
Math 711: Lecture of September 27, 2006

We next want to extend the definition of the Jacobian ideal to the case where S is
a localization of a finitely generated R-algebra, even though S itself may not be finitely
generated over R.

Suppose that S = W−1S1 where S1 is finitely generated over the Noetherian ring R.
As mentioned earlier, we want to define JS/R to be JS1/RS = W−1JS1/R. We only need
to check that the result is independent of the choice of S1 and W . First note that we may
replace S1 by its image in S (and W by its image as well). To see this, let A be the kernel
of the map S1 → S. Then A is killed by some element of w ∈ W , and, by the Proposition
at the end of the Lecture Notes for September 25, we may replace S1 by its localization at
w. But (S1)w injects into S. Let T ∼= S1/A be the image of S1 in S. Then Tw

∼= (S1)w,
and so JS1/R and JT/R both expand to JTw/R. It follows that JS1/R and JT/R will have
the same expansion to S. Now suppose that S is the localization of finitely generated
R-subalgebras Si ⊆ S at the multiplicative systems Wi, i = 1, 2. We want to show that
JSi/RS is independent of i.

First note that each element in a finite set of generators for S2 over R is multiplied into S1

by an element of W1. By multiplying these elements of W1 together, we can find w1 ∈ W1

such that S2 ⊆ (S1)w1 . Since S1 and (S1)w1 produce the same result when their Jacobian
ideals are expanded to S, we may replace S1 by (S1)w1 , and so assume that S2 ⊆ S1. But
we can similarly find w2 ∈ W2 such that S1 ⊆ (S2)w2 . Then (S1)w2 = (S2)w2 = S0, say.
It is then clear that JSi/RS = JS0S for i = 1, 2. This shows that JS/R is well-defined
independent of choices.

There is another approach to defining JS/R for localizations of finitely generated R-
algebras. First note that given a derivation D of a ring T , i.e., a map D : T → T that is
a homomorphism of additive groups and satisfying D(f1f2) = f1D(f2) + D(f1)f2 for all
f1, f2 ∈ T , it induces a unique derivation D̃ : W−1T → W−1T such that diagram

WT
D̃−−−−→ WTx x

T
D−−−−→ T

commutes. One gets D̃ by letting

D̃(f/w) =
wDf − fDw

w2
.

(One needs to check that this is well-defined.) In consequence the partial differentiation

operators
∂

∂Xj
extend uniquely from the polynomial ring R[X1, . . . , Xs] to any localization
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W−1R[X1, . . . , Xs]. Given a finitely generated R-algebra S0 and a multiplicative system
W0 ⊆ S0, we can choose a surjection T = R[X1, . . . , Xs] � S0, and let W be the inverse
image of W0 in T , which is a multiplicative system in T . Then we have a surjection
W−1T � W−1

0 S0 = S, and so we can write S ∼= W−1R[X1, . . . , Xs]/(f1, . . . , fh). We
can then define JS/R as the expansion of Is

((
∂fj/∂Xi

))
to S. We leave it to the reader

to show that this produces the same ideal as our earlier definition of JS/R

Remark. Suppose that we are calculating the Jacobian ideal of S = R[X1, . . . , Xs]/I
over R. If we modify the elements f1, . . . , fs ∈ I by adding elements g1, . . . , gs ∈ I2, the
image of the Jacobian minor det (∂fj/∂xi) does not change. The point is that each of the
partial derivatives of an element of I2 is in I, by the product rule, and so the image of
every partial derivative of any gj in S is 0. We shall make use of this trick later.

Definition: the conductor. Let S be a reduced Noetherian ring and S′ its integral
closure. The conductor, denoted CS′/S , for S ⊆ S′ is {s ∈ S : S′s ⊆ S}.

It is easily checked that CS′/S , which by definition is contained in S, is actually an ideal
of S′. Thus, it is an ideal of both S and S′. It may also be characterized as the largest
ideal of S which is an ideal of S′.

Examples. Let x be an indeterminate over the field K, and let S = K[x2, x3] ⊆ K[x].
Then S′ = K[x], and the conductor is the maximal ideal (x2, x3)S, which contains all
powers of x. However if we let T = K[x3, x5] ⊆ K[x], then T may also be described as
K[x3, x5, x6, x8, x9, x10, . . . ]. It is still the case that T ′ = K[x], but now the conductor is
(x8, x9, x10)T .

We next state an easy Corollary of the Jacobian theorem (but keep in mind that we
have not yet proved the Jacobian theorem).

Corollary. . Let R be a regular local ring and let f1, . . . , fn, v1, . . . , vn ∈ R, with the
vi 6= 0. Let S = R[f1/v1, . . . , fn/vn]. Then v1 · · · vn ∈ JS/R and, hence, v1 · · · vnS′ ⊆ S.
In other words, v1 · · · vn ∈ CS/R.

Proof. S = R[X1, . . . , Xn]/I for an a suitable ideal I, where Xj maps to fj/vj . Hence,
we can include the elements vjXj − fj as the first n generators of I, and it follows that
the first n rows of the Jacobian matrix form a diagonal matrix with v1, . . . , vn on the
diagonal. Hence, v1 · · · vn is one of the minors. �

We want to restate the Jacobian theorem with a slight refinement that makes use of the
basic facts about the conductor. The statement that S′ :L JS′/R ⊆ S :L JS/R is equivalent
to the statement JS/R(S′ :L JS′/R) ⊆ S. Since S′ :L JS′/R is an S′-module, so is the left
hand side. Therefore, the left hand side is an ideal of S′ that is contained in S, and so it
is contained in CS′/S . Therefore, we can reformulate the Jacobian theorem as follows:
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Theorem (Lipman-Sathaye Jacobian theorem). Let R be regular domain1 with frac-
tion field K and let S be an extension algebra essentially of finite type over R such that
S is torsion-free and generically étale over R. Let L = K ⊗R S and let S′ be the integral
closure of S in L. Then JS/R(S′ :L JS′/R) ⊆ CS′/S.

We have already proved that the second Theorem of Lipman and Sathaye (stated on
the first page of the Lecture Notes of September 25) implies the Lipman-Sathaye version
of the Briançon-Skoda Theorem. The conclusion of this second Theorem can be phrased
as follows: vn−1 ∈ CS′/S . The easy Corollary of the Jacobian theorem stated above gives
a weakened version of the result we want right away: we can take v1 = · · · = vn = v,
and we find that vn ∈ CS′/S under the hypotheses of the second Theorem. This gives a
likewise weakened version of the Briançon-Skoda theorem, in which the conclusion is that
In+k ⊆ Ik for k ≥ 1. We will need to do quite a bit of work to decrease the exponent on
the left by one.

The Lemma we need to do this, whose proof will occupy us for a while, is the following:

Key Lemma. Let S be essentially of finite type, torsion-free and genercially étale over
R, a regular domain. Let v ∈ R be such that R/vR is regular. Suppose f ∈ R − vR, and
f/v ∈ S. Then JS′/R ⊆ vS′.

The conclusion implies that 1/v ∈ S′ :L JS′/R. Coupled with the Jacobian Theorem,
which tell us that JS/R(S′ :L JS′/R) ⊆ I, we have that JS/R · (1/v) ⊆ I, and since we
already know that vn ∈ JS/R, we can conclude that vn/v ∈ I. Thus, vn−1S′ ⊆ S, as
required.

Remark. For the moment we have been assuming that S′ is module-finite over S: we shall
prove this later.

There are two proofs that are still hanging: one is for the Key Lemma stated just above,
and the other is for the Jacobian theorem itself. We shall address the Key Lemma first.
We need several preliminaries.

Recall that the embedding dimension of a local ring (T, m, L) is the least number of
generators of m, and, by Nakayama’s Lemma, is the same the L-vector space dimension
of m/m2. Also recall that a local ring is regular if its embedding dimension and Krull
dimension are equal. By a theorem, a regular local ring is an integral domain. A minimal
set of generators of m is always a system of parameters and is called a regular system of
parameters. If we kill one element in a regular system of parameters, the Krull dimension
and embedding dimension both drop by one, and the ring is still regular. It follows that a
regular system of parameters for a regular local ring T is a regular sequence, and that the
quotient of T by the ideal generated by part of a regular system of parameters is again a
regular local ring. The converse is true:

1Or: let R be a Cohen-Macaulay Noetherian normal domain such that the completion of every local

ring of R is reduced, and such that for every height one prime Q of S′, if P = Q ∩R, then RP is regular.
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Lemma. Let (T,m) be a regular local ring and A ⊆ m an ideal. Then S = T/A is regular
if and only if A is generated by part of a regular system of parameters (equivalently, part
of a minimal set of generators for m). In particular, if T and S are both regular than A
must be generated by dim (T )− dim (S) elements.

Proof. It remains only to show that if T/A is regular, then A is generated by part of a
regular system of parameters. If A = 0 we may use the empty subset of a regular system of
parameters as the set of generators. Assume A 6= 0. We use induction on d = dim (T ). If
A ⊆ m2, then killing A decreases the Krull dimension, but the embedding dimension stays
the same. But then the quotient cannot be regular. Therefore, we may choose an element
of x1 of A that is not in m2. The element x1 is part of a regular system of parameters. If
d = 1 then x1 generates m, which must be A, and we are done. If not, we have that T/x1T
is regular and we may apply the induction hypothesis to conclude A/x1T is generated
by part of regular system of parameters x2, . . . , xk for T/x1T . Let xj in T map to xj ,
2 ≤ j ≤ d − 1. Then (x1, . . . , xk) = T and x1, . . . , xk is part of a regular system of
parameters for T . �

Notation. If we have m polynomials F1, . . . , Fm ∈ R[X1, . . . , Xm], we write
∂(F1, . . . , Fm)
∂(X1, . . . , Xm)

for det
(
∂Fj/∂Xi

)
.

Also note that if T is a ring and W is a multiplicative system such that W−1T is
quasilocal, then W−1T ∼= TQ, where Q is the contraction of the maximal ideal of W−1T
to T . On the one hand, we have a map T → W−1T such that the image of T − Q is
invertible, and this induces a mpa TQ → W−1T that lifts the identity map T → T . On the
other hand, the map T → TQ must carry W outside QTQ, and so we get an induced map
W−1T → TQ that lifts the identity on T . It is then easy to check that these are mutual
inverses.

Lemma. Let (R, m, K) ⊆ (S, m, L) be a local map of regular local rings such that S is
essentially of finite type over R and the extension of fraction fields is algebraic. Then for
some integer m, S is a localization of R[X1, . . . , Xm]/(F1, . . . , Fm) for suitable polyno-

mials F1, . . . , Fm, and, hence, JS/R is the principal ideal
∂(F1, . . . , Fm)
∂(X1, . . . , Xm)

S.

Proof. Choose a surjection R[X1, . . . , Xm] � S, and let Q be the inverse image of the
maximal ideal of S in R[X1, . . . , Xm]. Thus, S ∼= R[X]Q/A. We need to see that the
number of generators of A is m: we can assume that they are in R[X] by clearing de-
nominators if necessary, since elements of R[X]−Q are units. By the preceding Lemma,
since both R[X]Q and its quotient by A are regular, A is generated by heightQ− dim (S)
elements, and we therefore want to show that heightQ − dim (S) = m. To see this, first
note that by the dimension formula,

(∗) dim (S) = dim (R)− tr. deg.(L/K).
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Since Q ⊇ m, Q corresponds to a prime P of K[X1, . . . , Xm], and

(∗∗) heightQ = dim (R) + heightP,

while L is the fraction field of K[X1, . . . , Xm]/P , and so

(∗ ∗ ∗) tr. deg.(L/K) = dim (K[X1, . . . , Xm]/P ) = m− height P.

Thus, using (∗) and (∗∗), we have:

heightQ− dim (S) = dim (R) + heightP −
(
dim (R)− tr. deg.(L/K)

)
and using (∗ ∗ ∗) this is

height P + tr. deg.(L/K) = heightP + (m− height P ) = m,

as required. �

Corollary. Let R0 ⊆ R1 ⊆ R2 be regular domains such that Ri is essentially of finite type
over R0 for i = 1, 2 and frac (R2) is algeraic over frac (R0). Then

JR2/R0 = JR2/R1JR1/R0 .


