
Math 711: Lecture of October 18, 2006

If I ⊆ J and J is integral over I, we call I a reduction of J . With this terminology, we
have shown that if (R, m, K) is local with K infinite, every ideal I ⊆ m has a reduction
with an(I) generators, and one cannot do better than this whether K is infinite or not.

We have previously defined analytic spread for ideals of local rings. We can give a global
definition as follows: if R is Noetherian and I is any ideal of R, let

an(I) = sup{P ∈ Spec (R) : an(IRP )},

which is bounded by the the number of generators of I and also by the dimension of R.

The Briançon-Skoda theorem then gives at once:

Theorem. Let R be regular and I an ideal. Let n = an(I). Then for all k ≥ 1, In+k−1 ⊆
Ik.

Proof. If the two are not equal, this can be preserved while passing to a local ring of R.
Thus, without loss of generality, we may assume that R is local. The result is unaffected by
replacing R by R(t), if necessary. Thus, we may assume that the residue class field of R is
infinite. Then I has a reduction I0 with n generators. From the form of the Briançon-Skoda
theorem that we have already proved, we have that In+k−1 = In+k1

0 ⊆ Ik
0 ⊆ I. �

The intersection of all ideals I0 in I such that I is integral over I0 is called the core of
I. It is not immediately clear that the core is nonzero, but we have:

Theorem. Let R be regular local with infinite residue class field, and let I be a proper
ideal with an(I) = n. Then the core of I contains In.

Proof. If I is integral over I0 then they have the same analytic spread, and I0 has a
reduction I1 with n generators. Then In = In

0 = In
1 ⊆ I1 ⊆ I0, and so In is contained in

all such I0. �

We next want to give a proof of the Briançon-Skoda theorem in characteristic p that is,
in many ways, much simpler than the proof we have just given. The characteristic p result
can be used to prove the equal characteristic 0 case as well.

Recall that when x1, . . . , xd is a regular sequence on M , we require not only that xi is
a nonzerodivisor on M/(x1, . . . , xi−1)M for 1 ≤ i ≤ d, but also that (x1, . . . , xd)M 6= M .
If (x1, . . . , xd) has radical m in the lcoal ring (R, m, K), this is equivalent to the assertion
mM 6= M , for otherwise we get that mtM = M for all t, and for large t, mt ⊆ (x1, . . . , xd).

Note that when x1, . . . , xd is a regular sequence in a ring R and M is flat, we continue
to have that xi is a nonzerodivisor on M/(x1, . . . , xi−1)M for 1 ≤ i ≤ d (by induction on
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d this redues to the case where d = 1 and the fact that x = x1 is a nonzerodivisor on R
give an exact sequence

0 −→ R
·x−→ R

which stays exact when we tensor with M over R). If M is faithfully flat, every regular
sequence in R is a regular sequence on M . If R is regular, this characterizes faithful
flatness:

Lemma. Let (R,m, K) be local. Then M is faithfully flat over R if and only if every
regular sequence in R is a regular sequence on M .

Proof. By the preceding discussion, we need only prove the “if” part. It will suffice to
prove that for every R-module N , TorR

i (N,M) = 0 for all i ≥ 1. Since N is a direct limit
of finitely generated modules, it suffices to prove this when N is finitely generated. We
use reverse induction on i. We have the result for i > dim (R) because dim (R) bounds
the projective dimension of N . We assume the result for i ≥ k + 1, where k ≥ 1, and
prove it for i = k. Since N has a filtration by prime cyclic modules, it suffices to prove the
vanishing when N is a prime cyclic module R/P . Let x1, . . . , xd be a maximal regular
sequene of R in P . Then P is a minimal prime of (x1, . . . , xd), and, in particular, an
associated prime. It follows that we have a short exact sequence

0 → R/P → R/(x1, . . . , xdR) → C → 0

for some module C. By the long exact sequence for Tor, we have

· · · → TorR
k+1(C, M) → TorR

k (R/P,M) → TorR
k

(
R/(x1, . . . , xd)R,M

)
→ · · · .

The leftmost term vanishes by the induction hypothesis and the rightmost term vanishes
by problem 4 of Problem Set #3. �

We write F or FR for the Frobenius endomorphism of a ring R of positive prime charac-
teristic p. Thus F (r) = rp. We write F e or F e

R for the e th iterate of F under composition.
Thus, F e(r) = rpe

.

Corollary. Let R be a regular Noetherian ring of positive prime characteristic p. Then
F e : R → R is faithfully flat.

Proof. The issue is local on primes P of the first (left hand) copy of R. But when we
localize at R − P in the first copy, we find that for each element u ∈ R − P , upe

is
invertible, and this means that u is invertible. Thus, when we local we get F e : RP → RP .
Thus, it suffices to consider the local case. But if x1, . . . , xd is a regular sequence in RP ,
it operates on the right hand copy as xpe

1 , . . . , xpe

d , which is regular in RP . �

If I, J ⊆ R, we write I :R J for {r ∈ R : rJ ⊆ I}, which is an ideal of R.
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Proposition. Let I and J be ideals of the ring R such that J is finitely generated. Let S
be a flat R-algebra. Then (I :R J)S = IS :S JS.

Proof. Note that if A ⊆ R, A⊗R S injects into S, since S is flat over R. But its image is
AS. Thus, we may identify A⊗R S with AS.

Let J = (f1, . . . , fh)R. Then we have an exact sequece

0 → I :R J → R → (R/I)⊕h

where the rightmost map sends r to the image of (rf1, . . . , rfh) in (R/I)⊕h. This remains
exact when we tensor with S over R, yielding an exact sequence:

0 → (I :R J)S → S → (S/IS)⊕h

where the rightmost map sends s to the image of (sf1, . . . , sfh) in (S/IS)⊕h. The kernel
of the rightmost map is IS :S JS, and so (I :R J)S = IS :S JS. �

When R has positive prime characteristic p, we frequently abbreviate q = pe, and I [q]

denotes the expansion of I ⊆ R to S = R where, however, the map R → R that gives the
structural homomorphism of the algebra is F e. Thus, I [q] is generated by the set of elements
{iq : i ∈ I}. Whenever we expand an ideal I, the images of generators for I generate the
expansion. In particular, note that if I = (f1, . . . , fn)R, then I [q] = (fq

1 , . . . , fq
n)R. Note

that it is not true I [q] consists only of q th powers of elements of I: one must take R-linear
combinations of the q th powers. Observe also that I [q] ⊆ Iq, but that Iq typically needs
many more generators, namely all the monomials of degree q in the generators involving
two or more generators.

Corollary. Let R be a regular ring and let I and J be any two ideals. Then (I :R J)[q] =
I [q] :R J [q].

Proof. This is the special case of in which S = R and the flat homomorphism is F e. �

The following result is a criterion for membership in an ideal of a regular domain of
characteristic p > 0 that is slightly weaker, a priori, than being an element of the ideal.
This criterion turns out to be extraordinarily useful.

Theorem. Let R be a regular domain and let I ⊆ R be an ideal. Let r ∈ R be any element.
Let c ∈ R− {0}. Then r ∈ I if and only if for all e � 0, crpe ∈ I [pe].

Proof. The necessity of the second condition is obvious. To prove sufficiency, suppose that
there is a counterexample. Then r satisfies the condition and is not in I, and we may
localize at a prime in the support of (I + rR)/I. This give a counterexample in which
(R, m) is a regular local ring. Then cxpe ∈ I [pe] for all e ≥ e0 implies that

c ∈ I [pe] :R (xR)[p
e] = (I :R xR)[p

e] ⊆ m[pe] ⊆ mpe
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for all e ≥ e0, and so c ∈
⋂

e≥e0
mpe

. But this is 0, since the intersection of the powers of
m is 0 in any local ring, contradicting that c 6= 0. �

We can now give a characteristic p proof of the Briançon-Skoda Theorem, which we
restate:

Theorem (Briançon-Skoda). Let R be a regular ring of positive prime characteristic p.
Let I be an ideal generated by n elements. Then for every positive integer k, In+k−1 ⊆ Ik.

Proof. If n = 0 then I = (0) and there is nothing to prove. Assume n ≥ 1. Suppose
u ∈ In+k−1 − Ik. Then we can preserve this while localizing at some prime ideal, and so
we may assume that R is a regular domain. By part (f) of theTheorem on the first page
of the Lecture Notes of September 15, the fact that u ∈ In+k−1 implies that there is an
element c ∈ R − {0} such that cuN ∈ (In+k−1)N for all N . In particular, this is true
when N = q = pe, a power of the characteristic. Let I = (f1, . . . , fn). We shall show
that (In+k−1)q ⊆ (Ik)[q]. A typical generator of (In+k−1)q has the form fa1

1 · · · fan
n where∑n

i=1 ai = (n + k− 1)q. For every i, 1 ≤ i ≤ n, we can use the division algorithm to write
ai = biq + ri where bi ∈ N and 0 ≤ ri ≤ q − 1. Then

(n + k − 1)q =
n∑

i=1

ai = (
n∑

i=1

bi)q +
n∑

i=1

ri ≤ (
n∑

i=1

bi)q + n(q − 1)

which yields

(
n∑

i=1

bi)q ≥ (n + k − 1)q − nq + n = (k − 1)q + n

and so
∑

i=1 bi ≥ k − 1 + n
q > k − 1, and this shows that

∑n
i=1 bi ≥ k, as required �


