
Math 711: Lecture of December 7, 2005

We now use the notion of trace developed last time to prove:

Theorem. Let R be a Noetherian ring containing Q and let S be a module-finite extension
of R such that pdRS < ∞. Then R is a direct summand of S.

Proof. The issue is local on R, and so we may assume that R is local. Each element s ∈ S
gives an R-linear endomorphism φs of S, namely multiplication by s. The injection R ↪→ S
shows that if we localize at the multiplicative system W of all nonzerodivisors in S, W−1S

is W−1R-free of rank ρ at least one. The map s 7→ 1
ρ
Tr(φs) gives an R-linear retraction

from S → R. �

Remark. Of course the proof shows that the result holds whenever ρ is invertible in R: we
do not need to assume that R contains Q.

We next discuss some variant notions of tight closure: we shall use one of these to prove
a strong form of a result of Evans and Griffith on ranks of modules of syzygies over a
regular local ring.

Given a non-empty family of nonzero ideals C in a Noetherian ring R of characteristic
p > 0 with the property

(∗) if C, C ′ ∈ C then there exists C ′′ ∈ C such that C ′′ ⊆ C ∩ C ′

we can define the tight closure with respect to C: an element u ∈ N ⊆ M is in the tight
closure with respect to C of N in M if there exists an ideal C ∈ C such that Cuq ∈ N [q] for
all q = pe � 0. We can also define the small tight closure of N in M with respect to C:
for this we require that for some C ∈ C, Cuq ∈ N [q] for all q (which includes q = 1). The
property (∗) is needed so that the tight closure of N will be closed under addition.

If we take the family C to consist of all principal ideals generated by an element of R◦,
we obtain the usual notion of tight closure.

If the family consists of only the unit ideal R, tight closure with respect to this family
is Frobenius closure, while the small tight closure of N is the submodule N itself.

If R has a test element, tight closure with respect to the family consisting of the single
ideal it generates gives ordinary tight closure, as does small tight closure with respect to
the family consisting of the single ideal it generates.

We note that iterating one of these variant tight closure operations may give a larger
result than performing it once. One can show that iterating the operation gives the same
result if the family of ideals has the property that for all C, C ′ ∈ C, there exists C ′′ ∈ C
such that C ′′ ∈ CC ′.

We now want to show how one of these variant notions of tight closure can by used
to prove the Evans-Griffith syzygy theorem. We want to make two remarks. First, it
is immediate from the definition that u ∈ M is in the tight closure (respectively, small
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tight closure) with respect to C of N in M if and only if the image of u in M/N is in the
tight closure (respectively, small tight closure) of 0 in M/N with respect to C. The second
remark we state as:

Lemma. If (R, m, K) is local, C is a non-empty family of nonzero ideals of R, and x is
a minimal generator of a finitely generated module M , then x is not in the tight closure
(nor in the small tight closure) of 0 in M with respect to C.

Proof. If u is in the tight closure of 0 in M we have that Cxq = 0 in F e(M) for all q � 0.
We can map M � K so that x 7→ 1. We get an induced surjection F e(M) → R/m[q]. It
follows that C ⊆ m[q] for all q � 0, which implies that C = (0), a contradiction. �

We shall need to make use of the notion of order ideal. Let x be an element of M , a
finitely generated module over a Noetherian ring R. We define the order ideal OM (x) =
O(x) to be {f(x) : f ∈ HomR(M, R)}. For finitely generated modules over a Noetherian
ring R, the formation of the order ideal commutes with localization.

The map R → M sending 1 7→ x evidently splits if and only if OM (x) = R.

Also note that for any finitely generated free R-module G, any R-linear map M → G
takes x into OM (x)G.

The Evans-Griffith syzygy theorem asserts that, a k th module of syzygies over a regular
local ring, if not free, has rank at least k. They prove more general statements, in which
the conditions on the ring are weakened but the module is assumed to have finite projective
dimension. However, the key point in their proof is the following:

Theorem (Evans-Griffith). Let R be a local ring containing a field, let M be a k th
module of syzygies of a finitely generated module of finite projective dimension, and suppose
that MP is RP -free for every prime P of R except the maximal ideal, i.e., M is locally free
on the punctured spectrum of R. Let x ∈ M be a minimal generator. Then O(x) is either
the unit ideal or else has height at least k.

In fact, they show that this is true by using the fact that the improved new intersection
theorem is true when R contains a field, which they deduce from the existence of big
Cohen-Macaulay modules in the equal characteristic case. We shall eventually give their
argument, but we first prove a better result in characteristic p, with depth replacing height
and without the assumption that M is locally free on the punctured spectrum. We use a
variant notion of tight closure in the argument.

Theorem. Let (R, m, K) be a local ring of prime characteristic p > 0 and let N be
a finitely generated module of finite projective dimension over R. Let M be a finitely
generated k th module of syzygies of N , and let x ∈ M be a minimal generator of M . Let
I = OM (x). Then either I = R or else depthIR ≥ k.

Proof. If not, let y1, . . . , yd be a maximal regular sequence in the proper ideal I, and let
J = (y1, . . . , yd)R. Then we can choose c ∈ R − J such that cI ⊆ J . Let c′ denote the
image of c in R′ = R/J . Let G• be a resolution of N by finitely generated free modules
over R such that Gk → Gk−1 factors Gk � M ↪→ Gk−1, which we know exists because
M is k th module of syzygies of N over R. Let B denote the image of Gk+1 in Gk. Let
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G′
j denote R′ ⊗R Gj , while M ′ denotes R′ ⊗R M and B′ denotes the image of R′ ⊗R B in

G′
k. Choose an element z of Gk that maps onto x ∈ M . We shall obtain a contradiction

by showing that the image z′ of z in G′
k is in the tight closure of B′ in G′

k with respect to
the family {c′R′}. This implies that the image x′ of x in M ′ is in the tight closure of 0 in
M ′ with respect to the family {c′R′}, a contradiction using the Lemma above, because x′

is a minimal generator of M ′.

To see this, note that F e
R(G•) remains acyclic for all e: the determinantal ranks of

the maps and the depths of the ideals of minors do not change. Thus, this is a free
resolution of F e

R(N), and it follows that R′ ⊗R F e
R(G•) has homology TorR

•
(
R′, F e

R(N)
)
.

Since pdRR′ = d < k, we have that TorR
k

(
R′, F e

R(N)
)

= 0. But the complex R′⊗R F e
R(G•)

may be identified with F e
R′(G′

•). Let d′ denote the map G′
k → G′

k−1. Now consider the
value of the R-linear map F e

R′(d′) evaluated on c′(z′)q. This is evidently c′F e
R′(d′)

(
(z′)q)

)
.

Since the map Gk → Gk−1 factors through M , the image of z, which maps to x ∈ M , is
in IGk−1. It follows that the image of z′ under d′ in IG′

k−01, and, hence, that the image
of (z′)q under F e(d′) is in

I [q]F e(G′
k−1) ⊆ IF e

R′(G′
k−1).

Since cI ⊆ J and J becomes 0 in R′, we have that F e
R′(d′)

(
c′(z′)q

)
= 0. Since c′(z′)q is a

cycle and the homology at this spot is 0, it follows that c′(z′)q is a boundary, which means
that it is in the image (B′)[q] of F e

R′(B′). Thus, z′ is in the tight closure with respect to
the family {c′R′} of B′ in G′

k, and this means that x′ is in the tight closure with respect
to {cR′} of 0 in M ′. Since x is a minimal generator of M and J ⊆ m, it follows that x′ is a
minimal generator of M ′, and we have obtained the contradiction of the preceding Lemma
mentioned earlier. �


