
Math 711: Lecture of October 4, 2006

Proof of the Key Lemma: final step. We are now in the case where (R, m, K) is regular
local of dimension d, (R, m, K) ⊆ (V,n, L) is local, where V ⊆ K, the fraction field of R,
and V is a DVR essentially of finite type over R. In particular, tr. deg.(L/K) = d− 1 and
we have a finite sequence of quadratic transforms along V

(R, m, K) = (T0, m0,K0) ⊆ (T1, m1,K1) ⊆ · · · ⊆ (Th, mh, Kh) = (V, n, L)

where h ≥ 1, and dim (Ti) = di ≥ 2 for i < h. We must show that JV/R ⊆ vV , where v ∈ R
is such that R/vR is regular. Let ui ∈ mi have minimum order in V for 0 ≤ i ≤ h−1. Let
v1 = v/u0 ∈ T1. Recursively, so long as vi ∈ Ti is not a unit, we know by induction and
the Proposition on p. 2 of the Lecture Notes of October 2 that vi is a regular parameter in
Ti and we may define vi+1 = vi/ui ∈ Ti+1. The Proposition just cited shows that either
vi+1 is a unit of Ti+1 or a regular parameter.

For some smallest k ≤ h, vk is a unit of Tk, for the same Proposition shows that if
vh−1 is not a unit of Th−1, then vh is a unit of Th: see the final statement of that same
Proposition. Then

v = u0v1 = u0u1v2 = · · · = u0u1 · · ·uk−1vk,

where vk is a unit of Tk and, hence, of V . Thus,

(∗) vV = u0u1 · · ·uk−1V

for some k ≤ h. On the other hand, the Corollary at the end of the Lecture of September
27 shows that JV/R = JT1/T0JT2/T1 · · · JTh/Th−1 . The last statement in part (b) of the
Lemma on the first page of the Lecture Notes of October 2 shows that JTi+1/Ti

is generated
by udi−1

i . Thus,
(∗∗) JV/R = ud0−1

0 · · ·udh−1−1
h−1 V,

and each exponent dj − 1 is at least one. The inclusion JV/R ⊆ vV is now obvious from
inspection of (∗) and (∗∗). �

The module-finite property for normalizations.

We shall now address the problem of proving that S′ is module-finite over S. Several of
the details of the argument are left to the reader in Problem Set #2. The result we aim
to prove is this:

Theorem (finiteness of the normalization). Let S be torsion-free, generically étale,
and essentially of finite type over a normal Noetherian domain R. Suppose that the com-
pletion of every local ring of R is reduced (which holds if R is either regular or excellent).
Then the normalization S′ of S over R is module-finite over S.

We first give some preliminary results.
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Lemma. Let R be a Noetherian domain and b a nonzero element such that Rb is normal.

(a) R is normal if and only if RP is normal for every associated prime of b.

(b) {Q ∈ Spec (R) : RQ is not normal} is the union of the sets V (P ), where P is an
associated prime of P such that RP is not normal, and so is Zariski closed.

(c) If Rm has module-finite integral closure for every maximal ideal m of R, then R has
module-finite integral closure.

We refer the reader to problem 4. in Problem Set #2.

Let S = R[a1/b1, . . . , ah/bh] where b1, . . . , bh are nonzerodivisors in R. This is a
subring of Rb, where b = b1 · · · bh, and each fraction can be written in the form a′i/b.
We may include b/b among these fractions, and so assume that some a′i = b. Since every
R-linear combination of the fractions is in S, if I is the ideal of R generated by the a′i we
have that S = R[I/b], where I/b = {i/b : i ∈ I} ⊆ Rb. Here, I is an ideal containing b.
We next observe:

Theorem (Rees). Let (R, m, K) be a local ring such that R̂ is reduced. Let S be the
ring obtained by adjoining finitely many fractions (elements of the total quotient ring) to
R. Then the normalization S′ of S is module-finite over S.

Proof. If the ring itself is complete, the second problem from Problem Set #1 shows that
one may reduce to the case where R is a complete local domain, and since we already know
that the normalization of a complete local domain is normal, we may even assume that R
is normal. We then want to prove that the normalization of S = R[I/f ] is module-finite
over R[I/f ] with f ∈ I, by the discussion just above. This follows from the fifth and sixth
problems of Problem Set #2.

Now consider the case where S itself is not necessarily complete. If the result fails, then
there is an infinite strictly ascending chain S = S0 ⊆ S1 ⊆ S2 ⊆ . . . of algebras generated
by fractions over R, where Sj+1 is module-finite over Sj for j ≥ 0. But the chain R̂[Sj ]
must be eventually stable, since the complete reduced ring R̂ will have finite normalization,
so that R̂[Sj+1] = R̂[Sj ] for large j. But this implies Sj+1 = Sj : otherwise some fraction
over R is an R̂-linear combination of finitely many other such fractions but not an R-linear
combination of them, and we can get a contradiction from this as follows. We may use a
common denominator r ∈ R, not a zerodivisor, and write a/r =

∑s
i=0(ai/r)βi where the

ai ∈ R and the βi ∈ R̂. But then a ∈ (a1, . . . , as)R̂ ∩R, which implies a ∈ (a1, . . . , as)R,
say a =

∑s
i=0 aibi with bi ∈ R, and that means we can replace the βi by elements bi of

R. �

We also need the fact that finite separable algebraic field extensions do not disturb the
property of being reduced:

Lemma. Let B denoted a reduced ring containing a field K, and let L be a finite seprable
algebraic extension of K. Then L ⊗K B is reduced.
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Proof. B is the directed union of finitely generated K-algebas B0: since L is K- flat, L⊗KB
is the directed union of the rings L ⊗K B0. Therefore, we may assume that B is finitely
generated over K, and has finitely many minimal primes. B embeds in its total quotient
ring, which is a finite product of fields. Thus, we may replace B by its total quotient
ring, it suffices to prove the result when B is a product fields. It is easy to see that it
suffices to consider the case where B is a field, and we may even enlarge B further to an
algebraically closed field Ω. But L ∼= K[x]/f(x) where f is monic with distinct roots in Ω,
and so L⊗K Ω ∼= Ω[x]/

(
f(x)

)
. This ring is isomorphic with a finite product of copies of Ω

by the Chinese Remainder Theorem, since the roots of f are distinct. �

We are now ready to prove the main theorem stated earlier on the module-finite property
for S′ over S.

Proof of the finiteness of the normalizaion. We first replace S by a subring finitely gener-
ated over R of which it is a localization. Since localization commutes with normalization,
it suffices to consider this subring. Thus, we may assume that S is finitely generated as
an R-algebra. Second, the integral closure of S is the product of the integral closures of
the domains obtained by killing a minimal prime of S. Thus, without loss of generality, it
suffices to consider the case where S is a domain.

Each of the generators in a finite set of generators for S over R satisfies an algebraic
equation over R with leading coefficient rν , say, and it follows that we may choose a nonzero
element r ∈ R, the product of these leading coefficients, such that S[1/r] is integral over
R[1/r]. The integral closure of the normal domain R[1/r] in the fraction field L of S[1/r]
is the same as the normalization of S[1/r], and is module-finite over S[1/r] by the first
Theorem on p. 3 of the Lecture Notes of September 11. It follows that we may enlarge S
by adjoining finitely many elements of its normalization and so obtain a domain with the
property that S[1/r] is normal for some nonzero r. It then follows from the first Lemma
above that in order to prove that S has finite normalization, it suffices to prove this for
SQ for every maximal ideal Q of S. Choose s ∈ S such that it generates L over K. Let
P be the contraction of Q to R1 = R[s]. Then SQ is a localization of (R1)P [S], and S is
generated over (R1)P by elements of its fraction field.

Thus, to finish the argument, it suffices to show that the completion of (R1)P is reduced.
We may replace R by its localization at the contraction of P , and so we may assume that
R is local with reduced completion. The completion of (R1)P is one of the local rings of
the completion of R1 with respect to the maximal ideal of R. Thus, it suffices to show that
this completion of R1 is reduced. But this is R1 ⊗R R̂ ⊆ L ⊗R R̂ ∼= L ⊗K (K ⊗R R̂), and
the result follows from the preceding Lemma because K ⊗R R̂ is reduced and L is finite
separable algebraic over K. �

Sketch of the proof of the Jacobian theorem.

We are ready to tackle the proof of the Jacobian theorem, but we first sketch the main
ideas of the argument and then fill in the details.
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Step 1: The local case suffices. Note that it is enough to prove the result when S is
replaced by its various localizations at maximal ideals. Thus, we may assume that S is
local, although we shall only make this assumption at certain points in the proof. When
S is local we may also replace R its localization at the contraction of the maximal ideal of
S, and so there is likewise no loss of generality in assuming that R is local and that R → S
is local homomorphism (i.e., the maximal ideal of R maps into that of S).

Step 2: presenting S over R. Let T denote a localization of R[X1, . . . , Xn] that maps onto
S, and let I denote the kernel. Let U denote the complement in T of the set of minimal
primes P1, . . . , Pr of of I in T . Since S is reduced, I =

⋂r
i=1 Pi. Since S is a torsion-free

R-module, the minimal primes of I do not meet R, and correspond to the minimal primes
of I(K⊗ T ). Since killing any of these minimal primes produces an algebraic extension of
K, they must correspond to maximal ideals of K[X1, . . . , Xn], and it follows that the Pi

all have the same height, which must be the same as the number of variables, n. Thus,
U−1T is a semilocal regular ring in which each of the maximal ideals Mi = PiU

−1T is
generated by n elements.

Step 3: special sequences and the modules WS/R. Call a sequence g1, . . . , gn of n elements
of I special if it generates each of theMi and is a regular sequence in T . We shall show that
special sequences exist, and that there are sufficiently many of them that the images of the
elements det (∂gj/∂Xi) in S such that g1, . . . , gn is special generate the Jacobian ideal.
Moreover, when g1, . . . , gn is special the image of det(∂gj/∂Xi) in S is not a zerodivisor
in S, and so has an inverse in L. Given θ : T → S and a special sequence g1, . . . , gn we
define a map

Φ:
(g1, . . . , gn)T :T I

(g1, . . . , gn)T
→ L

by sending the class of u to u/γ, where u is the image of u in S and γ is the image of
det (∂gj/∂Xi) in S. It is clear that I kills (g1, . . . , gn)T :T I/(g1, . . . , gn)T , so that this is
an S-module. We shall show that Φ is injective. A priori, its image depends on the choice
of T → S and on the choice of the special sequence g1, . . . , gn, but the image turns out
to be independent of these choices. Therefore, once we have shown all this we will have
constructed a finitely generated canonically determined S-module WS/R ⊆ L.

Step 4: the behavior of the WS/R and the main idea of the argument. It will turn out that,
quite generally, WS/R ⊆ S :L JS/R. Here, one should think of S as varying. The Jacobian
Theorem then follows from two further observations. The first is that when S is normal,
this is an equality The second is that when one enlarges S to S1 = S[s1] by adjoining one
integral fraction s1 ∈ L (so that S ⊆ S1 ⊆ S′), then WS1/R ⊆ WS/R. Repeated application
of this fact yields that WS′/R ⊆ WS/R and then we have

S′ :L JS′/R = WS′/R ⊆ WS/R ⊆ S :L JS/R,

and we are done. In the sequel we shall systematically fill in the details of the argument
just outlined.


