
Math 711: Lecture of October 9, 2006

Lemma (comparison of special sequences). Let R be an infinite Cohen-Macaulay
Noetherian domain and let S be a torsion-free generically étale R-algebra essentially of
finite type over R. Let T be a localization of a polynomial ring in n variables over R that
maps onto S, and let I be the kernel. Let P1, . . . , Pr be the minimal primes of I in T .
Assume, moreover, that S and T are local. Let g = g1, . . . , gn and h = h1, . . . , hn be
two special sequences in I. Then there is a finite chain of special sequences joining g to h
such that for any two consecutive special sequences occurring in this chain, the sequences
of elements occuring differ in at most one spot.

Proof. We first show that given two special sequences g1, . . . , gn and h1, . . . , hn and an
integer i, 1 ≤ i ≤ n, we can choose u ∈ T such that g1, . . . , gn remains special when gi

is replaced by u and h1, . . . , hn remains special as well when hi is replaced by u. Since
regular sequences (and, hence, special sequences) are permutable in a local ring, we may
assume without loss of generality that i = n. Our first objective is to choose u such that,
for all j, both sequences generate each PjTPj

. Since Pj ∩ R = (0) for every j, we have
for each j that K ⊆ TPj

. To solve the problem we shall first choose u with the required
property in K ⊗R T . For every j let Cj denote the contraction of(

(g1, . . . , gn−1) + P 2
j

)
TPj

to K ⊗R T , and let Dj denote the contraction of(
(h1, . . . , hn−1) + P 2

j

)
TPj

to K⊗R T . The Cj and Dj together constitute finally many vector spaces over the field K.
We claim that they do not cover K⊗R I ⊆ K⊗R T , for if they did then one of them would
contain K ⊗R I (see the first Proposition on p. 3 of the Lecture Notes of September 18),
and this would contradict the existence of gn if it were one of the Cj , or the existence of
hn if it were one of the Dj . Hence, we can choose u ∈ K ⊗R I with the required property.
After multiplying by a suitable element of R − {0}, we may assume that u is in I, and it
will still have the required property, since the multiplier is a unit in every RPj . Finally,
as in the proof of the Theorem on existence of sufficiently many special sequences (which
is the last Theorem of the Lecture of October 6), we can choose v ∈ I2 such that u + v is
not a zerodivisor modulo either (g1, . . . , gn−1)T nor modulo (h1, . . . , hn−1)T : this comes
down to the assertion that u + I2 is not contained in the union of the associated primes of
the two ideals, and by the Lemma on prime avoidance for cosets, it suffices to show that
I2 is not contained in any of them. But this is clear because all the associated primes have
height n− 1 while I2 has height n.

Finally, to prove the existence of the chain of special sequences we use induction on the
number of terms in which the two sequences, counting from the beginning, agree. Suppose
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that gi = hi for i < j while sequences gj 6= hj (j may be 0 here). Then by the result of
the paragraph above we may choose u such that the sequences

g1, . . . , gj−1, u, gj+1, . . . , gn

and
g1, . . . , gj−1, u, hj+1, . . . , hn

are both special. The first differs from g1, . . . , gn in only the j th spot, and the second
differs from h1, . . . , hn in only the j th spot as well. By the induction hypothesis there is
a chain of the required form joining these two, and the result follows. �

The map Φ and the modules WS/R.

Our next main goal is to construct the map Φ mentioned briefly in Step 3 of our Sketch
of the proof the Jacobian theorem: see p. 4 of the Lecture Notes of October 4.

We first need a lemma whose proof involves universal modules of differentials or Kähler
differentials.

In the next seven paragraphs, we assume only that K is a commutative ring and that
T is K-algebra. A K-derivation of T into a T -module M is a map D : T → M such that

(1) D is a homomorphism of abelian groups

(2) For all t1, t2 ∈ T , D(t1t2) = t1D(t2) + t2D(t1) and

(3) For all c ∈ K, D(c) = 0.

Condition (2) implies that D is K-linear, for D(ct) = cD(t) + tD(c) = cD(t) + t(0) =
cD(t). Note that D(1 · 1) = 1D(1) + 1D(1), i.e. D(1) = D(1) + D(1), so that condition
(2) implies that D(1) = 0. In the presence of the other conditions, (2) is equivalent to
K-linearity, for if the map is K-linear then for all c ∈ K, D(c · 1) = cD(1) = c(0) = 0.

There is a universal K-derivation from a given K-algebra T into a specially constructed
T -module ΩT/K. This is obtained as follows. Let G denote the T -free module whose basis
consists of elements bt in bijective correspondence with the elements t of T . Consider the
T -submodule H of G spanned by elements of the three forms:

(1) bt1+t2 − bt1 − bt2 for all t1, t2 ∈ T ;

(2) bt1t2 − t1bt2 − t2bt1 for all t1, t2 ∈ T ; and

(3) bc for c ∈ K.

We write ΩT/K for G/H. This is the universal module of differentials or the module
of Kähler differentials for T over K. Note that we have a map d : T → ΩT/K that sends
t 7→ bt +H, the class of bt in G/H. The choice of elements that we killed (we took them as
generators of H) precisely guarantees that d is a K-derivation, the universal K-derivation
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on T . It has the following universal property: given any T -module N and a K-derivation
D : T → N , there is a unique T -linear map L : M → N such that D = L ◦ d. To get the
map L on G/H we define it on G so that the value on bt is D(t): this is forced if we are
going to have D = L ◦ d. One may check easily that H is killed, precisely because D is a
K-derivation, and this gives the required map. (It is also easy to see that the composition
of d with any T -linear map is a K-derivation.) Thus, for every T -module N , there is a
bijection between the K-derivatons of T into N and HomT (ΩT/K, N).

Given generators ti for T over K, the elements dti (the index set may be infinite) span
ΩT/K. The value of d on a product of these generators is expressible in terms of the dti by
iterated use of the product rule.

Given a polynomial ring K[Xi : i ∈ I] over K, ΩT/K is the free T -module on the dXi,
and the universal derivation d is defined by the rule

dF =
∑

i

∂F

∂xi
dXi.

This formula is a consequence of the use of the iterated product rule, and it is straightfor-
ward to check that it really does give a derivation.

Note that if U is a multiplicative system in T , we have that ΩU−1T/K ∼= U−1ΩT/K.
Also observe that a K-derivation D : T → M extends uniquely, via the rule t/u 7→
(uDt− tDu)/u2, to a K-derivation U−1D : U−1T → U−1M so that the diagram

U−1T
U−1D−−−−→ U−1Mx x

T
D−−−−→ M

commutes.

The notations in the following Lemma are slightly different from those in our general
setup.

Lemma. Let N be a maximal ideal of T = K[X1, . . . , Xn], a polynomial ring over a
field K. Assume that L = K[X1, . . . , Xn]/N is separable field extension of K. Then
g1, . . . , gn ∈ NTN generate NTN if and only if the image of det

(
∂gj/∂xi

)
in L is not 0.

Proof. Consider the universal K-derivation d : K[X] → ΩK[X]/K, the module of Kähler
differentials, which, as noted above, is the free T -module generated by the elements
dX1, . . . , dXn. Of course, if F ∈ K[X] then dF =

∑n
j=1(∂F/∂xj) dxj . The restric-

tion of d to N gives a K-linear map N → ΩK[X]/K, and, by the defining property of a
derivation, it sends

N 2 → NΩK[X]/K.

Thus, there is an induced K-linear map of K-vector spaces

δ:N/N 2 → L⊗T ΩT/K.
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Both modules are L-vector spaces and it follows from the defining property of a derivation
that δ is actually L-linear (if t ∈ T represents λ ∈ L and u ∈ N , d(tu) = tdu + udt,
and the second term will map to 0 in L ⊗T ΩT/K). Since TN is regular of dimension n,
N/N 2 is an n-dimensional vector space over L. The key point is that under the hypothesis
that L is separable over K, the map δ is an isomorphism of L-vector spaces. To see this,
observe that the map δ sends the elements represented by generators g1, . . . , gn for NTN
to the elements represented by the dgj , and so it has a matrix which is the image of the
matrix (∂gj/∂xi) after mapping the entries to L. Thus, δ is an isomorphism if and only
if the Jacobian determinant det (∂gj/∂xi) has nonzero image in L. But this determinant
generates JL/K, and so δ is an isomorphism if and only if the Jacobian ideal of L over K is
L. But we may use any presentation of L over K to calculate JL/K, and so we may instead
use L ∼= K[Z]/

(
f(Z)

)
where Z here represents just one variable and where f is a single

separable polynomial. The Jacobian determinant is then the value of f ′(Z) in L, which is
not zero by virtue of the separability.

Thus, δ is an L-isomorphism. Moreover, we have already seen that if g1, . . . , gn are
generators of NTN then the Jacobian determinant is not 0 in L. But the converse is also
clear, because if g1, . . . , gn are any elements of NTN , they generate NTN if and only
if their images in NTN /N 2TN ∼= N/N 2 span this vector space over L, by Nakayama’s
lemma, and this will be the case if and only if their further images in L ⊗T ΩT/K span
that vector space over L, since δ is an isomorphism. But that will be true if and only
if the images of the dgj span L ⊗T ΩT/K, which is equivalent to the assertion that the
images of the columns of the matrix (∂gj/∂xi), after the entries are mapped to L, span
an n-dimensional space. This in turn is equivalent to the nonvanishing of det (∂gj/∂xi) in
L. �

We now return to our standard set of notations and assumptions, as in Step 2 of the
Sketch of the proof of the Jacobian theorem from p. 3 of the Lecture Notes of October
4. Thus, T is a localization of R[X1, . . . , Xn] that maps onto S with kernel I. U is the
complement in T of the set of minimal primes P1, . . . , Pr of of I in T , and I =

⋂r
i=1 Pi.

The Pi do not meet R and correspond to the minimal primes of I(K⊗T ). The expansion of
Pi to U−1T is maximal ideal Mi corresponding to a maximal ideal Ni of K[X1, . . . , Xn],
and has height n. Here, TPi

∼= K[X1, . . . , Xn]Ni .

Corollary. Let g1, . . . , gn ∈ I. If g1, . . . , gn is a special sequence in I, then the image γ
of det

(
∂gj/∂Xi

)
is not a zerodivisor in S, and so represents an invertible element of the

total quotient ring L of S.

Proof. We may view L as the product of the fields Li, where Li is the fraction field of
T/Pi but may also be identified with K[X1, . . . , Xn]/Ni. It suffices to show that γ does
not map to 0 under L � Li for any i. The fact that the image of γ is not 0 in Li follows
from the preceding Lemma, the separability of Li over K, and the fact that for every i,
g1, . . . , gn generates PiTPi , which we may identify with NiK[X1, . . . , Xn]Ni . �

We continue the conventions in the paragraph preceding the statement of the Lemma,
but because we shall let both S and its presentation vary we shall write θ for the map T → S
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and we shall denote by g a special sequence g1, . . . , gn in I. We may then temporarily
define

Φθ,g:
(g1, . . . , gn)T :T I

(g1, . . . , gn)T
→ L

by sending the class of u to u/γ where u is the image of u in L, and γ is the image of
det (∂gj/∂xi) in L: the element γ is invertible in L by the Corollary just above. The map
is well defined because the gi vanish under the map to L. We shall often write Φ when θ
and g are understood. We shall soon show that the image of Φ is contained in S :L JS/R.
Once this is established we shall change the definition of Φ very slightly by restricting its
range to be S :L JS/R ⊆ L.

We note that

(g1, . . . , gn)T :T I

(g1, . . . , gn)T
∼= HomT

(
T/I, T/(g1, . . . , gn)T

)
.

We shall denote the image of Φθ,g in L by WS/R(θ, g). However, we shall see just below
that it is independent of the choices of θ and g, and once we know this we shall simply
write it as WS/R ⊆ L.

Lemma. With notation as above, Φθ,g is injective.

Proof. Under the map T → L the complement U of the union of the primes Pi becomes
invertible. Because g is a regular sequence in T , every associated prime is minimal, and
so no element of U is a zerodivisor on T/(g1, . . . , gn)T . Thus,

(g1, . . . , gn)T :T I

(g1, . . . , gn)T
↪→ T

(g1, . . . , gn)T
↪→ U−1T

U−1(g1, . . . , gn)T
∼= L.

The map Φθ,g is the composition of this composite injection with multiplication by the
invertible element 1/γ in L. �


