
Math 711: Lecture of September 18, 2006

We have already noted that when (R, m, K) is a local ring and i ⊆ m an ideal we may
identify

K ⊗R grI(R) ∼= R/m⊕ I/mI ⊕ I2/mI2 ⊕ · · · ⊕ In/mIn ⊕ · · · .

S is called a standard graded A-algebra if S is N-graded with S0 = A and the 1-forms S1

of S generate S as an A-algebra. If S is a standard graded K-algebra, where K is a field,
then R has a unique homogeneous maximal ideal m =

⊕∞
n=1 Sn, the K-span (and even

the span as an abelian group) of all elements of positive degree.

We note as well that if R[It] ⊆ R[t] is the Rees ring, then

(R/I)⊗R R[It] ∼= R[It]/IR[It] =
R + It + I2t2 + · · ·+ Intn + · · ·
I + I2t + I3t2 + · · ·+ In+1tn + · · ·

,

and it is quite straightforward to identify this with grIR.

Since (R/m)⊗R (R/I) ∼= R/I, it follows that

K ⊗R grI(R) ∼= (R/m)⊗R

(
(R/I)⊗R R[It]

) ∼= (
R/m)⊗R (R/I)

)
⊗R R[It] ∼= K ⊗R R[It],

so that we may also view K ⊗R gr(R) as K ⊗R R[It].

We give two preliminary results. Recall that in Nakayama’s Lemma one has a finitely
generated module M over a ring (R, m) with a unique maximal ideal, i.e., a quasilocal ring.
The lemma states that if M = mM then M = 0. By applying the result to M/N , one can
conclude that if M is finitely generated (or finitely generated over N), and M = N +mM ,
then M = N . In particular, elements of M whose images generate M/mM generate M : if
N is the module they generate, we have M = N + mM . Less familiar is the homogeneous
form of the Lemma: it does not need M to be finitely generated, although there can be
only finitely many negative graded components (the detailed statement is given below).

First recall that if H is an additive semigroup with 0 and R is an H-graded ring, we
also have the notion of an H-graded R-module M : M has a direct sum decomposition

M =
⊕
h∈H

Mh

as an abelian group such that for all h, k ∈ H, RhMk ⊆ Mh+k. Thus, every Mh is an
R0-module. A submodule N of M is called graded (or homogeneous) if

N =
⊕
h∈H

(N ∩Mh).

An equivalent statement is that the homogeneous components in M of every element of N
are in N , and another is that N is generated by forms of M .
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Note that if we have a subsemigroup H ⊆ H ′, then any H-graded ring or module can
be viewed as an H ′-graded ring or module by letting the components corresponding to
elements of H ′ −H be zero.

In particular, an N-graded ring is also Z-graded, and it makes sense to consider a Z-
graded module over an N-graded ring.

Nakayama’s Lemma, homogeneous form. Let R be an N-graded ring and let M be
any Z-graded module such that M−n = 0 for all sufficiently large n (i.e., M has only
finitely many nonzero negative components). Let I be the ideal of R generated by elements
of positive degree. If M = IM , then M = 0. Hence, if N is a graded submodule such that
M = N + IM , then N = M , and a homogeneous set of generators for M/IM generates
M .

Proof. If M = IM and u ∈ M is nonzero homogeneous of smallest degree d, then u is a
sum of products itvt where each it ∈ I has positive degree, and every vt is homogeneous,
necessarily of degree ≥ d. Since every term itvt has degree strictly larger than d, this is a
contradiction. The final two statements follow exactly as in the case of the usual form of
Nakayama’s Lemma. �

Lemma. Let S → T be a degree preserving K-algebra homomorphism of standard graded
K-algebras. Let m ⊆ S and n ⊆ T be the homogeneous maximal ideals. Then T is a
finitely generated S-module if and only if the image of S1 in T1 generates an n-primary
ideal.

Proof. By the homogeneous form of Nakayama’s lemma, T is finitely generated over S if
and only if T/mT is a finite-dimensional K-vector space, and this will be true if and only if
all homogeneous components [T/mT ]s are 0 for s � 0, which holds if and only if ns ⊆ mT
for all s � 0. �

Proposition. Let (R, m, K) be a local ring. If I ⊆ J ⊆ m are ideals, then J is integral
over I if and only if the image of I in J/mJ = [K ⊗R gr(R)]1 generates an n-primary
ideal in K ⊗R grJ(R), where n is the homogeneous maximal ideal in T .

Proof. First note that J is integral over I if and only if R[Jt] is integral over R[It], and this
is equivalent to the assertion that R[Jt] is module-finite over R[It], since R[Jt] is finitely
generated as an R-algebra, and, hence, as an R[It]-algebra.

If this holds, we have that K ⊗R R[Jt] is a finitely generated module over K ⊗R R[It],
and, since the image of I generates the maximal ideal m in S = K⊗RgrI(R) ∼= K⊗RR[It],
the preceding Lemma implies that the latter statement will be true if and only if the image
of I in J/mJ = [K ⊗R grJ(R)]1 generates an n-primary ideal in T = K ⊗R grJ(R).

The proof will be complete if we can show that when T is module-finite over S, then
R[Jt] is module-finite over R[It]. Let j1 ∈ Jd1 , . . . , jh ∈ Jdh be elements whose images
in Jd1/mJd1 , . . . , Jdh/mJdh , respectively, generate T as an S-module. We claim that
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jd1t
d1 , . . . , jdh

tdh generate R[Jt] over R[It]. To see this, note that the fact that these
elements generate T over S implies that for every N ,

JN =
∑

1≤i≤h such that di≤n

IN−dijdi
+ mJN .

For each fixed N , we may apply the usual form of Nakayama’s Lemma to conclude that

JN =
∑

1≤i≤h such that di≤n

IN−dijdi .

and so, for all N , we have

JN tN =
∑

1≤i≤h such that di≤n

IN−ditN−dijdi
tdi ,

which is just what we need to conclude that jd1t
d1 , . . . , jdh

tdh generate R[Jt] over R[It]. �

The following fact is often useful.

Proposition. Let K be an infinite field, V ⊆ W vector spaces, and let V1, . . . , Vh be
vector subspaces of W such that V ⊆

⋃h
i=1 Vi. Then V ⊆ Vi for some i.

Proof. If not, for each i choose vi ∈ V − Vi. We may replace V by the span of the vi and
so assume it is finite-dimensional of dimension d. We may replace Vi by Vi ∩V , so that we
may assume every Vi ⊆ V . The result is clear when d = 1. When d = 2, we may assume
that V = K2, and the vectors (1, c), c ∈ K − {0} lie on infinitely many distinct lines. For
d > 2 we use induction. Since each subspace of V ∼= Kd of dimension d− 1 is covered by
the Vi, each is contained in some Vi, and, hence, equal to some Vi. Therefore it suffices to
see that there are infinitely many subspaces of dimension d− 1. Write V = K2⊕W where
W ∼= Kd−2. The line L in K2 yields a subspace L⊕W of dimension d− 1, and if L 6= L′

then L⊕W and L′ ⊕W are distinct subspaces. �

Also note:

Proposition. Let M be an N-graded or Z-graded module over an N-graded or Z-graded
Noetherian ring S. Then every associated prime of M is homogeneous. Hence, every
minimal prime of the support of M is homogeneous and, in particular the associated (hence,
the minimal) primes of S are homogeneous.

Proof. Any associated prime P of M is the annihilator of some element u of M , and then
every nonzero multiple of u 6= 0 can be thought of as a nonzero element of S/P ∼= Su ⊆ M ,
and so has annihilator P as well. Replace u by a nonzero multiple with as few nonzero
homogeneous components as possible. If ui is a nonzero homogeneous component of u of
degree i, its annihilator Ji is easily seen to be a homogeneous ideal of S. If Jh 6= Ji we can
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choose a form F in one and not the other, and then Fu is nonzero with fewer homgeneous
components then u. Thus, the homogeneous ideals Ji are all equal to, say, J , and clearly
J ⊆ P . Suppose that s ∈ P −J and subtract off all components of s that are in J , so that
no nonzero component is in J . Let sa /∈ J be the lowest degree component of s and ub be
the lowest degree component in u. Then sa ub is the only term of degree a + b occurring
in su = 0, and so must be 0. But then sa ∈ AnnS ub = Jb = J , a contradiction. �

Corollary. Let S be a standard graded K-algebra of dimension d with homogeneous max-
imal ideal m. Then there are forms L1, . . . , Ld of degree 1 in R1 such that m is the radical
of (L1, . . . , Ld)S.

Proof. The minimal primes of a graded algebra are homogenous, and dim (S) is the same
as dim (S/P ) for some minimal prime P of R. Then P ⊆ m, and

dim (S) = dim (S/P ) = dim (S/P )m ≤ dim Sm ≤ dim (S),

so that dim (S) = dim (Sm) = height m. If dim (S) = 0, m must be the unique minimal
prime of S, and therefore is itself nilpotent. Otherwise, S1 cannot be contained in the
union of the minimal primes of S, or the Proposition just above would imply that it is
contained in one of them, and S1 generates m. Choose L1 ∈ S1 not in any minimal
prime, and then dim (S/L1) = d − 1. Use induction. If L1, . . . , Lk have been chosen in
S1 such that dim

(
S/(L1, . . . , Lk)S

)
= d − k < d, choose Lk+1 ∈ S1 not in any minimal

prime of (L1, . . . , Lk)S (if S1 were contained in one of these, m would be, and it would
follow that height m ≤ k, a contradiction). Thus, we eventually have L1, . . . , Ld such
dim (S/

(
L1, . . . , Ld)S

)
= 0, and then by the case where d = 0 we have that m is nilpotent

modulo (L1, . . . , Ld)S. �

We are now ready to prove the result that we have been aiming for:

Theorem. Let (R, m, K) be local and J ⊆ R an ideal. Then any reduction I of J has
at least an(J) generators. Moreover, if K is infinite, there is a reduction with an(J)
generators.

Proof. The problem of giving i1, . . . , ia ∈ J such that J is integral over (i1, . . . , ia)R
is equivalent to giving a elements of J/mJ that generate an m-primary ideal of S =
K ⊗R grJ(R), where m is the homogeneous maximal ideal of S. Clearly, we must have
a ≥ dim (S) = an(J). If K is infinite, the existence of suitable elements follows from the
Corollary just above. �

Discussion. If (R, m, K) is local and t is an indeterminate over R, let R(t) denote the
localization of the polynomial ring R[t] at mR[t]. Then R → R(t) is a faithfully flat map
of local rings of the same dimension, and the maximal ideal of R(t) is mR(t) while the
residue class field of R(t) is K(t). If J ⊆ m, an(J) is the least number of generators of an
ideal over which JR(t) is integral. In fact, K(t)⊗ grJR(t)R(t) ∼= K(t)⊗K

(
K ⊗R grJ(R)

)
,

so that an(J) = an
(
JR(t)

)
.
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Remark. If I and J are any two ideals of any ring R, I J ⊆ IJ . There are many ways
to see this. E.g., if r ∈ I, s ∈ J and R → V is any homomorphism to a valuation domain,
then r ∈ IV and s ∈ JV , whence rs ∈ (IV )(JV ) = (IJ)V . Thus, rs ∈ IJ for every such
r and s, and the elements rs generate I J . �

We shall prove below that if R is local and J is any proper ideal, then dim (R) =
dim (grJR). Assume this for the moment. It then follows that dim

(
K ⊗R grJ(R)

)
≤

dim (R). We define the big height of a proper ideal J of a Noetherian ring to be the largest
height of any minimal prime of J . (The height is the smallest height of any minimal prime
of J .) We then have:

Proposition. For any proper ideal J of a local ring (R, m, K), the analytic spread of J
lies between the big height of J and dim (R).

Proof. That an(I) ≤ dim (R) follows from the discussion above, once we have shown
that dim (R) = dim (grJR). Let P be a minimal prime of J . We want to show that
height P ≤ an(J). After replacing R by R(t), if necessary, we have that J is integral over
an ideal I with a = an(J) generators. Then J is contained in the radical of I. In RP we
have that P is the radical of JRP , since P is a minimal prime of J , and so is contained in
the radical of IRP . Thus, heightP ≤ a = an(J), as required. �

Corollary. If K is infinite, every proper ideal J of a local ring (R, m, K) of Krull di-
mension d is integral over an ideal generated by at most d elements. �

Proposition. Let (R, m, K) be local, and J a proper ideal. Then for every positive integer
n, the ideals J and Jn have the same analytic spread.

Proof. The Rees ring of Jn may be identified with R[Jntn] since tn is an indeteminate
over R, and this is a subring of R[Jt] over which the larger ring is module-finite, since the
n th power of any element of Jt is in R[Jntn]. The injectivity is retained when we apply
K⊗R , since tensor commutes with direct sum, and the module-finite property continues
to hold as well. It follows that K ⊗ grJ(R) is a module-finite extension of K ⊗R grJnR,
and so these two rings have the same dimension. �

In general, if X is a matrix and B is a ring, B[X] denotes the ring generated over B by
the entries of X. We frequently use this notation when these entries are indeterminates,
in which case B[[X]] denotes the formal power series ring over B in which the variables
are the entries of X. If M =

(
rij

)
is a matrix over a ring R and t is a nonnegative integer,

It(M) denotes the ideal of R generated by the size t minors of M . By convention, this
ideal is R if t = 0 and is (0) if t is strictly larger than either of the dimensions of the matrix
M .

Example. Let I ⊆ (R, m, K) and let r be a nonzerodivisor. Then R[It] ∼= R[rIt]: in
fact rt is algebraically independent of R, so that there is an R-isomorphism R[t] → R[rt]
mapping t 7→ rt, and this induces an R-isomorphism RI[t] ∼= R[rIt]. It follows that
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K ⊗R R[It] ∼= K ⊗R R[rIt], and so an(I) = an(Ir). Ir ⊆ rR which has analytic spread
one. If I = m, or if I is m-primary, the analytic spread of I and of Ir is dim (R). Thus,
the smaller of two ideals may have a much larger analytic spread than the larger ideal.

Example. Let K be a field and let X =
(

x1 x2 . . . xn

y1 y2 . . . yn

)
be a 2×n matrix of formal

indeterminates over K. Let K[X] be the polynomial ring in the entries of X, and let
A = K[X]/I2(X). This ring is known to be a normal ring with an isolated singularity of
dimension n+1. One can see what the dimension is as follows: we may tensor with algebraic
closure of K without changing the dimension (this produces an integral extension), and
so we may assume that K is algebraically closed. The algebraic set Z in A2n defined by
I2(X) corresponds to 2 × n matrices of rank at most one. We can map An × A1 to Z by
sending (v, c) to the matrix whose first row is v and whose second row is cv. This map
is not onto, but its image contains the open set consisting of matrices whose first row is
not 0. It follows that the dimension of Z is n + 1. (This ring is also known to be Cohen-
Macaulay. Cf. [M. Hochster and J. A. Eagon, Cohen-Macaulay rings, invariant theory, and
the generic perfection of determinantal loci, Amer. J. of Math. 93 (1972), 1020–1058].) The
same properties hold if we localize A at the ideal generated by the entries of X (and if we
complete). Call the local ring obtained S. Let P be the prime ideal (x1, . . . , xn)R. Then
A = S/P is either the localization of K[y1, . . . , yn] at (y1, . . . , yn) or its completion. In
any case, R/P has dimension n, so that P is a height one prime of S. But its analytic
spread is n. In fact, grP (S) has the form A[u1, . . . , un] where the ui satisfy the relations
yiuj − yjui = 0. If we kill only these relations we get a domain of dimension n + 1 that
maps onto grP (S). Since grP (S) has the same dimension as S (we have not proved this
yet, but will shortly), the map onto grP (S) cannot have a nonzero kernel, i.e., it is an
isomorphism. But then K ⊗ grP (S) ∼= K[u1, . . . , un] has dimension n.

We next want to prove the assertion that the local ring (R, m, K) and the ring grJR
have the same dimension. In order to do so, we review the dimension formula. Recall that a
Noetherian ring R is catenary if for any two prime ideals P ⊆ Q, any two saturated chains
of prime ideals joining P to Q have the same length. Localizations and homomorphic
images of catenary rings are clearly catenary. R is universally catenary if every polynomial
ring in finitely many variables over R is catenary. It is equivalent to assert that every
algebra essentially of finite type over R is catenary. A ring is called Cohen-Macaulay if in
each of its local rings some (equivalently, every) system of parameters is a regular sequence.
Cohen-Macaulay rings are catenary and, therefore, universally catenary, since a polynomial
ring over a Cohen-Macaulay ring is Cohen-Macaulay. Regular rings are Cohen-Macaulay,
and, hence, universally catenary. A complete local ring is a homomorphic image of a
regular ring and so is also universally catenary. If F ⊆ G are fields, tr. deg.(G/F) denotes
the transcendence degree over G over F .

Theorem (dimension formula). Let R ⊆ S be Noetherian domains such that S is
finitely generated over R, and call the fraction fields F and G, respectively. Let Q be a
prime ideal of S lying over P in R. Let K and L be the residue class fields of RP and SQ,
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respectively. Then

heightQ− height P ≤ tr. deg.(G/F)− tr. deg.(L/K),

with equality if R is universally catenary.


