
Math 711: Lecture of September 11, 2006

Examples of integral closure of ideals. Note that whenever r ∈ R and I ⊆ R is
an ideal such that rn = in ∈ In, we have that r ∈ I. The point is that r is a root of
zn − in = 0, and this polynomial is monic with the required form.

In particular, if x, y are any elements of R, then xy ∈ (x2, y2), since (xy)2 = (x2)(y2) ∈
I2. This holds even when x and y are indeterminates.

More generally, if x1, . . . , xn ∈ R are any elements and I = (xn
1 , . . . , xn

k )R, then every
monomial r = xi1

1 · · ·xik

k of degree n (here the ij are nonnegative integers whose some is
n) is in I, since

rn = (xn
1 )i1 · · · (xn

k )ik ∈ In,

since every xn
j ∈ I and

∑k
j=1 ij = n.

Now let K be any field of characteristic 6= 3, and let X, Y, Z be indeterminates over K.
Let

R = K[X, Y, Z]/(X3 + Y 3 + Z3) = K[x, y, z],

which is a normal domain with an isolated singularity. Here, we are using lower case letters
to denote the images of corresponding upper case letters after taking a quotient: we shall
frequently do this without explanatory comment. Let I = (x, y)R. Then z3 ∈ I3, and so
z ∈ I. This shows that an ideal generated by a system of parameters in a local ring need
not be integrally closed, even if the elements are part of a minimal set of generators of the
maximal ideal. It also follows that z2 ∈ I2, where I is a two generator ideal, while z2 /∈ I.
Thus, the Briançon-Skoda theorem, as we stated it for regular rings, is not true for R.
(There is a version of the theorem that is true: it asserts that for an n-generator ideal I,
In ⊆ I∗, where I∗ is the tight closure of I. But we are not assuming familiarity with tight
closure here.)

We next want to give a proof that, even when a normal domain R is not Noetherian, it
is an intersection of valuation domains. We first show:

Lemma. Let L be a field, R ⊆ L a domain, and I ⊂ R a proper ideal of R. Let x ∈ L−{0}.
Then either IR[x] is a proper ideal of R[x] or IR[1/x] is a proper ideal of R[1/x].

Proof. We may replace R by its localization at a maximal ideal containing I, which only
makes the problem harder. Assume that neither is a proper ideal. Since 1 ∈ IR[x] we
obtain an equation

(#) 1 = i0 + i1x + · · ·+ inxn,

where all of the ih ∈ I. Similarly, we obtain an equation

(##) 1 = j0 + j1(1/x) + · · · j0m(1/xm),
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where all of the jh ∈ I. We may assume that n and m have been chosen as small as
possible. By reversing the roles of x and 1/x, if necessary, we may assume that n ≥ m.
Then

1− j0 = j1(1/x) + · · ·+ jm(1/x)m.

Multiplying by the inverse of 1− j0, we have that

1 = j′1(1/x) + · · · j′m(1/x)m,

where the j′h ∈ I. Multiplying through by xm yields that

xm = j′1x
m−1 + · · ·+ j′m ∈ I + Ix + · · ·+ Ixm−1.

It follows by induction on k that for all k ≥ 0,

xk ∈ I + Ix + · · ·+ Ixm−1.

For the inductive step, once we have that

xk−1 ∈ I + Ix + · · ·+ Ixm−1,

we can multiply by x to get that

xk ∈ I + Ix + Ix2 + · · · Ixm,

and we can use the fact that

xm ∈ I + Ix + · · ·+ Ixm−1

to eliminate the rightmost term on the right. But then we can get rid of the xm, . . . , xn

terms in the displayed equation (#), and we have that

1 ∈ I + Ix + · · ·+ Ixm−1,

contradicting the minimality of our choice of n. �

Corollary. Let R ⊆ L, a field, and let I ⊂ R be a proper ideal of R. Then there is a
valuation domain V with R ⊆ V ⊆ L such that IV 6= V .

Proof. Consider the set S of all rings S such that R ⊆ S ⊆ L and IS 6= S. This set
contains R, and so is not empty. The union of a chain of rings in S is easily seen to be in
S. Hence, by Zorn’s lemma, S has a maximal element V . We claim that V is a valuation
domain with fraction field L. For let x ∈ L− {0}. By the preceding Lemma, either IV [x]
or IV [1/x] is a proper ideal. Thus, either V [x] ∈ S or V [1/x] ∈ S. By the maximality of
V , either x ∈ V or 1/x ∈ V . �

We now can prove the result we were aiming for.



3

Corollary. Let R be a normal domain with fraction field L. Then R is the intersection
of all valuation domains V with R ⊆ V incL.

Proof. Let x ∈ L−R. It suffices to find V with R ⊆ V ⊆ L such that x /∈ V . Let y = 1/x.
We claim that y is not a unit in R[y], for its inverse is x, and if y were a unit we would
have

x = r0 + r1(1/x) + · · ·+ rn(1/x)n

for some positive integer n and rj ∈ R. Multiplying through by xn gives an equation of
integral dependence for x on R, and since R is normal this yields x ∈ R, a contradiction.
Since yR[y] is a proper ideal, by the preceding Corollary we can choose a valuation domain
V with R[y] ⊆ V ⊆ K such that yV is a proper ideal of V . But this implies that x /∈ V . �

The following important result can be found in most introductory texts on commu-
tative algebra, including [M.F. Atiyah and I.G. Macdonald, Introduction to Commuta-
tive Algebra, Addison-Wesley, Reading, Massachusetts, 1969], which we refer to briefly as
Atiyah-Macdonald.

Theorem. If R is a normal Noetherian domain, then the integral closure S of R in a
finite separable extension G of its fraction field F is module-finite over R.

Proof. See Proposition 5.19 of Atiyah-MacDonald for a detailed argument. We do mention
the basic idea: choose elements s1, . . . , sd of S that are basis for G over F , and then
the discriminant D = det

(
TraceG/F sisj

)
, which is nonzero because of the separability

hypothesis, multiplies S into the Noetherian R-module
∑d

i=1 Rsi. �

Theorem (Nagata). Let R be a complete local domain. Then the integral closure of R
in a finite field extension of its fraction field is a finitely generated R-module.

Proof. Because R is module-finite over a formal power series ring over a field, or, if R does
not contain a field, over a DVR whose fraction field has characteristic zero, we may replace
the original R by a formal power series ring, which is regular and, hence, normal. Unless R
has characteristic p the extension is separable and we may apply the Theorem just above.

Thus, we may assume that R is a formal power series ring K[[y1, . . . , yn]] over a field
K of characteristic p. If we prove the result for a larger finite field extension, we are
done, because the original integral closure will be an R-submodule of a Noetherian R-
module. This enables us to view the field extension as a purely inseparable extension
followed by a separable extension. The separable part may be handled using the Theorem
just above. It follows that we may assume that the field extension is contained in the
fraction field of K1/q[[x1, . . . , xn]] with xi = y

1/q
i for all i. We may adjoin the xi to

the given field extension, and it suffices to show that the integral closure is module-finite
over K[[x1, . . . , xn]], since this ring is module-finite over K[[y1, . . . , yn]]. Thus, we have
reduced to the case where R = K[[x1, . . . , xn]] and the integral closure S will lie inside
K1/q[[x1, . . . , xn]], since this ring is regular and, hence, normal.
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Now consider the set L of leading forms of the elements of S, viewed in the ring
K1/q[[x1, . . . , xn]]. Let d be the degree of the field extension from the fraction field of
R to that of S. We claim that any d + 1 or more F1, . . . , FN of the leading forms in L are
linearly dependent over (the fraction field of) R for, if not, choose elements sj of S which
have them as leading forms, and note that these will also be linearly independent over R,
a contradiction (if a non-trivial R-linear combination of them were zero, say

∑
j rjsj = 0,

where the rj are in R, and if Fj has degree dj while the leading form gj of rj has degree
d′j , then one also gets

∑
j gjFj = 0, where the sum is extended over those values of j for

which dj + d′j is minimum). Choose a maximal set of linearly independent elements fj of
L. Let K ′ denote the extension of K generated by all of their coefficients. Since there are
only finitely many, T = K ′[[x1, . . . , xn]] is module-finite over R. But T contains every
element L of L, for each element of L is linearly dependent over R on the fj , and so is in
the fraction field of T , and has its q th power in R ⊆ T . Since T is regular, it is normal,
and so must contain L.

Thus, the elements of L span a finitely generated R-submodule of T , and so we can
choose a finite set L1, . . . , Lk ⊆ L that span an R-module containing all of L,. We can
then choose finitely many elements s1, . . . , sk of S whose leading forms are the L1, . . . , Lk.

Let S0 be the module-finite extension of R generated by the elements s1, . . . , sk. We
complete the proof by showing that S0 = S. We first note that for every element L of L,
S0 contains an element s whose leading form is L. To see this, observe that if we write L
as an R-linear combination

∑
j rjLj , the same formula holds when every rj is replaced by

its homogeneous component of degree deg L− deg Lj . Thus, the rj may be assumed to be
homogeneous of the specified degrees. But then

∑
j rjsj has L as its leading form.

Let s ∈ S be given. Recursively choose u0, u1, . . . , un, . . . ∈ S0 such that u0 has the
same leading form as s and, for all n, un+1 has the same leading form a s− (u0 + · · ·+un).
For all n ≥ 0, let vn = u0+ · · ·+un. Then {vn}n is a Cauchy sequence in S0 that converges
to s in the topology given by the powers mh

T of the maximal ideal of T = K ′[[x1, . . . , xn]].
Since S0 is module-finite over K[[x1, . . . , xn]], S0 is complete. By Chevalley’s lemma,
which is discussed below, when we intersect the mh

T with S0 we obtain a sequence of ideals
cofinal with the powers of the maximal ideal of S0. Thus, the sequence, which converges
to s, is Cauchy with respect to the powers of the maximal ideal of S0. Since, as observed
above, S0 is complete, we have that s ∈ S0, as required. �


