
Math 711: Lecture of September 20, 2006

We shall soon return to our treatment of the dimension formula, which was stated in
the Lecture of September 18, but we first want to make some additional remarks about
the behavior of analytic spread.

Theorem. Let K be a field, and T a finitely generated N-graded K-algebra with T0 = K.
Let M be the homogenous maximal ideal of T . Let F1, . . . , Fs be homogeneous polynomials
of the same positive degree d in T , and let I = (F1, . . . , Fs)T . Then an(ITM) is the Krull
dimension of the ring K[F1, . . . , Fs] ⊆ T , and hence is the same as the maximum number
of algebraically independent elements in K[F1, . . . , Fs]. over K.

Proof. We shall show that K[F1, . . . , Fs] ∼= K ⊗TM grI(TM). We view the latter is

K ⊗TM TM[ITMt] ∼= (K ⊗T T [It])M

and the ring on the right is the same as K ⊗T T [It], because elements of T −M map to
units in K and so already are invertible in this ring. Note that K here is T/M, and so
this ring is also the same as T [It]/MT [It].

Now there is a map K[F1, . . . , Fs] → T [It] that sends Fj 7→ Fjt, 1 ≤ j ≤ s. To see
that this is well-defined, note that the ideal of relations on the Fj over K is homogeneous.
Thus, it suffices to see that if H ∈ K[Y1, . . . , Ys] is a homogeneous polynomial of degree
µ such that H(F1, . . . , Fs) = 0, then H(F1t, . . . , Fst) = 0. But the left hand side is
tµH(F1, . . . , Fd) = tµ · 0 = 0. We then get a composite map

K[F1, . . . , Fs] → T [It] � T [It]/MT [It].

This map is clearly surjective, since the image of T in the quotient is K and It is generated
by the Fjt. We need only prove that the kernel is 0. It is homogeneous: let G be an element
of the kernel that is homogeneous of degree h in F1, . . . , Fs. Then G has degree hd in
x1, . . . , xn. If G is in the kernel then Gth is in MIhth, and G ∈ MIh. However, all
nonzero elements of this ideal have components of degree at least hd + 1 in x1, . . . , xn, a
contradiction unless G = 0.

The final statement is a general characterization of Krull dimension in finitely generated
K-algebras. �

Remark. This result gives another way to compute the analytic spread of the height one
prime in a determinantal ring analyzed in the last Example (beginning at the bottom of
p. 5) in the Lecture Notes of September 18. It is immediate that the analytic spread is n.

Example. The Example discussed in the Remark just above shows that height one primes
that have arbitrarily large analytic spread. In a regular local ring a height one prime is
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principal, and so its analytic spread is 1. But there are height two primes of arbitarily
large analytic spread. Let X be an n × (n + 1) matrix of indeterminates over a field K
and let P be the ideal generated by the size n minors of X in the polynomial ring K[X].
Then the analytic spread of P in K[X]M, where M is generated by the entries of X, is
n + 1 by the Theorem above, for the minors of algebraically independent over K. (This
is true even if we specialize the leftmost n × n submatrix to be yIn. The minors are yn

and, up to sign, the products yn−1xi,n+1, 1 ≤ i ≤ n.) These primes have height two: the
algebraic set of n× (n + 1) matrices of rank at most n− 1 has dimension n2 + n− 2. (On
the open set where the first n− 1 rows are algebraically independent, the space consisting
of choices for the first n − 1 rows has dimension (n − 1)(n + 1); the choices for the final
row are linear combinations of the first n− 1 rows, and are parametrized by An−1, giving
dimension n2 − 1 + (n− 1).)

Recall that a map of quasilocal rings h : (R, m) → (S, n) is called local if h(m) ⊆ n.
(The map of a local ring onto its residue class field is local, while the inclusion of a local
domain that is not a field in its fraction field is not local.)

Proposition. Let (R, m, K) be local.

(a) If h : (R, m, K) → (S, n, L) is a local homomorphism, and I ⊆ m is an ideal of R,
then an(I) ≥ an(IS).

(b) If I and J are proper ideals of R, then an(I + J) ≤ an(I) + an(J).

(c) Let I and J are proper ideals of R. If either an(I) or an(J) is 0, then an(IJ) = 0.
If the analytic spreads are positive, an(I J) ≤ an(I) + an(J)− 1.

Proof. We replace R → S by R(t) → S(t) if necessary, and the ideals considered by their
expansions. We may therefore assume the residue class fields are infinite.

For part (a), if I is integral over an ideal I0 with a = an(I) generators, then IS is
integral over I0S.

For part (b) simply note that if I0 is as above and J is integral over J0 with b = an(J)
generators, then I + J is integral over I0 + J0, which has at most a + b generators.

To prove part (c), first note that the analytic spread of I is 0 if and only if I consists
of nilpotents. Thus, if either a or b is 0, then IJ consists of nilpotents and an(I J) = 0 as
well. Now suppose that both analytic spreads are positive and that I0 and J0 are as above.
Map the polynomial ring T = Z[X1, . . . , Xa, Y1, . . . , Yb] → R so that (X1, . . . , Xa)T maps
onto I0 and (Y1, . . . , Yb)T maps onto J0. Since IJ is integral over I0J0, it suffices to show
that an(I0J0) ≤ a + b − 1. Let M be the inverse image of m in T . Then M is a prime
ideal of T that is either (X1, . . . , Xa, Y1, . . . , Yb)T or pT + (X1, . . . , Xa, Y1, . . . , Yb)T .
Let A = TM. Let I = (X1, . . . , Xa)A and J = (Y1, . . . , Yb)A. Then we have an induced
local map TM → R such that IR = I0 and JR = J0. By part (a), it will suffice to show
that an(I J ) ≤ a + b− 1.

Let A denote the ideal (X1, . . . , Xa, Y1, . . . , Yb) ⊆ T , and let B denote the ideal
(X1, . . . , Xa)(Y1, . . . , Yb)T . There are two cases. First suppose that M = A. Then
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TM contains the rational numbers, and may be viewed instead as the localization of the
polynomial ring Q[X1, . . . , Xa, Y1, . . . , Yb] at (X1, . . . , Xa, Y1, . . . , Yb). Then, since the
elements XiYj are forms of the same degree, the Theorem above applies, and the analytic
spread is the transcendence degree of Q[XiYj : 1 ≤ i ≤ a, 1 ≤ j ≤ b] over Q. But
the fraction field of this domain is generated by the elements X1Y1, . . . , X1Yb and the
elements Xj/X1, 2 ≤ i ≤ a, since (Xi/X1)(X1Yj) = XiYj (which also shows that each
Xj/X1 is in the fraction field). These b+(a−1) elements are easily seen to be algebraically
independent. Exactly the same calculation of transcendence degree if Q is replaced by any
other field κ.

In the remaining case, M = A + pT . In this case, note that since Bn and Bn+1

are both free Z-modules spanned by the monomials in X1, . . . , Xa, Y1, . . . , Yb that they
contain, each Bn/Bn+1 is free over Z. It follows that p is not a zerodivisor on grBT . Let
κ = T/M∼= Z/pZ. Then

κ⊗T grBT ∼= κ⊗T/pT

(
(Z/pZ)⊗Z grBT

)
.

Let
T = T/pT ∼= κ[X1, . . . , Xa, Y1, . . . , Yb],

and B = BT , Because p is not a zerodivisor on grB(T ), we have that

(Z/pZ)⊗Z grBT ∼= grBT ,

and this is the ring whose dimension we need to calculate: as in the proof of the Theorem
above, localization at M has no effect on this ring, since the image of T −M consists
of units in κ. We are now in the same situation as in the first case, except that we are
working with κ[X1, . . . , Xa, Y1, . . . , Yb] instead of Q[X1, . . . , Xa, Y1, . . . , Yb]. �

We are now ready to continue with our treatment of the dimension formula, stated in
the Lecture of September 18. Recall that we are assuming that R ⊆ S are Noetherian
domains with fraction fields F and G respectively, that Q is a prime ideal of S lying over
P in R, that K = RP /PRP , and that L = SQ/QSQ. We must show that

height Q− height P ≤ tr. deg.G/F − tr. deg.L/K,

with equality of R is universally catenary. Equality also holds if S is a polynomial ring
over R.

Before beginning the proof, we make the following observation. Let P0 be a prime
ideal of a local domain D. In general, dim (D/P0) ≤ dim (D) − heightP0, while equality
holds if D is catenary. The inequality, which is equivalent to the statement that dim (D) ≥
height P0+dim (D/P0), follows from the following observation. We can “splice” a saturated
chain of primes of length k = dim (D/P0) ascending from P0 to the maximal ideal m of D
(corresponding to a chain of primes of length k in D/P0) with a chain of primes of length
h descending from P0 to (0). This yields a chain of saturated primes from m to (0) in D
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that has length h + k. If, moreover, D is catenary then all saturated chains from m to (0)
have the same length, and this is dim (D), so that h + k = dim (D).

Proof of the dimension formula. By adjoining generators of S to R one at a time, we can
construct a chain of rings

R = S0 ⊆ S1 ⊆ · · · ⊆ Sn

such that for each i, 0 ≤ i ≤ n, we have that Si+1 is generated over Si by one element. Let
Qi = Q ∩ Si for each i. Note that when R is universally catenary, every Si is universally
catenary. It will suffice to prove the dimension formula (whether the inequality or the
equality) for each inclusion Si ⊆ Si+1. When we add the results, each term associated
with Si for i different from 0 and n occurs twice with opposite signs. The intermediate
terms all cancel, and we get the required result.

We henceforth assume that S = R[x], where x need not be an indeterminate over R.
By replacing R and S by RP and RP ⊗R S, we may assume that (R,P, K) is local. We
consider two cases, according as whether x is transcendental or algebraic over R.

Case 1. x is transcendental over R. Then the primes of S = R[x] lying over P correspond
to the primes of R[x]/PR[x] ∼= K[x], a polynomial ring in one variable. There are two
subcases.

Subcase 1a. Q corresponds to the prime ideal (0) in K[x], i.e., Q = PR[x]. In this case
SQ

∼= R(x) has the same dimension as R, so that height Q = height P . We have that
tr. deg.(G/F) = 1, and L ∼= K(x), so that tr. deg.(L/K) = 1 as well. Since 0 = 1 − 1, we
have the required equality whether R is universally catenary or not.

Subcase 1b. Q is generated by PR[x] and a monic polynomial g of positive degree whose
image g mod P is irreducible in K[x]. The height of Q is evidently has height heightP +1:
a system of parameters for P together with g will give a system of parameters for R[x]Q.
The left hand side of the inequality is therefore 1, while the right hand side is 1−0, because
L ∼= K[x]/

(
g
)
. Again, we have the required equality whether R is universally catenary or

not.

Case 2. x is algebraic over R. Let X be an indeterminate and map R[X] � R[x] = S as
R-algebras by sending X 7→ x. We have a commutative diagram:

F [X] −−−−→ Gx x
R[X] −−−−→ S

where the horizontal arrows are surjective and the vertical arrows are inclusions. By hy-
pothesis, the top horizontal arrow has a kernel, which will be the principal ideal generated
by a monic polynomial h of positive degree: the minimal polynomial of x over F . The
kernel P0 of R[X] � S may therefore be described as hF [X] ∩R[X]. We claim that P0 is
a height one prime of R[X]. To see this, we calculate R[X]P0 . Since R ⊆ S, P0 does not
meet R, and R− {0} becomes invertible in RP0 . Thus, RP0 is the localization of F [X] at
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the expansion of P0, which is hF [x], and is a one-dimensionsial ring. Let Q denote the
inverse image of Q in R[X]. Then Q contains P and, in fact, lies over P . It also contains
P0. There are again two subcases, depending on what Q is.

Subcase 2a. Q = PR[X]. In this subcase the right hand side of the dimension formula is
0− 1. The height of Q is the same as height P , and killing P0 decreases it at least by 1 as
required. If R is universally catenary it decreases by exactly 1.

Subcase 2b. Q has the form PR[X] + fR[X], where f ∈ R[X] is monic of positive degree
and irreducible mod P . The right hand side of the dimension formula is 0− 0. The height
of Q is heightP + 1. Killing P0 decreases it by least 1, and by exactly 1 in the universally
catenary case. �

Remark. If S is a polynomial ring over R, we can choose the chain so that Si+1 is always
a polynomial ring in one variable over Si. We are always in Case 1 of the proof, and so
equality holds in the dimension formula without assuming that R is universally catenary.


