
Math 711: Lecture of September 22, 2006

Let R be any ring and I ⊆ R any ideal. By the extended Rees ring or second Rees ring
of I over R we mean the ring R[It, 1/t] ⊆ R[t]. In this context we shall standardly write v
for 1/t. Note that if I is proper, v is not a unit of R[It, v]. This ring is Z-graded. Written
out as a sum of graded pieces

R[It, v] = · · ·+ Rvk + · · ·+ Rv2 + Rv + R + It + I2t2 + · · ·+ Intn + · · · .

The element v generates a homogeneous principal ideal, and

vR[It, v] = · · ·+ Rvk + · · ·+ Rv2 + Rv + I + I2t + I3t2 + · · ·+ In+1tn + · · · .

From this it follows easily that R[It, v]/(v) ∼= grIR. There is a composite surjection

R[It, v] � grIR � R/I.

When I is the unit ideal of R we have that R[It, v] = R[t, t−1].

When (R, m, K) is local and I is proper we further have a composite surjection

R[It, v] � R/I → R/m = K,

and the kernel is a maximal ideal M of R[It, v]. Explicitly,

M = · · ·+ Rvk + · · ·+ Rv2 + Rv + m + It + I2t2 + · · ·+ Intn + · · · .

Theorem. Let (R, m, K) be local, let I ⊆ R be proper, and let R[It, v] and M be as in
the paragraphs just above,

(a) The Krull dimension of R[It, 1/t] is dim (R) + 1, and this is the height of M.

(b) dim
(
grI(R)

)
= dim (R).

Proof. Let

P = · · ·+ mvk + · · ·+ mv2 + mv + m + It + I2t2 + · · ·+ Intn + · · · ,

which is the contraction of mR[t, 1/t] to R[It, v]. Then P ⊆M and R[It, v]/P ∼= K[v], a
polynomial ring in one variable over a field. The height of P is the same as the height of m:
when we localize at P in R[It, v], v becomes invertible, so that t = 1/v becomes an element
of the localized ring. But R[It, v][t] = R[t, v], and the expansion of P is mR[t, 1/t]. The
localization at the expansion is just R(t) (note that when we localize R[t] at mR[t], v
becomes an element of the ring), which we already know has the same dimension as R.
Thus, heightP = dim (R). Since M = P + vR[It, v] is strictly larger than P, we have
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that heightM ≥ dim (R) + 1. To complete the proof of (a), it will suffice to show that
dim (R[It, v]) ≤ dim (R) + 1, for then heightM≤ dim (R) + 1 as well.

We first reduce to the case where R is a domain. To do so, we want to understand the
minimal primes of S = R[It, v]. If q is any prime of S, it lies over some prime of R, and
this prime contains a minimal prime p of R. We shall show that there is a unique minimal
prime p̃ of S containing p, and it will follow that every minimal prime has the form p̃. To
see this, note that q cannot contain v, for v is not a zerodivisor in S. Hence, q corresponds
via expansion to a minimal prime of Sv containing p. But Sv

∼= R[t, v], and pR[t, 1/t] is
already a minimal prime of R[t, 1/t]. It follows that q = pR[t, 1/t] ∩ S, and this is the
minimal prime p̃. Note that R[It, 1/t]/p̃ embeds in (R/p)[t, 1/t], and that the image is
the extended Rees ring of I(R/p). Therefore, it suffices to show that the dimension of
each of these Rees rings over a domain D obtained by killing a minimal prime of R has
dimension at most dim (D) + 1 ≤ dim (R) + 1, and we may therefore assume without loss
of generality that R is a local domain.

But S is then a domain finitely generated over R. If the fraction field of R is F , then
the fraction field of S is F(t). If Q is any prime ideal of S, Q lies over, say, P in R, and the
residue class fields of RP and SQ are κP and κQ respectively, then the dimension formula
yields

heightQ ≤ height P + tr. deg.(F(t)/F)− tr. deg.(κQ/κP ) ≤ heightP + 1 ≤ dim (R) + 1,

as required.

For part (b), note that the height of M. which is dim (R) + 1 drops exactly 1 when
we kill the nonzerodiivisor v. This shows that dim

(
grI(R)

)
≥ dim (R). But killing a

nonzerodivisor in a Noetherian domain of finite Krull dimension drops the dimension by
at least one, so that dim

(
grI(R)

)
≤ dim (S)− 1 = dim (R). �

Corollary. Let x1, . . . , xn be a system of parameters in a local ring (R, m, K). Let F
be a homogenous polynomial of degree d in R[X1, . . . , Xn] such that F (x1, . . . , xn) = 0.
That is, F gives a relation over R on the monomials of degree d in x1, . . . , xn. Then all
coefficients of F are in m.

Proof. Consider the associated graded ring grI(R), where I = (x1, . . . , xn)R. This
ring is generated by the images x1, . . . , xn of x1, . . . , xn in I/I2 = [grI(R)]1. Let
A = R/I, an Artin local ring. By the preceding Theorem, dim

(
grI(R)

)
= n. But

grI(R) = A[x1, . . . , xn]. Killing the maximal ideal m/I of A does not affect the dimension
of this ring. It follows that quotient has dimension n, so that K[x1, . . . , xn] is a polyno-
mial ring in x1, . . . , xn. If F (x1, . . . , xn) = 0 and has a coefficient outside m, we find the
F (z1, . . . , zn) = 0 in K[x1, . . . , xn], where F is the image of F mod m and so is a nonzero
polynomial in the K[x1, . . . , xn]. This forces the dimension of K ⊗R grI(R) to be smaller
than n, a contradiction. �

We next want to prove two consequences of the Briançon-Skoda Theorem that were
stated without proof in as Corollaries at the bottom of p. 1 and the top of p. 2 of the
Lecture Notes of September 6. The next result generalizes the first Corollary.
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Theorem (corollary of the Briançon-Skoda Theorem). Let R be a regular Noether-
ian ring of Krull dimension n and let f1, . . . , fn+1 be elements of R. Then

fn
1 · · · fn

n+1 ∈ (fn+1
1 , . . . , fn+1

n+1 )R.

Proof. Call the product on the left g and the ideal on the right I. If g /∈ I, then (I +Rg)/I
is not zero, and we can localize at a prime in its support. Therefore, we may without
loss of generality that assume that (R, m, K) is a regular local ring of dimension at most
n. Second, if g /∈ I this remains true when we replace R by R(t), since R(t) is faithfully
flat over R. We also have that R(t) and R have the same dimension. Thus, we may
assume that R has an infinite residue class field. Let h = f1 · · · fn, so that g = hn. Since
hn+1 ∈ In+1, h ∈ I. Since an(I) ≤ dim (R) ≤ n and the residue class field is infinite, I is
integral over an ideal I0 with at most n generators. Then h ∈ I0, and it follows from the
Briançon-Skoda theorem that hn ∈ I0 ⊆ I, as required. �

We next observe:

Theorem. Let R denote C{{z1, . . . , zn}} or C[[z1, . . . , zn]], the convergent or formal pow-
ers series ring in n variables. Let f be in the maximal ideal of R, and let I be the ideal
generated by the partial derviatives ∂f/∂zi of f . Then f is integrally dependent on I.

Proof. We assume the result from the first Problem Set, Problem #6, that the integral
closure of I is an intersection of integrally closed m-primary ideals (but we do not need this
result for the case where the ∂f/∂zi generate an m-primary ideal). Choose an integrally
closed m-primary ideal A ⊇ I with f /∈ A. Then we can map R to a discrete valuation ring
V in such a way that the image f is not in AV (and, hence, not in IV ), and it follows that
m maps into the maximal ideal of V . Note that V cannot be just a field here, for then f
maps to 0. Replace V by its completion: we may assume that V is complete. Since we
are in the equal characteristic 0 case, the image of C in V can be extended to a coefficient
field. Thus, we may assume that V = L[[x]], where C ⊆ L and m maps into (x).

Let h : R → L[[x]] be the map, and h(zi) = gi(x), 1 ≤ i ≤ n. Then f maps to
f
(
g1(x), . . . , gn(x)

)
. The key point is that the chain rule holds here, by a formal calcula-

tion. Thus,
d

dx

(
h(f)

)
=

n∑
i=1

h(∂f/∂zi)
dgi(x)

dx
.

It follows that the derivative of h(f) is in IV . But over a field of characteristic 0, the
derivative of a nonzero non-unit v has order exactly one less than that of v. Hence,
f ∈ IV as well. �

Theorem (corollary of the Briançon-Skoda theorem). With hypotheses as in the
preceding Theorem, fn is in the ideal generated by its partial derivatives.

Proof. This is immediate from the preceding Theorem and the Briançon-Skoda Theo-
rem. �


