
Math 711: Lecture of September 6, 2006

These lectures will deal with several advanced topics in commutative algebra, including
the behavior of codimension after base change. However, we will begin with the Lipman-
Sathaye Jacobian theorem and its applications, including, especially, the Briançon-Skoda
theorem.

A special (but very important) case of the Lipman-Sathaye theorem is as follows:

Theorem (Lipman-Sathaye). Let R ⊆ S be a homomorphism of Noetherian domains
such that R is regular and S is a localization of a finitely generated R-algebra. Assume
that the integral closure S′ of S is module-finite over S and that the extension of fraction
fields frac (S)/frac (R) is a finite separable algebraic extension. Then the Jacobian ideal
JS/R multiplies S′ into S.

Both the Jacobian ideal and the notion of integral closure will be treated at length
below. We shall also prove a considerably sharper version of the theorem, in which several
of the hypotheses are weakened. An algebra S that is a localization of a finitely generated
R-algebra is called essentially of finite type over R. The hypothesis that the integral closure
of S is module-finite over S is a weak assumption: it holds whenever S is essentially of finite
type over a field or over a complete local ring, and it tends to hold for the vast majority of
rings that arise naturally: most of the rings that come up are excellent, a technical notion
that implies that the integral closure is module-finite.

While the Briançon-Skoda theorem can be proved in equal characteristic by the method
of reduction to characteristic p > 0, where tight closure methods may be used, the only
known proof in mixed characteristic uses the Lipman-Sathaye theorem. Another applica-
tion is to the calculation of the integral closure of a ring, while a third is to the construction
of test elements for tight closure theory. Our emphasis is definitely on the Briançon-Skoda
theorem which, in one of its simplest forms, may be formulated as just below. We shall
denote by J the integral closure of the ideal J : integral closure of ideals will be discussed
in detail in the sequel.

Theorem (Briançon-Skoda). If I is an ideal of a regular ring and is generated by n
elements, then In ⊆ I.

Before beginning our discussion of integral closure, we mention two corollaries of the
Briançon-Skoda theorem that are of some interest. First:

Corollary. Suppose that f ∈ C{z1, . . . , zn} is a convergent power series in n variables
with complex coefficients that defines a hypersurface with an isolated singularity at the
origin, i.e., f and its partial derivatives ∂f/∂zi, 1 ≤ i ≤ n, have an isolated common zero
at the origin. Then fn is in the ideal generated by the partial derivatives of f in the ring
C{z1, . . . , zn}.

This answers affirmatively a question raised by John Mather. Second:
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Corollary. Let f1, . . . , fn+1 be polynomials in n variables over a field. Then fn1 · · · fnn ∈
(fn+1

1 , . . . , fn+1
n+1 ).

For example, when n = 2 this implies that if f, g, h ∈ K[x, y] are polynomials in two
variables over a field K then f2g2h2 ∈ (f3, g3, h3). This statement is rather elementary:
the reader is challenged to prove it by elementary means.

We shall need to develop the subject a bit before we can see why these are corollaries:
we postpone the explanation for the moment.

In these notes all given rings are assumed to be commutative, associative, and to have a
multiplicative identity 1, unless otherwise stated. Most often given rings will be assumed
to be Noetherian as well, but we postpone making this a blanket assumption.

Our next objective is to review some facts about integral elements and integral ring
extensions.

Recall that if R ⊆ S are rings then s ∈ S is integral over R if, equivalently, either

(1) s satsifies a monic polynomial with coefficients in R or

(2) R[s] is finitely generated as an R-module.

The elements of S integral over R form a subring of S containing R, which is called the
integral closure of R in S. If S is an R-algebra, S is called integral over R if every element is
integral over the image of R in S. S is called module-finite over R if it is finitely generated
as an R-module. If S is module-finite over R it is integral over R. S is module-finite over
R if and only if it is finitely generated as an R-algebra and integral over R. S is integral
over R if and only if every finitely generated R-subalgebra is module-finite over R.

Given a commutative diagram of algebras

S
f−−−−→ Ux x

R −−−−→ T

and an element s ∈ S integral over the image of R, the image of S in U is integral over
the image of T . One can see this simply by applying the homomorphism f to the monic
equation s satisfies. When the vertical maps are inclusions, we see that the integral closure
of R in S maps into the integral closure of T in U .

Note also that if R→ S and S → T are both module-finite (respectively, integral) then
R→ T is also module-finite (respectively, integral).

The total quotient ring of the ring R is W−1R, where W is the multiplicative system of
all nonzerodivisors. We have an injection R ↪→W−1R. If R is a domain, its total quotient
ring is its field of fractions. If R is reduced, R is called normal or integrally closed if it is
integrally closed in its total quotient ring. Thus, a domain R is integrally closed if and
only if every fraction that is integral over R is in R.
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Let (H, +) be an additive commutative semigroup with additive identity 0. A commu-
tative ring R is said to be H-graded if it has a direct sum decomposition

R ∼=
⊕
h∈H

Rh

as abelian groups such that 1 ∈ R0 and for all h, k ∈ H, RhRk ⊆ Rh+k. Elements of
Rh are then called homogeneous elements or forms of degree h. If s is the sum of nonzero
forms s1 + · · ·+ sn of mutually distinct degrees hi, then si ∈ Rhi is called the homogenous
component of s of degree hi. The homogeneous components in other degrees are defined
to be 0. The most frequent choices for H are the nonnegative integers N and the integers
Z.

Theorem. Let R ⊆ S be an inclusion of N-graded (or Z-graded) rings compatible with
the gradings, i.e., such that Rh ⊆ Sh for all h. Then the integral closure of R in S is also
compatibly graded, i.e., every homogeneous component of an element of S integral over R
is integral over R.

Proof. First suppose that R has infinitely many units of degree 0 such that the difference
of any two is a unit. Each unit u induces an endomorphism θu of R whose action on forms
of degree d is multiplication by ud. Then θuθv = θuv, and θu is an automorphism whose
inverse is θu−1 . These automorphisms are defined compatibly on both R and S: one has a
commutative diagrams

S
θu−−−−→ Sx x

R −−−−→
θu

S

for every choice of unit u. If s ∈ S is integral over R, one may apply θu to the equation of
integral dependence to obtain an equation of integral dependence for θu(s) over R. Thus,
θu stabilizes the integral closure T of R in S. (This is likewise true for θu−1 , from which
one deduces that θu is an automorphism of T , but we do not really need this.)

Suppose we write
s = sh+1 + · · ·+ sh+n

for the decomposition into homogeneous components of an element s ∈ S that is integral
over R, where each sj has degree j. What we need to show is that each sj is integral over
R. Choose units u1, . . . , un such that for all h 6= k, uh − uk is a unit — we are assuming
that these exist. Letting the θui act, we obtain n equations

uh+1
i sh+1 + · · ·+ uh+ni sh+n = ti, 1 ≤ j ≤ n,

where ti ∈ T . Let M be the n × n matrix
(
uh+ji

)
. Let V be the n × 1 column vector sh+1

...
sh+n

 and let W be the n × 1 column vector

 t1
...
tn

. In matrix form, the displayed
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equations are equivalent to MV = W . To complete this part of the argument, it will suffice
to show that the matrix M is invertible over R, for then V = M−1W will have entries
in T , as required. We can factor uh+1

i from the i th row for every i: since all the ui are

units, this does not affect invertibility and produces the Van der Monde matrix
(
uj−1i

)
.

The determinant of this matrix is the product∏
j>i

(uj − ui)

(see the Discussion below), which is invertible because every uj − ui is a unit.

In the general case, suppose that

s = sh+1 + · · ·+ sh+n

as above is integral over R. Let t be an indeterminate over R and S. We can give this
indeterminate degree 0, so that R[t] = R0[t] ⊗R0

R is again a graded ring, now with 0 th
graded piece R0[t], and similarly S[t] is compatibly graded with 0 th graded piece S0[t]. Let
U ⊆ R0[t] be the multiplicative system consisting of products of powers of t and differences
tj − ti, where j > i ≥ 0. Note that U consists entirely of monic polynomials. Since all
elements of U have degree 0, we have an inclusion of graded rings U−1R[t] ⊆ U−1S[t]. In
U−1R[t], the powers of t constitute infinitely many units of degree 0, and the difference
of any two distinct powers is a unit. We may therefore conclude that every sj is integral
over U−1R[t], by the case already done. We need to show sj is integral over R itself.

Consider an equation of integral dependence

sdj + f1s
d−1
j + · · ·+ fd = 0,

where every fi ∈ U−1R[t]. Then we can pick an element G ∈ U that clears denominators,
so that every Gfi = Fi ∈ R[t], and we get an equation

Gsdj + F1s
d−1
j + · · ·+ Fd = 0.

Let G have degree m, and recall that G is monic in t. The coefficient of tm on the left hand
side, which is an element of S, must be 0, and so its degree jd homogeneous component
must be 0. The contribution to the degree jd component of this coefficient from Gsdj is,

evidently, sdj , while the contribution from fis
d−i
j clearly has the form ris

d−i
j , where ri ∈ R

has degree ji. This yields the equation

sdj + r1s
d−1
j + · · ·+ rd = 0,

and so sj is integral over R, as required. �

Discussion: Van der Monde matrices. Let u1, . . . , un be elements of a commutative
ring. Let M be the n× n matrix

(
uj−1i

)
.
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(a) We want to show that the determinant of M is
∏
j>i(uj − ui). Hence, M is invertible

if uj − ui is a unit for j > i. It suffices to prove the first statement when the ui are
indeterminates over Z. Call the determinant D. If we set uj = ui, then D vanishes
because two rows become equal. Thus, uj − ui divides D in Z[u1, . . . , un]. Since the
polynomial ring is a UFD and these are relatively prime in pairs, the product P of the
uj − ui divides D. But they both have degree 1 + 2 + · · · + n − 1. Hence, D = aP for
some integer a. The monomial x2x

2
3 · · ·xn−1n obtained from the main diagonal of matrix

in taking the determinant occurs with coefficient 1 in both P and D, so that a = 1. �

(b) We can also show the invertibility of M as follows: if the determinant is not a unit,
it is contained in a maximal ideal. We can kill the maximal ideal. We may therefore
assume that the ring is a field K, and the ui are mutually distinct elements of this field.
If the matrix is not invertible, there a nontrivial relation on the columns with coefficients
c0, . . . , cn−1 in the field. This implies that the nonzero polynomial

cn−1x
n−1 + · · ·+ c1x+ c0

has n distinct roots, u1, . . . , un, in the field K, a contradiction. �


