
Math 711: Lecture of December 16, 2005

We continue the notations of last time, so that R = K[u, v, x, y]m/(uy − xv) and
P = (u, v)R, a height one prime in R, which has dimension 3. We next want to determine
the minimal resolution of R/P over R.

Proposition. With notation as above, a minimal resolution for R/P over R is:

· · · α−→ R2 β−→ R2 α−→ R2 β−→ R2 α−→ R2 (u v)−−−→ R −→ R/P −→ 0

where α =
(

y −v
−x u

)
and β =

(
u v
x y

)
.

Proof. We first want to show that the columns of α, which give relations on u and v, span
the module of all such relations. Suppose we lift the relation to the localized polynomial
ring, so that we have cu+ dv = f(uy− vx). In the localized polynomial ring, we have that
cu ∈ (y, v), so that c ∈ (y, v). It follows that by subtracting a linear combination of the
columns of α we obtain a relation such that c = 0, i.e., we have dv = f(uy−vx). But then
the prime element uy − vx divides d, so that d = 0 in R as well.

We next want to show that the columns of β, which are relations on the columns of α,
give a basis for the relations on the columns of α. Since the determinant of α is 0 and
R is a domain, giving a relation on the columns of α is the same as giving a relation on
the initial entries y and −v. In fact, the projection map on the first coordinate gives an
isomorphism of the span of the columns with the ideal (y,−v), since the map is a surjection
of torsion-free modules of rank one and so must be injective as well. Again, we lift the
relation to the localized polynomial ring, obtaining cy − dv = f(uy − vx). It follows that
cy ∈ (u, v), and so c ∈ (u, v). It follows that by subtracting a linear combination of the
columns of β, we get a relation such that c = 0, and the argument can be completed as
before.

Again, since the determinant of β is 0, giving a relation on the columns is the same as
giving a relation on the initial entries u and v. This is the problem we solved in the first
paragraph, and we can now see that the resolution will be periodic with period two from
this point on. �

Corollary. Let R and P be as above, and let Q = (y, v). Then there are short exact
sequences

0 → Q → R2 → P → 0

and
0 → P → R2 → Q → 0,

so that Q = syz1P and P = syz1Q. Both P and Q are maximal Cohen-Macaulay modules
over R, i.e., have depth 3.

Proof. Because each of the matrices α, β has determinant 0, projection onto the first
coordinates gives isomorphisms of the column space of α with Q and of the column space
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of β with P . When a module over a Cohen-Macaulay ring has depth δ < d, the dimension
of the ring, its first module of syzygies has depth δ + 1. Thus, P and Q, each of which is
an N th syzygy for all N , must have depth 3. �

Proposition. We continue the notations of the preceding Proposition. Let M be an R-
module of finite length n, so that M is an n-dimensional vector space over the field K. Let
A, B, C, and D be the matrices of the actions of u, v, x, and y on M . Then A, B, C, D
are mutually commuting nilpotent matrices such that AD = BC. Conversely, any four
commuting nilpotent n × n matrices A, B, C, and D such that AD = BC determine a
length n module over R on which the actions of u, v, x, and y are those of the respective
matrices.

Let α∗ denote the 2n×2n matrix over K whose block form is
(

D −B
−C A

)
and call the

rank of this matrix ρ. Let β∗ denote the rank of the 2n × 2n matrix over K whose block

form is
(

A B
C D

)
and call the rank of this matrix σ. The module M has finite projective

dimension if and only if ρ + σ = 2n.
In terms of these ranks, χ(M, R/P ) = n− σ.

Proof. The statements in the first paragraph are clear. We know that M has finite pro-
jective dimension if and only if the complex G• that resolves R/P is such that G• ⊗R M
is exact at the j th spot for j � 0. But this complex eventually has the periodic form:

· · · α∗

−→ M ⊕M
β∗−→ M ⊕M

α∗

−→ M ⊕M
β∗−→ · · ·

and the condition for exactness in the case of a complex of finite-dimensional K vector
spaces is that the rank of each incoming map is equal to the nullity of the outgoing map,
which is the same as the condition that for each vector space, the sum of the ranks of
the incoming and outgoing maps is the dimension of the vector space. At every spot, this
condition is simply that ρ + σ = 2n.

For a maximal Cohen-Macaulay C over R, TorR
i (M, C) = 0 for i ≥ 1 when M has finite

length and finite projective dimension. Hence χ(M, C) = `(M ⊗R C). Then

χ(M, R/P ) = χ(M, R)− χ(M, P ) = `(M ⊗R R)− `(M ⊗R P ) =

`(M)− `(M ⊗R Cokerα) = n− `(Coker α∗) = n− (2n− ρ) = n− σ,

as claimed. �

Thus, the problem comes down to exhibiting n × n commuting nilpotent matrices A,
B, C, and D such that AD = BC and σ + ρ = 2n but σ = n + 1. This is possible over
any field when n = 15 (and not for any smaller n, by a result of Marc Levine.)

Below are the matrices that give an example where the intersection multiplicity is neg-
ative, in block form. The rows are grouped in blocks of respective sizes 2, 3, 2, 2, and 6,
while the columns are grouped in blocks of respective sizes 5, 2, 2, 2, 2, and 2. First, let
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E3×2 =

 0 0
1 0
0 1

, F3×2 =

 1 0
0 1
0 0

, G3×2 =

 0 0
0 0
1 0

, and H3×2 =

 0 1
0 0
0 0

.

We use 0rand 1r for the r × r zero matrix and the r × r identity matrix, respectively,
and we use 0r×s for the r × s zero matrix. Let A, B, C, and D be the respective 15× 15
matrices

02×5 12 02 02 02 02

03×5 03×2 03×2 03×2 03×2 E3×2

02×5 02 02 12 02 02

02×5 02 02 02 12 02

06×5 06×2 06×2 06×2 06×2 06×2

 ,


02×5 02 02 02 02 02

03×5 03×2 03×2 F3×2 G3×2 03×2

02×5 02 02 02 02 02

02×5 02 02 02 02 02

06×5 06×2 06×2 06×2 06×2 06×2

,


02×5 02 12 02 02 02

03×5 03×2 03×2 03×2 03×2 H3×2

02×5 02 02 02 12 02

02×5 02 02 02 02 12

06×5 06×2 06×2 06×2 06×2 06×2

 , and


02×5 02 02 12 02 02

03×5 03×2 03×2 03×2 H3×2 E3×2

02×5 02 02 02 02 02

02×5 02 02 02 02 02

06×5 06×2 06×2 06×2 06×2 06×2


.

Then we have that A, B, C, and D mutually commute, that AD = BC, and that ρ = 14,
and σ = 16. Thus, the corresponding module M has finite projective dimension and
χ(M, R/P ) = −1. Note that it is clear that these matrices are nilpotent, since they
are upper triangular with all diagonal entries equal to zero. It is also easy to check
that m3 + (v, y)m kills M . The detailed verification of all of these statements, which
involves only routine calculations with matrices, is given in [S. P. Dutta, M. Hochster,
and J. E. McLaughlin, Modules of finite projective dimension with negative intersection
multiplicities, Invent. Math. 79 (1985) 253–291], where it is also shown that the minimal
free resolution of this module has the form

0 → R5 → R16 → R17 → R6 → M → 0.

One may consider the Grothendieck group of modules of finite length and finite projec-
tive dimension over R. Marc Levine has shown that this Grothendieck group is generated
by the classes of the form R/(x1, x2, x3)R where x1, x2, x3 is a maximal regular sequence,
together with the class of the module M constructed above, and that there is no module
M ′ of length smaller than 15 of finite projective dimension such that χ(M ′, R/P ) 6= 0.
Cf. [M. Levine, Localization on singular varieties, Invent. Math. 91 (1988) 423–464] and
[M. Levine, Erratum to “Localization on singular varieties”, Invent. Math. 93 (1988) 715–
716]. Also see [P. C. Roberts and V. Srinivas, Modules of finite length and finite projective
dimension, Invent. Math. 151 (2003) 1–27].

Let us called a finitely generated module M of finite projective dimension over a local
ring R descendable if there is a flat local homomorphism A → R, and a finitely generated
A-module M0 such that M = R ⊗A M0. We note that when M is descendable and N is
finitely generated such that M ⊗R N has finite length and dim (M) + dim (N) < dim (R),
then χ(M, N) = 0. To see this, first note that the issues are unaffected by completing A,
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R, M0, M and N . Second, the map A → R factors A → B � R where A → B and B → R
are local, and A → B is faithfully flat with a regular closed fiber, so that B is regular. Let
M ′ = M ⊗R B ∼= M0 ⊗A B. Let G• be a free resolution of M0 over A. Then R⊗A G• is a
free resolution of M over R, and B ⊗A G• is a free resolution of M ′ over B. The modules
TorB

• (M ′, N) are given by the homology of

(G• ⊗A B)⊗B N ∼= G• ⊗A N ∼= (G• ⊗A R)⊗R N,

and this last complex has homology TorR
• (M, N). In particular, M ′ ⊗B N ∼= M ⊗R N

has finite length. Moreover, dim (M ′) = dim (M0) + dim (B) − dim (A) which we can be
rewritten as(
dim (M0)+

(
dim (R)−dim (A)

))
+

(
dim (B)−dim (R)

)
= dim (M)+dim (B)−dim (R),

and so

dim (M ′) + dim (N) = dim (B) + dim (M) + dim (N)− dim (R) < dim (B).

But then χR(M, N) = χB(M ′, N) = 0, since the result is known for the regular ring B.

This means that the modules constructed here are not descendable: they do not come
from modules over regular rings by flat base change. Perhaps some of the remaining
conjectures on good behavior for modules of finite projective dimension could be disproved
if we had more methods of constructing modules of finite projective dimension that do not
arise from modules over regular rings by flat base change.


