
Math 711: Lecture of September 25, 2006

Following Lipman and Sathaye [J. Lipman and A. Sathaye, Jacobian ideals and a theo-
rem of Briançon-Skoda, Michigan Math. J. 28 (1981), 199–222] we present the Briançon-
Skoda Theorem in a generalized form:

Briançon-Skoda Theorem (Lipman-Sathaye version). Let R be a Noetherian nor-
mal domain, and let I0 be an ideal of R such that grI0

(R) is regular. Let n ≥ 1 and let I
be an ideal of R generated over I by n elements, say f1, . . . , fn. Let k ≥ 1 be any positive
integer. Then In+k−1 ⊆ Ik.

The version stated in the Lecture of September 6 is the case where I0 = 0 and k = 1.
Notice that the result is non-trivial even when n = 1, where it states that all the powers
of I are integrally closed.

We shall first explain how this result follows from the Lipman-Sathaye Jacobian Theo-
rem (although this will take a while), and then focus on the proof of the latter. We need
an intermediate result:

Theorem (Lipman-Sathaye). Let B be a Noetherian normal integral domain, and let
v ∈ B − {0} be such that B/vB is regular. Let t denote the inverse of v in the fraction
field of B. Let f1, . . . , fn ∈ B and let S = B[f1t, . . . , fnt]. Let S′ be the integral closure
of S in its field of fractions. Then vn−1S′ ⊆ S.

We want to see that the second theorem implies the first. We need some preliminary
facts.

Lemma. Let be any ring, and I an ideal of R.

(a) The integral closure of the extended Rees ring R[It, v] in R[t, v] in degree k is Iktk (if
k ≤ 0, let Ik = R). That is, the integral closure in R[t, v] is

· · ·+ Rvk + · · ·+ Rv2 + Rv + R + It + I2t2 + · · ·+ Imtm + · · · .

If R is a normal domain, this is also the integral closure of R in its fraction field.

(b) Suppose that R is a Noetherian domain and that grIR is an integral domain (or that
its localization at every prime ideal is an integral domain). Then every power of I is
integrally closed.

Proof. (a) The integral closure in R[IT, v] is Z-graded. The result for nonnegative degrees
is clear. In positive degree k, if rtk is integral over R[It, v] it satisfies a monic polynomial
of degree d for some d, and the sum of the coefficients of tdk must be 0. Just as in the case
of R[It], this yields an equation establishing the integral dependence of r on Ik. The final
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statement follows because when R is normal, so is R[t, v], and so R[t, v] must contain the
normalization of R[It, v].

(b) If In/In 6= 0, we may preserve this while localizing. Since integral closure commutes
with localization, we may assume that R is local. If I expands to the unit ideal, there is
nothing to prove. Otherwise, grI(R) is N-graded over the local ring R/I. This implies that
it is a domain: this is left as an exercise in Problem Set #2. When grI(R) is a domain, we
can define a valuation on R whose value on a nonzero element r is the unique nonnegative
integer h such that r ∈ Ih − Ih+1. In is then the contraction of the n th power of the
maximal ideal of a discrete valuation ring. Again, the details are left as an exercise in
Problem Set #2. �

Proof that the second theorem implies the Briançon-Skoda theorem. Let B =
R[I0t, v]. Then B/vB ∼= grI0

(R) is regular, and B is normal by the Lemma above.
Then S = B[f1t, . . . , fnt] = R[It, v] is the extended Rees ring of I over R. It fol-
lows that in degree n + k − 1, S′ is In+k−1tn+k+1. The fact that vn−1S′ ⊆ S implies that
vn−1[S′]n+k−1 ⊆ [S]k = Iktk, and so In+k−1 ⊆ Ik. �

Until further notice, R denotes a Noetherian domain with fraction field K, and S denotes
an algebra essentially of finite type over R (i.e., a localization at some multiplicative system
of a finitely generated R-algebra) such that S is torsion-free and generically étale over R,
by which we mean that L = K ⊗R S is a finite product of finite separable algebraic field
extensions of K. Note that L may also be described as the total quotient ring of S. We
shall denote by S′ the integral closure of S in L. We shall prove that S′ is module-finite
over S if R is regular (and more generally).

If A and B are subsets of L we denote by A :L B the set {u ∈ L : uB ⊆ A}. If C is a
subring of L and A is a C-module, then A :L B is also a C-module.

We shall write JS/R for the Jacobian ideal of S over R. If S is a finitely generated
R-algebra, so that we may think of S as R[X1, . . . , Xs]/(f1, . . . , fh), then JS/R is the
ideal of S generated by the images of the size s minors of the Jacobian matrix (∂fj/∂xi)
under the surjection R[X] → S. This turns out to be independent of the presentation,
as we shall show below. Moreover, if u ∈ S, then JSu/R = JS/RSu. From this one sees
that when S is essentially of finite type over R and one defines JS/R by choosing a finitely
generated subalgebra S0 of S such that S = W−1S0 for some multiplicative system W of
S0, if one takes JS/R to be JS0/RS, then JS/R is independent of the choices made. We
shall consider the definition in greater detail later. The result we aim to prove is:

Theorem (Lipman-Sathaye Jacobian theorem). Let R be regular domain1 with frac-
tion field K and let S be an extension algebra essentially of finite type over R such that
S is torsion-free and generically étale over R. Let L = K ⊗R S and let S′ be the integral
closure of S in L. Then S′ :L JS′/R ⊆ S :L JS/R.

1We can weaken the regularity hypotheses on R quite a bit: instead, we may assume that R is a

Cohen-Macaulay Noetherian normal domain, that the completion of every local ring of R is reduced, and

that for every height one prime Q of S′, if P = Q ∩R, then RP is regular.
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Note that, since JS′/R is an ideal of S′, we have that S′ ⊆ S′ :L JS′/r. The statement
that S′ ⊆ S :L JS/R implies that JS/RS′ ⊆ S, i.e., that JS/R “captures” the integral
closure S′ of S (all we mean by this is that it multiplies S′ into S).

We next want to explain why the Jacobian ideal is well-defined. We assume first that S
is finitely presented over R. To establish independence of presentation we first show that
this ideal is independent of the choice of generators for the ideal I. Obviously, it can only
increase as we use more generators. By enlarging the set of generators still further we may
assume that the new generators are obtained from the orginal ones by operations of two
kinds: multiplying one of the original generators by an element of the ring, or adding two
of the original generators together. Let us denote by ∇f the column vector consisting of
the partial derivatives of f with respect to the variables. Since ∇(gf) = g∇f + f∇g and
the image of a generator f in S is 0, it follows that the image of ∇(gf) in S is the same
as the image of g∇f when f ∈ I. Therefore, the minors formed using ∇(gf) as a column
are multiples of corresponding minors using ∇f instead, once we take images in S. Since
∇(f1 + f2) = ∇f1 +∇f2, minors formed using ∇(f1 + f2) as a column are sums of minors
from the original matrix. Thus, independence from the choice of generators of I follows.

Now consider two different sets of generators for S over R. We may compare the
Jacobian ideals obtained from each with that obtained from their union. This, it suffices
to check that the Jacobian ideal does not change when we enlarge the set of generators
f1, . . . , fs of the algebra. By induction, it suffices to consider what happens when we
increase the number of generators by one. If the new generator is f = fs+1 then we may
choose a polynomial h ∈ R[X1, . . . , Xs] such that f = h(f1, . . . , fs), and if g1, . . . , gh

are generators of the original ideal then g1, . . . , gh, Xs+1−h(X1, . . . , Xs) give generators
of the new ideal. Both dimensions of the Jacobian matrix increase by one: the original
matrix is in the upper left corner, and the new bottom row is (0 0 . . . 0 1). The result is
then immediate from

Lemma. Consider an h + 1 by s + 1 matrix M over a ring S such that the last row is
(0 0 . . . 0 u), where u is a unit of S. Let M0 be the h by s matrix in the upper left corner
of M , obtained by omitting the last row and the last column. Then Is(M0) = Is+1(M).

Proof. If we expand a size s + 1 minor with respect to its last column, we get an S-linear
combination of size s minors of M0. Therefore, Is+1(M) ⊆ Is(M0). To prove the other
inclusion, consider any s by s submatrix ∆0 of M0. We get an s + 1 by s + 1 submatrix ∆
of M by using as well the last row of M and the appropriate entries from the last column
of M . If we calculate det(∆) by expanding with respect to the last row, we get, up to sign,
u det(∆0). This shows that Is(M0) ⊆ Is+1(M). �

This completes the argument that the Jacobian ideal JS/R is independent of the pre-
sentation of S over R.

We next want to observe what happens to the Jacobian ideal when we localize S at one
(or, equivalently, at finitely many) elements. Consider what happens when we localize at
u ∈ S, where u is the image of h(X1, . . . , Xs) ∈ R[X1, . . . , Xs], where we have chosen an
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R-algebra surjection R[X1, . . . , Xs] � S. We may use 1/u as an additional generator, and
introduce a new variable Xs+1 that maps to 1/u. We only need one additional equation,
Xs+1h(X1, . . . , Xs)− 1, as a generator. The original Jacobian matrix is in the upper left
corner of the new Jacobian matrix, and the new bottom row consists of all zeroes except for
the last entry, which is h(X1, . . . , Xs). Since the image of this entry is u and so invertible
in S[u−1], the Lemma above shows that the new Jacobian ideal is generated by the original
Jacobian ideal. We have proved:

Proposition. If S is a finitely presented R-algebra and T is a localization of S at one (or
finitely many) elements, JT/R = JS/RT . �


