Math 711: Lecture of October 18, 2006

If $I \subseteq J$ and J is integral over I, we call I a reduction of J. With this terminology, we have shown that if (R, m, K) is local with K infinite, every ideal $I \subseteq m$ has a reduction with $\mathfrak{an}(I)$ generators, and one cannot do better than this whether K is infinite or not.

We have previously defined analytic spread for ideals of local rings. We can give a global definition as follows: if R is Noetherian and I is any ideal of R, let

$$\operatorname{an}(I) = \sup\{P \in \operatorname{Spec}(R) : \operatorname{an}(IR_P)\},\$$

which is bounded by the the number of generators of I and also by the dimension of R.

The Briançon-Skoda theorem then gives at once:

Theorem. Let R be regular and I an ideal. Let $n = \operatorname{an}(I)$. Then for all $k \ge 1$, $\overline{I^{n+k-1}} \subseteq I^k$.

Proof. If the two are not equal, this can be preserved while passing to a local ring of R. Thus, without loss of generality, we may assume that R is local. The result is unaffected by replacing R by R(t), if necessary. Thus, we may assume that the residue class field of R is infinite. Then I has a reduction I_0 with n generators. From the form of the Briançon-Skoda theorem that we have already proved, we have that $\overline{I^{n+k-1}} = \overline{I_0^{n+k1}} \subseteq I_0^k \subseteq I$. \Box

The intersection of all ideals I_0 in I such that I is integral over I_0 is called the *core* of I. It is not immediately clear that the core is nonzero, but we have:

Theorem. Let R be regular local with infinite residue class field, and let I be a proper ideal with an(I) = n. Then the core of I contains $\overline{I^n}$.

Proof. If I is integral over I_0 then they have the same analytic spread, and I_0 has a reduction I_1 with n generators. Then $\overline{I^n} = \overline{I_0^n} = \overline{I_1^n} \subseteq I_1 \subseteq I_0$, and so $\overline{I^n}$ is contained in all such I_0 . \Box

We next want to give a proof of the Briançon-Skoda theorem in characteristic p that is, in many ways, much simpler than the proof we have just given. The characteristic p result can be used to prove the equal characteristic 0 case as well.

Recall that when x_1, \ldots, x_d is a regular sequence on M, we require not only that x_i is a nonzerodivisor on $M/(x_1, \ldots, x_{i-1})M$ for $1 \le i \le d$, but also that $(x_1, \ldots, x_d)M \ne M$. If (x_1, \ldots, x_d) has radical m in the local ring (R, m, K), this is equivalent to the assertion $mM \ne M$, for otherwise we get that $m^t M = M$ for all t, and for large $t, m^t \subseteq (x_1, \ldots, x_d)$.

Note that when x_1, \ldots, x_d is a regular sequence in a ring R and M is flat, we continue to have that x_i is a nonzerodivisor on $M/(x_1, \ldots, x_{i-1})M$ for $1 \le i \le d$ (by induction on

d this redues to the case where d = 1 and the fact that $x = x_1$ is a nonzerodivisor on R give an exact sequence

$$0 \longrightarrow R \xrightarrow{\cdot x} R$$

which stays exact when we tensor with M over R). If M is faithfully flat, every regular sequence in R is a regular sequence on M. If R is regular, this characterizes faithful flatness:

Lemma. Let (R, m, K) be local. Then M is faithfully flat over R if and only if every regular sequence in R is a regular sequence on M.

Proof. By the preceding discussion, we need only prove the "if" part. It will suffice to prove that for every R-module N, $\operatorname{Tor}_i^R(N, M) = 0$ for all $i \ge 1$. Since N is a direct limit of finitely generated modules, it suffices to prove this when N is finitely generated. We use reverse induction on i. We have the result for $i > \dim(R)$ because $\dim(R)$ bounds the projective dimension of N. We assume the result for $i \ge k + 1$, where $k \ge 1$, and prove it for i = k. Since N has a filtration by prime cyclic modules, it suffices to prove the vanishing when N is a prime cyclic module R/P. Let x_1, \ldots, x_d be a maximal regular sequene of R in P. Then P is a minimal prime of (x_1, \ldots, x_d) , and, in particular, an associated prime. It follows that we have a short exact sequence

$$0 \to R/P \to R/(x_1, \ldots, x_d R) \to C \to 0$$

for some module C. By the long exact sequence for Tor, we have

$$\cdots \to \operatorname{Tor}_{k+1}^R(C, M) \to \operatorname{Tor}_k^R(R/P, M) \to \operatorname{Tor}_k^R(R/(x_1, \ldots, x_d)R, M) \to \cdots$$

The leftmost term vanishes by the induction hypothesis and the rightmost term vanishes by problem 4 of Problem Set #3. \Box

We write F or F_R for the Frobenius endomorphism of a ring R of positive prime characteristic p. Thus $F(r) = r^p$. We write F^e or F_R^e for the e th iterate of F under composition. Thus, $F^e(r) = r^{p^e}$.

Corollary. Let R be a regular Noetherian ring of positive prime characteristic p. Then $F^e: R \to R$ is faithfully flat.

Proof. The issue is local on primes P of the first (left hand) copy of R. But when we localize at R - P in the first copy, we find that for each element $u \in R - P$, u^{p^e} is invertible, and this means that u is invertible. Thus, when we local we get $F^e : R_P \to R_P$. Thus, it suffices to consider the local case. But if x_1, \ldots, x_d is a regular sequence in R_P , it operates on the right hand copy as $x_1^{p^e}, \ldots, x_d^{p^e}$, which is regular in R_P . \Box

If $I, J \subseteq R$, we write $I :_R J$ for $\{r \in R : rJ \subseteq I\}$, which is an ideal of R.

Proposition. Let I and J be ideals of the ring R such that J is finitely generated. Let S be a flat R-algebra. Then $(I:_R J)S = IS:_S JS$.

Proof. Note that if $\mathfrak{A} \subseteq R$, $\mathfrak{A} \otimes_R S$ injects into S, since S is flat over R. But its image is $\mathfrak{A}S$. Thus, we may identify $\mathfrak{A} \otimes_R S$ with $\mathfrak{A}S$.

Let $J = (f_1, \ldots, f_h)R$. Then we have an exact sequece

$$0 \to I :_R J \to R \to (R/I)^{\oplus h}$$

where the rightmost map sends r to the image of (rf_1, \ldots, rf_h) in $(R/I)^{\oplus h}$. This remains exact when we tensor with S over R, yielding an exact sequence:

$$0 \to (I:_R J)S \to S \to (S/IS)^{\oplus h}$$

where the rightmost map sends s to the image of (sf_1, \ldots, sf_h) in $(S/IS)^{\oplus h}$. The kernel of the rightmost map is $IS :_S JS$, and so $(I :_R J)S = IS :_S JS$. \Box

When R has positive prime characteristic p, we frequently abbreviate $q = p^e$, and $I^{[q]}$ denotes the expansion of $I \subseteq R$ to S = R where, however, the map $R \to R$ that gives the structural homomorphism of the algebra is F^e . Thus, $I^{[q]}$ is generated by the set of elements $\{i^q : i \in I\}$. Whenever we expand an ideal I, the images of generators for I generate the expansion. In particular, note that if $I = (f_1, \ldots, f_n)R$, then $I^{[q]} = (f_1^q, \ldots, f_n^q)R$. Note that it is not true $I^{[q]}$ consists only of q th powers of elements of I: one must take R-linear combinations of the q th powers. Observe also that $I^{[q]} \subseteq I^q$, but that I^q typically needs many more generators, namely all the monomials of degree q in the generators involving two or more generators.

Corollary. Let R be a regular ring and let I and J be any two ideals. Then $(I:_R J)^{[q]} = I^{[q]}:_R J^{[q]}$.

Proof. This is the special case of in which S = R and the flat homomorphism is F^e . \Box

The following result is a criterion for membership in an ideal of a regular domain of characteristic p > 0 that is slightly weaker, *a priori*, than being an element of the ideal. This criterion turns out to be extraordinarily useful.

Theorem. Let R be a regular domain and let $I \subseteq R$ be an ideal. Let $r \in R$ be any element. Let $c \in R - \{0\}$. Then $r \in I$ if and only if for all $e \gg 0$, $cr^{p^e} \in I^{[p^e]}$.

Proof. The necessity of the second condition is obvious. To prove sufficiency, suppose that there is a counterexample. Then r satisfies the condition and is not in I, and we may localize at a prime in the support of (I + rR)/I. This give a counterexample in which (R, m) is a regular local ring. Then $cx^{p^e} \in I^{[p^e]}$ for all $e \ge e_0$ implies that

$$c \in I^{[p^e]} :_R (xR)^{[p^e]} = (I :_R xR)^{[p^e]} \subseteq m^{[p^e]} \subseteq m^{p^e}$$

for all $e \ge e_0$, and so $c \in \bigcap_{e \ge e_0} m^{p^e}$. But this is 0, since the intersection of the powers of m is 0 in any local ring, contradicting that $c \ne 0$. \Box

We can now give a characteristic p proof of the Briançon-Skoda Theorem, which we restate:

Theorem (Briançon-Skoda). Let R be a regular ring of positive prime characteristic p. Let I be an ideal generated by n elements. Then for every positive integer k, $\overline{I^{n+k-1}} \subseteq I^k$.

Proof. If n = 0 then I = (0) and there is nothing to prove. Assume $n \ge 1$. Suppose $u \in \overline{I^{n+k-1}} - I^k$. Then we can preserve this while localizing at some prime ideal, and so we may assume that R is a regular domain. By part (f) of the Theorem on the first page of the Lecture Notes of September 15, the fact that $u \in \overline{I^{n+k-1}}$ implies that there is an element $c \in R - \{0\}$ such that $cu^N \in (I^{n+k-1})^N$ for all N. In particular, this is true when $N = q = p^e$, a power of the characteristic. Let $I = (f_1, \ldots, f_n)$. We shall show that $(I^{n+k-1})^q \subseteq (I^k)^{[q]}$. A typical generator of $(I^{n+k-1})^q$ has the form $f_1^{a_1} \cdots f_n^{a_n}$ where $\sum_{i=1}^n a_i = (n+k-1)q$. For every $i, 1 \le i \le n$, we can use the division algorithm to write $a_i = b_iq + r_i$ where $b_i \in \mathbb{N}$ and $0 \le r_i \le q - 1$. Then

$$(n+k-1)q = \sum_{i=1}^{n} a_i = (\sum_{i=1}^{n} b_i)q + \sum_{i=1}^{n} r_i \le (\sum_{i=1}^{n} b_i)q + n(q-1)$$

which yields

$$(\sum_{i=1}^{n} b_i)q \ge (n+k-1)q - nq + n = (k-1)q + n$$

and so $\sum_{i=1} b_i \ge k - 1 + \frac{n}{q} > k - 1$, and this shows that $\sum_{i=1}^n b_i \ge k$, as required \Box