Problem Set #2

Math 711, Fall 2005 Due: Friday, October, 28

1. Let R be a finitely generated N-graded algebra such that $R_0 = K$, a field. Let m be the unique homogeneous maximal ideal of R. Prove that R_m is a domain (respectively, reduced) if and only if R is a domain (respectively, reduced).

2. Let K be a field, and let X be an $r \times s$ matrix over K, where $r \leq s$. Let $I = I_r(X)$, the ideal generated by the maximal size minors of X. Consider the s - r + 1 diagonals of X that begin with $x_{1,j}$, where $1 \leq j \leq s - r + 1$, and whose other elements are $x_{1+k,j+k}$, $1 \leq k \leq r - 1$. Consider the indeterminates that are not on any of these diagonals (there are $1+2+\cdots+r-1$ of these at the left, below the diagonal for j = 1, and the same number on the right, above the diagonal for j = s - r + 1), and the (s - r + 1)(r - 1) differences of consecutive elements on the same diagonal, each of which has the form $x_{1+k,i+k} - x_{k,i+k1}$, where i and j are constrained as before. Show that the images of these elements form a homogeneous system of parameters for $R/I_r(X)$.

3. In the problem above, show that if one kills this homogeneous system of parameters in $K[X]/I_r(X)$, the ring obtained is isomorphic with $K[x_{1,1}, \ldots, x_{1,s-r+1}]/m^r$, where *m* is the ideal generated by the $x_{1,j}$. Determine the type of $K[X]/I_r(X)$ when X is an $r \times s$ matrix of indeterminates.

4. Let K be an algebraically closed field of positive characteristic p > 0, where $p \neq 3$. Let $R = K[X, Y, Z]/(X^3 + Y^3 + Z^3)$. Show that R is F-injective if and only if $p \equiv 2 \mod 3$.

5. Let R be a finitely generated algebra over a field of characteristic p > 0. Is the set of primes P such that R_P is an F-injective Cohen-Macaulay local ring Zariski open?