Math 711: Lecture of October 18, 2006

If I C J and J is integral over I, we call I a reduction of J. With this terminology, we
have shown that if (R, m, K) is local with K infinite, every ideal I C m has a reduction
with an(I) generators, and one cannot do better than this whether K is infinite or not.

We have previously defined analytic spread for ideals of local rings. We can give a global
definition as follows: if R is Noetherian and I is any ideal of R, let

an(/) = sup{P € Spec(R) : an(/Rp)},

which is bounded by the the number of generators of I and also by the dimension of R.

The Briancon-Skoda theorem then gives at once:

Theorem. Let R be reqular and I an ideal. Let n = an(I). Then for all k > 1, I"tF—1 C
I,

Proof. 1f the two are not equal, this can be preserved while passing to a local ring of R.
Thus, without loss of generality, we may assume that R is local. The result is unaffected by
replacing R by R(t), if necessary. Thus, we may assume that the residue class field of R is
infinite. Then I has a reduction Iy with n generators. From the form of the Briancon-Skoda

theorem that we have already proved, we have that ["+k—1 = Ig+k1 cClkcrI1. O

The intersection of all ideals I in I such that I is integral over [ is called the core of
I. Tt is not immediately clear that the core is nonzero, but we have:

Theorem. Let R be reqular local with infinite residue class field, and let I be a proper
ideal with an(I) = n. Then the core of I contains I™.

Proof. It I is integral over Iy then they have the same analytic spread, and Ip has a
reduction I; with n generators. Then I"™ = I} = I}* C I; C Iy, and so I" is contained in

all such Ip. O

We next want to give a proof of the Briangon-Skoda theorem in characteristic p that is,
in many ways, much simpler than the proof we have just given. The characteristic p result
can be used to prove the equal characteristic 0 case as well.

Recall that when x1, ... , x4 is a regular sequence on M, we require not only that z; is
a nonzerodivisor on M /(x1, ... ,x;—1)M for 1 <i < d, but also that (x1, ... ,zq)M # M.
If (x1, ... ,zq) has radical m in the lcoal ring (R, m, K), this is equivalent to the assertion
mM # M, for otherwise we get that m* M = M for all ¢, and for large ¢, m* C (x1, ... ,2q).

Note that when x1, ... , x4 is a regular sequence in a ring R and M is flat, we continue
to have that z; is a nonzerodivisor on M/(x1, ... ,z;—1)M for 1 <i < d (by induction on
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d this redues to the case where d = 1 and the fact that £ = x; is a nonzerodivisor on R
give an exact sequence

0—-R-5R

which stays exact when we tensor with M over R). If M is faithfully flat, every regular
sequence in R is a regular sequence on M. If R is regular, this characterizes faithful
flatness:

Lemma. Let (R,m,K) be local. Then M is faithfully flat over R if and only if every
reqular sequence in R is a reqular sequence on M.

Proof. By the preceding discussion, we need only prove the “if” part. It will suffice to
prove that for every R-module N, TorZR (N,M) =0 for all i > 1. Since N is a direct limit
of finitely generated modules, it suffices to prove this when N is finitely generated. We
use reverse induction on i. We have the result for ¢ > dim (R) because dim (R) bounds
the projective dimension of N. We assume the result for ¢ > k + 1, where £ > 1, and
prove it for ¢ = k. Since N has a filtration by prime cyclic modules, it suffices to prove the
vanishing when N is a prime cyclic module R/P. Let z1, ... ,z4 be a maximal regular
sequene of R in P. Then P is a minimal prime of (z1, ... ,z4), and, in particular, an
associated prime. It follows that we have a short exact sequence

0—R/P— R/(x1, ... ,24R) - C —0
for some module C. By the long exact sequence for Tor, we have
- — Torg, 1 (C, M) — Torj!(R/P,M) — TorkR(R/(xl, o zg) R M) — -

The leftmost term vanishes by the induction hypothesis and the rightmost term vanishes
by problem 4 of Problem Set #3. [

We write F' or Fi for the Frobenius endomorphism of a ring R of positive prime charac-
teristic p. Thus F(r) = r?. We write F'° or FF, for the eth iterate of F' under composition.
Thus, F¢(r) = rP",

Corollary. Let R be a regular Noetherian ring of positive prime characteristic p. Then
F¢: R — R is faithfully flat.

Proof. The issue is local on primes P of the first (left hand) copy of R. But when we
localize at R — P in the first copy, we find that for each element u € R — P, u? is
invertible, and this means that u is invertible. Thus, when we local we get F¢ : Rp — Rp.
Thus, it suffices to consider the local case. But if x1, ... ,z4 is a regular sequence in Rp,
it operates on the right hand copy as x’l’e, . ,xse, which is regular in Rp. [

If I, J C R, we write I :g J for {r € R:rJ C I}, which is an ideal of R.
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Proposition. Let I and J be ideals of the ring R such that J is finitely generated. Let S
be a flat R-algebra. Then (I :gp J)S =15 :5 JS.

Proof. Note that if A C R, A ® S injects into S, since S is flat over R. But its image is
2S. Thus, we may identify A ®r S with 2US.

Let J = (f1, ..., fn)R. Then we have an exact sequece
0—1:gJ— R— (R/I)®"

where the rightmost map sends 7 to the image of (rfy, ..., rf;,) in (R/I)®". This remains
exact when we tensor with S over R, yielding an exact sequence:

0— (I:gJ)S—8— (5/18)%"

where the rightmost map sends s to the image of (sfi, ..., sf) in (S/IS)®". The kernel
of the rightmost map is .S :g JS, and so (I :p J)S =1S:5 JS. O

When R has positive prime characteristic p, we frequently abbreviate ¢ = p¢, and I9
denotes the expansion of I C R to S = R where, however, the map R — R that gives the
structural homomorphism of the algebra is F'¢. Thus, I'? is generated by the set of elements
{i? : i € I'}. Whenever we expand an ideal I, the images of generators for I generate the
expansion. In particular, note that if I = (f, ..., f,)R, then I9 = (fI ... f9)R. Note
that it is not true I'9 consists only of ¢ th powers of elements of I: one must take R-linear
combinations of the ¢th powers. Observe also that I19 C 9, but that I? typically needs
many more generators, namely all the monomials of degree ¢ in the generators involving
two or more generators.

Corollary. Let R be a regular ring and let I and J be any two ideals. Then (I :g J) la] =
It ., gld,

Proof. This is the special case of in which S = R and the flat homomorphism is F¢. [

The following result is a criterion for membership in an ideal of a regular domain of
characteristic p > 0 that is slightly weaker, a priori, than being an element of the ideal.
This criterion turns out to be extraordinarily useful.

Theorem. Let R be a reqular domain and let I C R be an ideal. Letr € R be any element.
Let c € R —{0}. Thenr € I if and only if for all e > 0, cr?” € IP°],

Proof. The necessity of the second condition is obvious. To prove sufficiency, suppose that
there is a counterexample. Then r satisfies the condition and is not in I, and we may
localize at a prime in the support of (I + rR)/I. This give a counterexample in which
(R, m) is a regular local ring. Then cx?” € I'P] for all e > ¢ implies that

e

ceIP) g (zR)IPT = (I:5 zR)PT C m[PT C P



4

for all e > eg, and so ¢ € ﬂe>eo mP". But this is 0, since the intersection of the powers of
m is 0 in any local ring, contradicting that ¢ £ 0. [

We can now give a characteristic p proof of the Briancon-Skoda Theorem, which we
restate:

Theorem (Briangon-Skoda). Let R be a regular ring of positive prime characteristic p.
Let I be an ideal generated by n elements. Then for every positive integer k, Intk=1 C I*,

Proof. If n = 0 then I = (0) and there is nothing to prove. Assume n > 1. Suppose
w € Intk=1 _ J¥ Then we can preserve this while localizing at some prime ideal, and so
we may assume that R is a regular domain. By part (f) of theTheorem on the first page
of the Lecture Notes of September 15, the fact that v € I™tk—1 implies that there is an
element ¢ € R — {0} such that cu®™ € (I"**=1)N for all N. In particular, this is true
when N = ¢ = p®, a power of the characteristic. Let I = (f1, ..., f,). We shall show
that (I"+tk=1)2 C (I*)l9l. A typical generator of (I"+*=1)9 has the form f{* --. fo» where
S iai=(n+k—1)g Forevery i, 1 <i < n, we can use the division algorithm to write
a; = bjqg+r; where b € Nand 0 <r; < q—1. Then

(n—H{:—l)q:Zai = (Zbi)q—l—zri < (Zbi)q4‘n(q—1)

which yields

n

(Zbi)qz(n+k—1)q—nq+n=(k—1)Q+n

and so } ;b > k—1+4+ % >k—1, and this shows that S bi >k, as required [



