Math 711: Lecture of October 6, 2006

Detailed proof of the Jacobian theorem: existence of sufficiently many special sequences.

Note first that if R itself is a field then $S = \mathcal{L}$ and S' = S, so that $\mathcal{J}_{S/R} = \mathcal{J}_{S'/R}$ and there is nothing to prove. If R is finite then R must be a field, since R is a domain, and therefore we may assume without loss of generality that R is infinite in the remainder of the proof.

We shall need prime avoidance in the following form (cf. [I. Kaplansky, *Commutative Rings*, Revised Edition, Univ. of Chicag Press, Chicago, 1974], Theorem 124, p. 90.):

Lemma (prime avoidance for cosets). Let R be any commutative ring, $x \in R$, $I \subseteq R$ an ideal and P_1, \ldots, P_k prime ideals of R. Suppose that the coset x + I is contained in $\bigcup_{i=1}^k P_i$. Then there exists j such that $Rx + I \subseteq P_j$.

Proof. If k = 1 the result is clear. Choose $k \ge 2$ minimum giving a counterexample. Then no two P_i are comparable, and x + I is not contained in the union of any k - 1 of the P_i . Now $x = x + 0 \in x + I$, and so x is in at least one of the P_j : say $x \in P_k$. If $I \subseteq P_k$, then $Rx + I \subseteq P_k$ and we are done. If not, choose $i_0 \in I - P_k$. We can also choose $i \in I$ such that $x + i \notin \bigcup_{j=1}^{k-1} P_i$. Choose $u_j \in P_j - P_k$ for j < k, and let u be the product of the u_j . Then $ui_0 \in I - P_k$, but is in P_j for j < k. It follows that $x + (i + ui_0) \in x + I$, but is not in any P_j , $1 \le j \le k$, a contradiction. \Box

The following somewhat technical "general position" lemma is needed to prove that Jacobian determinants arising from special sequences generate the Jacobian ideal.

Lemma (general position for generators). Let $R \subseteq T$ be a commutative rings such that R is an infinite integral domain and let P_1, \ldots, P_r be mutually incomparable prime ideals of T contracting to (0) in R. Let $N \ge n \ge 1$ be integers and let $M = (g_1 \ldots g_N)$ be a $1 \times N$ matrix over T with entries in $I = \bigcap_{j=1}^r P_r$. Let κ_j denote the field $T_{P_j}/P_jT_{P_j}$ for $1 \le j \le r$ and let V_j denote the κ_j -vector space $P_jT_{P_j}/P_j^2T_{P_j}$. Suppose that for all j, $1 \le j \le r$, the κ_j -span of the images of the g_t under the obvious map $I \subseteq P_j \to P_jT_{P_j} \twoheadrightarrow V_j$ has κ_j -vector space dimension at least n.

Then one may perform elementary column operations on the matrix M over T so as to produce a matrix with the property that, for all j, $1 \leq j \leq r$, the images of any n of its distinct entries are κ_j -linearly independent elements of V_j .

Of course, the entries of the new matrix generate the ideal $(g_1, \ldots, g_N)T$.

Proof. First note that the infinite domain R is contained in each of the κ_i .

We proceed by induction on the number of primes. If there are no primes there is nothing to prove. Now suppose that $1 \leq h \leq r$ and that column operations have already been performed so that any *n* entries have κ_j -independent images in V_j if j < h. (If h = 1we may use *M* as is, since no condition is imposed.) We need to show that we can perform elementary column operations so that the condition also holds for j = h. Some *n* of the entries have κ_h -independent images in V_h : by renumbering we may assume that these are g_1, \ldots, g_n . We now show that by induction on $a, n + 1 \leq a \leq N$ that we may perform elementary column operations on the matrix so that

- (1) The images of the entries of the matrix in each V_j for j < h do not change and
- (2) Any *n* of the images of g_1, \ldots, g_a in V_h are independent.

Choose $t \in T$ so that it is in the primes P_j for j < h but not in P_h . Thus, t has nonzero image τ in κ_h . Let v_j denote the image of g_j in V_h . We may assume that the images of any n of the elements g_1, \ldots, g_{a-1} are independent in V_h . Thus, it will suffice to show that there exist $r_1, \ldots, r_n \in R$ such that the image of $g_a + tr_1g_1 + \cdots tr_ng_n$ is independent of any n-1 of the vectors v_1, \ldots, v_{a-1} in V_h , i.e., such that $v_a + \tau r_1v_1 + \cdots \tau r_nv_n$ is independent of any n-1 of the vectors v_1, \ldots, v_{a-1} . (Note that condition (1) is satisfied automatically because the image of t is 0 in each κ_j for j < h.)

For each set D of n-1 vectors in v_1, \ldots, v_{a-1} , there is a nonzero polynomial f_D in n variables over κ_h , and whose nonvanishing at the point (r_1, \ldots, r_n) guarantees the independence of $v_a + \tau r_1 v_1 + \cdots \tau r_n v_n$ from the vectors in D. To see this, choose a κ_h -basis for the space spanned by all the v_j and write the vectors in D and $v_a + \tau X_1 v_1 + \cdots \tau X_n v_n$ in terms of this basis. Form a matrix C from the coefficients. We can choose values of the X_i in R that achieve the required independence, and this means that some $n \times n$ minor of C does not vanish identically. (If v_a is independent of the vectors in D take all the X_i to be zero. Otherwise, v_a is in the κ_h -span of D, while at least one of the n independent vectors v_1, \ldots, v_n is not, say v_{ν} , and we can take all the X_i except X_{ν} to be 0 and $X_{\nu} = 1$.) This minor gives the polynomial $f_D \in \kappa_h[X_1, \ldots, X_n]$.

Choose a field extension \mathcal{F} of $\mathcal{K} = \operatorname{frac}(R)$ that contains isomorphic copies of all of the κ_j . The product f of the f_D in $\mathcal{F}[x_1, \ldots, x_n]$ as D varies through the n-1 element subsets of v_1, \ldots, v_{a-1} is then a nonzero polynomial in $\mathcal{F}[X_1, \ldots, X_n]$, and so cannot vanish identically on the infinite domain R. Choose $r_1, \ldots, r_n \in R$ so that $f(r_1, \ldots, r_n) \neq 0$. Then every $f_D(r_1, \ldots, r_n) \neq 0$

Lemma. Let g_1, \ldots, g_n be elements of a Noetherian ring T and let J be an ideal of T of depth at least n such that $(g_1, \ldots, g_n)T + J$ is a proper ideal of T. If g_1, \ldots, g_i is a regular sequence in T (i may be zero, *i.e.*, we may be assuming nothing about g_1, \ldots, g_n) then there are elements $j_{i+1}, \ldots, j_n \in J$ such that

$$g_1, \ldots, g_i, g_{i+1} + j_{i+1}, \ldots, g_n + j_n$$

is a regular sequence in T.

In particular, there are elements $j_1, \ldots, j_n \in J$ such that $g_1 + j_1, \ldots, g_n + j_n$ is a regular sequence.

 $\mathbf{2}$

Proof. The last sentence is the case i = 0. We proceed by induction on n-i. If i = n there is nothing to prove. We may pass to $T/(g_1, \ldots, g_i)T$, and so reduce to the case where i = 0. The image J is the same as the image of $J' = J + (g_1, \ldots, g_i) \mod (g_1, \ldots, g_i)$. J' is a proper ideal of depth at least n, and so killing a regular sequence of length i in J' poduces an ideal of depth at least n - i > 0. Thus, we may assume that i = 0.

It then suffices to choose $j = j_1$ such that $g_1 + j$ is not a zerodivisor, for we may apply the induction hypothesis to construct the rest of the sequence. But if this were not possible we would have that $g_1 + j$ is contained in the union of the associated primes of (0) in T, and this implies that J is contained in an associated prime of (0) in T by the Lemma on prime avoidance for cosets proved at the beginning of this Lecture. This is a contradiction, since the depth of J is positive. \Box

Theorem (existence of sufficiently many special sequences). Let R be an infinite Cohen-Macaulay Noetherian domain and let S be a torsion-free generically étale R-algebra essentially of finite type over R. Let T be a localization of a polynomial ring in n variables over R that maps onto S, and let I be the kernel. Let P_1, \ldots, P_r be the minimal primes of I in T. Then the Jacobian ideal $\mathcal{J}_{S/R}$ is generated by the images of elements det $(\partial g_j/\partial x_i)$ such that g_1, \ldots, g_n is a special sequence of elements of I, i.e., a regular sequence in Isuch that for every j, $1 \leq j \leq r$, $P_jT_{P_j} = (g_1, \ldots, g_n)T_{P_j}$.

Proof. First choose generators g_1, \ldots, g_N for I. Think of these generators as forming the entries of a $1 \times N$ matrix as in the Lemma on general position for generators. Each T_{P_j} is regular local of dimension n, so that each $P_j T_{P_j}/P_j^2 T_{P_j}$ has dimension n. It follows from the Lemma cited that we may assume without loss of generality that every n element subset of the generators g_1, \ldots, g_N generates every $P_j T_{P_j}$. We know that the size n minors of the $n \times N$ matrix $(\partial g_j/\partial x_i)$ generate $\mathcal{J}_{S/R}$. Fix one of these minors: by renumbering, we may assume that it corresponds to the first n columns. It will suffice to show that the image of this minor in S is the same as the image of a minor coming from a special sequence. We may apply the preceding Lemma to choose elements $h_1, \ldots, h_n \in J = I^2$ such that $g_1 + h_1, \ldots, g_n + h_n$ is a regular sequence. This sequence is special: since $J = I^2 \subseteq P_j^2$ for all j, the elements generate each $P_j T_{P_j}$, and it was chosen to be a regular sequence. Finally, by the Remark near the top of p. 2 of the Lecture Notes of September 27, the image of the Jacobian determinant of g_1, \ldots, g_n , and the result follows. \Box