does not
change. It is clear that f 7→ Tr(f) is an R-linear map whose value on the identity map is
the image of the rank of M in R.

In case R is Noetherian with Spec (R) connected and pdRM < ∞, we can define an
R-linear trace map HomR(M, M) → R as follows. Let W be the multiplicative system
of all nonzerodivisors in R. Consider the induced endomorphism W−1M → W−1M over
W−1R. Then W−1R is a semilocal ring whose localization at each maximal ideal has depth
0. Since a module of finite projective dimension over a local ring of depth 0 must be free,
it follows that W−1M is locally free over W−1R. We want to see that the rank is constant.
Fix a finite projective resolution G• of M by finitely generated projective modules. The
rank of MP is the alternating sum of the ranks of the free modules in (G•)P . Because
Spec (R) is connected, every projective module is locally free of constant rank. It follows
that the rank of MP is independent of P for P corresponding to a maximal ideal of W−1R.
Therefore, W−1M is free over W−1R, and we can define the trace of g ∈ HomR(M, M)
as the trace of the map induced by g from W−1M → W−1M . The difficulty is that we
want the trace to be in R ⊆W−1R, not merely in W−1R.

We can show that our trace is in R as follows. The map f : M → M lifts to a map
φ• : G• → G•. We shall show that Tr(f) is the alternating sum

∑h
j=0(−1)jTrR(φj), where

h is the length of G•. Since the alternating sum is evidently in R, this will prove what
we need. It suffices to prove the equality after localization at W . Therefore, we need
only prove the result that if we have a map from an exact (not merely acyclic) complex of
finitely generated free modules

0 → Fk → · · · → F0 → 0

to itself, the alternating sum of the traces of the maps is 0 (the Fi correspond to the
localizations of the Gi at W , the base ring is now W−1R, and W−1M is now included). If
the complex has length at most three, say 0 → F2 → F1 → F0 → 0 (where some of these
may be 0), we have that F1

∼= F2 ⊕ F0. We can choose free bases for F2 and F0, and their
union will be a free basis for F1. The matrix of φ1 then has block form(

A2 B
0 A0

)
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where A2 and A0 are matrices for φ2 and φ0, respectively. It follows that Tr(φ1) =
Tr(φ2) + Tr(φ1), as required. The general case now follows by induction. If k > 3 and F
is the image of F2 in F1, we have complexes

0 → Fh → · · · → F2 → F → 0

and 0 → F → F1 → F0 → 0. The endomorphism φ• induces endomorphisms of both these
complexes: the only new map ψ needed is a map F → F , and this may be taken to be
either the restriction of φ1, which stabilizes the kernel of F1 → F0, or by φ2, which induces
a map of Coker (F3 → F2) to itself. By the cases of complexes whose length is 3 and whose
length is k − 1, we have that the alternating sum of the traces of the maps is 0 for each
of these complexes. When we add, Tr(ψ) occurs twice, with opposite signs, and the result
we want follows. �


