
Math 711: Lecture of October 20, 2006

We next prove illustrate the method of reduction to characteristic p by proving the
Briançon-Skoda theorem for polynomial rings over a field of characteristic 0 by that
method.

We need Noether normalization over a domain, and we first give a lemma:

Lemma. Let A be a domain and let f ∈ A[x1, . . . , xn]. Let N ≥ 1 be an integer that
bounds all the exponents of the variables occurring in the terms of f . Let φ be the A-
automorphism of A[x1, . . . , xn] such that xi 7→ xi + xNi

n for i < n and such that xn maps
to itself. Then the image of f under φ, when viewed as a polynomial in xn, has leading
term axm

n for some integer m ≥ 1, with a ∈ A − {0}. Thus, over Aa, φ(f) is a scalar in
Aa times a polynomial in xn that is monic.

Proof. Consider any nonzero term of f , which will have the form cαxa1
1 xa2

2 · · ·xan
n , where

α = (a1, . . . , an) and cα is a nonzero element in A. The image of this term under φ is

cα(x1 + xN
n )a1(x2 + xN2

n )a2 · · · (xn−1 + xNn−1

n )an−1xan
n ,

and this contains a unique highest degree term: it is the product of the highest degree
terms coming from all the factors, and it is

cα(xN
n )a1(xN2

n )a2 · · · (xNn−1

n )an−1xan
n = cαxan+a1N+a2N2+···+an−1Nn−1

n .

The exponents that one gets on xn in these largest degree terms coming from distinct
terms of f are all distinct, because of uniqueness of representation of integers in base N .
Thus, no two exponents are the same, and no two of these terms can cancel. Therefore,
the degree m of the image of f is the same as the largest of the numbers

an + a1N + a2N
2 + · · ·+ an−1N

n−1

as α = (a1, . . . , an) runs through n-tuples of exponents occurring in nonzero terms of f ,
and for the choice α0 of α that yields m, cα0x

m
n occurs in φ(f), is the only term of degree

m, and and cannot be canceled. It follows that φ(f) has the required form. �

Theorem (Noether normalization over a domain). Let R be a finitely generated
extension algebra of a Noetherian domain A. Then there is an element a ∈ A− {0} such
that Ra is a module-finite extension of a polynomial ring Aa[z1, . . . , zd] over Aa.

Proof. We use induction on the number n of generators of R over A. If n = 0 then R = A.
We may take d = 0. Now suppose that n ≥ 1 and that we know the result for algebras
generated by n − 1 or fewer elements. Suppose that R = A[θ1, . . . , θn] has n generators.
If the θi are algebraically independent over K then we are done: we may take d = n
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and zi = θi, 1 ≤ i ≤ n. Therefore we may assume that we have a nonzero polynomial
f(x1, . . . , xn) ∈ A[x1, . . . , xn] such that f(θ1, . . . , θn) = 0. Instead of using the original
θj as generators of our K-algebra, note that we may use instead the elements

θ′1 = θ1 − θN
n , θ′2 = θ2 − θN2

n , . . . , θ′n−1 = θn−1 − θNn−1

n , θ′n = θn

where N is chosen for f as in the preceding Lemma. With φ as in that Lemma, we have
that these new algebra generators satisfy φ(f) = f(x1 + xN

n , . . . , xn−1 + xNn−1

n , xn) which
we shall write as g. We replace A by Aa, where a is the coefficient of xm

n in g. After
multiplying by 1/a, we have that g is monic in xn with coefficients in Aa[x1, . . . , xn−1].
This means that θ′n is integral over Aa[θ′1, . . . , θ′n−1] = R0, and so Ra is module-finite
over R0. Since R0 has n− 1 generators over Aa, we have by the induction hypothesis that
(R0)b is module-finite over a polynomial ring Aab[z1, . . . , zd−1] ⊆ (R0)b for some nonzero
b ∈ A, and then Rab is module-finite over Aab[z1, . . . , zd] as well. �

We can now prove:

Theorem (generic freeness). Let A be a Noetherian domain. Let M be a finitely gen-
erated module over a finitely generated A-algebra R. Then there exists a ∈ A − {0} such
that Ma is Aa-free. In particular, there exists a ∈ A− 0 such that Ra is Aa-free.

Proof. Note that we may localize at an element repeatedly (but finitely many times), since
one can achieve the same effect by localizing at one element, the product of the elements
used. We use Noetherian induction on M and also induction on dim (K ⊗A M), where
K = frac (A). If a module has a finite filtration in which the factors are free, the module
is free. (By induction, this comes down to the case where there are two factors, N , and
M/N . When M/N is free, the short exact sequence 0 → N → M → M/N → 0 is
split, so that M ∼= M/N ⊕ N .) We may take a finite prime cyclic flitration of M , and
so reduce to the case where M = R/P . We may replace R by R/P and so assume that
R = M is a domain. By the Noether Normalization Theorem for domains, we may replace
A by Aa for a ∈ A − {0} and so assume that R is module-finite over a polynomial ring
R0 = A[x1, . . . , xn] over A. We may then replace R by R0, viewing R as a module over
R0. This module has a prime cyclic filtration in which each factor is either A[x1, . . . , xn],
which is already free, or a quotient Bi of it by a nonzero prime ideal, and dim (K⊗AB) < n.
Thus, for each Bi we can choose ai ∈ A− {0} such that (Bi)ai is Aai-free, and localizing
at the product a produces a module with a finite filtration by free modules, which will be
itself free. �

We have the following consequence:

Corollary. Let κ be a field that is finitely generated as a Z-algebra. Then κ is a finite
field. Hence, the quotient of a finitely generated Z-algebra by a maximal ideal is a finite
field.

Proof. The second statement is immediate from the first statement. To prove the first
statement, first suppose that κ has characteristic p > 0. The result that κ is a finite
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algebraic extension of Z/pZ is then immediate from Hilbert’s Nullstellensatz (or Zariski’s
Lemma). If not, then Z ⊆ κ. We can localize at one element a ∈ Z− 0 such that κa = κ
is Za-free. But if G is a nonzero free Za-module and p is a prime that does not divide a,
then pG 6= G. Thus, pκ 6= κ, contradicting that κ is a field. �

Discussion: reduction of the Briançon-Skoda theorem for polynomial rings over fields of
characteristic 0 to the case of positive prime characteristic p. Let K be a field of charac-
teristic 0, let f1, . . . , fn ∈ K[x1, . . . , xd], a polynomial ring over K, let k be a positive
integer, and let g ∈ In+k−1. We want to prove that g ∈ (f1, . . . , fn)k, and we assume
otherwise.

The condition that g ∈ In+k−1 implies that there is an equation

gm + i1g
m1 + · · ·+ im = 0

where each ij ∈ (In+k−1)j = I(n+k−1)j . Thus, for each j we can write ij as a sum of
multiples of monomials of degree (n+k−1)j in f1, . . . , fn: call the polynomials that occur
as coefficients in all these expressions h1, . . . , hN . Let A be the subring of K generated over
the integers Z by all the coefficients of g, f1, . . . , fn and h1, . . . , hN . Thus, the elements
g, f1, . . . , fn, h1, . . . , hN ∈ A[x1, . . . , xd], and if we let IA = (f1, . . . , fn)A[x1, . . . , xn],
the equation (∗) holds in A[x1, . . . , xd], so that g ∈ In+k−1

A in A[x1, . . . , xn].

The idea of the proof is very simple: we want to choose a maximal ideal µ of A and
take images in the polynomial ring κ[x1, . . . , xd], where κ = A/µ. We will then be able
to contradict the characteristic p Briançon-Skoda theorem, which will complete the proof
for polynomial rings in equal characteristic 0. The only obstruction to carrying this idea
through is to maintain the condition g /∈ Ik

A after we kill µ. We can achieve this as follows.
Consider the sort exact sequence:

0 → gA[x1, . . . , xd]/Ik
A → A[x1, . . . , xd]/Ik

A → A[x1, . . . , xd]/(Ik
A, g) → 0.

We can localize at a single element a ∈ A − {0} so that all terms becomes Aa-free. The
first term remains nonzero when we do this, since that is true even if we tensor further
with K over Aa. We may replace A by Aa, and so there is no loss of generality in assuming
that all three modules are A-free. This means that the sequence is split exact over A, and
remains exact when we apply A/µ⊗A . Moreover, the first term remains nonzero. Since
A/µ has characteristic p, we have achieved the contradiction we sought. �

Our next objective is to study multiplicities of modules on ideals primary to the maximal
ideal of a local ring, and connections with integral dependence of ideals.

Let M 6= 0 be a finitely generated module over a local ring (R, m, K) and let I be
an m-primary ideal. Recall that the function HilbM,I(n) = `(M/In+1M), where `(N)
denotes the length of N , agrees with a polynomial in n for n � 0 whose degree is the Krull
dimension d of M (which is the same as the Krull dimension of R/AnnRM). The leading
term of this function has the form

e

d!
nd, where e is a positive integer called the multiplicity



4

of M on I, and which we denote eI(M). If I = m, we refer simply to the multiplicity of
M . In particular, we may consider the multiplicity e(R) = em(R) of R. See the Lecture
Notes from March 17 from Math 615, Winter 2004. Clearly, we may alternatively define

eI(M) = d! lim
n→∞

`(M/In+1M)
nd

.

If M = 0, we make the convention that eI(M) = 0.

Proposition. Let (R, m, K) be local, M a finitely generated R-module of Krull dimension
d, N a finitely generated R-module and I, J m-primary ideals of R.

(a) If A ⊆ AnnRM , then eI(M) is the same as the multiplicity of M regarded as an
(R/A)-module with respect to the ideal I(R/A).

(b) If dim (N) < d, then d! lim
n→∞

`(N/mn+1N)
nd

= 0.

(c) If I ⊆ J are m-primary, eJ(M) ≤ eI(M).

(d) If dim (M) = 0, eI(M) = `(M)

(e) If dim (M) > 0, then for any m-primary ideal J of R, eI(JM) = eI(M).

(f) If M ⊆ N where N is a finitely generated R-module, and Mn = InN ∩M , then

eI(M) = d! lim
n→∞

`(M/Mn+1)
dn

.

In case dim (M) < d, the limit is 0.

(g) If M has a finite filtration with factors Ni, then eI(M) is the sum of the eI(Ni) for
those values of i such that Ni has Krull dimension d.

Proof. The statement in (a) is immediate from the definition, since In+1M = (IR/A)n+1M .

To prove part (b), simply note that `(N/mn+1N) is eventually a polynomial in n of
degree dim (N) < d.

For (c), note that if I ⊆ J , then In+1 ⊆ Jn+1 so that there is a surjection M/In+1M �
M/Jn+1M , and `(M/In+1M) ≥ `(M/Jn+1M) for all n.

In the case of (d), In+1M = 0 for n � 0, while 0! = n0 = 1.

To prove (e), choose a positive integer c such that Ic ⊆ J . Then `(JM/In+1JM) =
`(M/In+1JM) − `(M/JM) ≤ `(M/In+1+cM . The last length is given for n � 0 by a

polynomial with leading term
eI(M)

d!
nd, since substituting n + c for n in a polynomial

does not change its leading term. This shows eI(JM) ≤ eI(M). On the other hand,

`(M/In+1JM) − `(M/JM) ≥ `(M/In+1M) − `(M/JM). When we multiply by
d!
nd

and
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take the limit, the constant term `(M/JM) yields 0 (note that this argument fails when
d = 0). This shows that eI(JM) ≥ eI(M).

For part (f), note that by the Artin-Rees lemma, there is a constant c such that
In+cN ∩M ⊆ InM , so that In+cM ⊆ In+cN ∩M ⊆ InM . Thus, the limit is trapped
between

d! lim
n→∞

`(M/In+1M)
nd

and

d! lim
n→∞

`(M/In+c+1M)
nd

.

Again, the leading term of the Hilbert polynomial does not change when we substitute
n + c for n, and so these two limits are both eI(M) when d = dim (M), and 0 when
dim (M) < d.

Finally, for part g, we may reduce by induction to the case of filtrations with two
factors, so that we have a short exact sequence 0 → N1 → M → N2 → 0. Then for each n
we have a short exact sequence 0 → N)1/(In+1M∩N1) → M/In+1M → N2/In+1N2 → 0,
so that

`(M/In+1M) = `
(
N1/(In+1M ∩N1)

)
+ `

(
N2/In+1N2

)
.

We may multiply by d!/nd and take the limit of both sides as n →∞, using part (b) and
(f) of the Proposition. �

Corollary. Let (R, m, K) be local, M 6= 0 finitely generated of Krull dimension d, and I
an m-primary ideal. Then

eI(M) =
∑

P∈Ass(M) with dim(R/P )=d

`RP
(MP )eI(R/P ).

Proof. If we take a finite filtration of M by prime cyclic modules and apply part (g) of
the Proposition above, the only primes P for which the corresponding cyclic modules
R/P make a nonzero contributions are those primes, necessarily in Supp (M), such that
dim (R/P ) = d, and these are the same as the primes in Ass (M) such that dim (R/P ) =
d. It therefore suffices to see, for each such P , how many times R//P occurs in such
a filtration. A priori, it is not even clear that the number cannot vary. However, if
we localize at P , all terms different from R/P become 0, and the remaining copies of
(R/P )P

∼= RP /PRP give a filtratiion of MP by copies of the residue class field of RP .
Hence, the number of times R/P occurs in any prime cyclic flitration of M is `RP

(MP ). �

Remark. In the statement of the Corollary, we may write e(MP ) instead of `RP
(MP ),

where e(MP ) is the multiplicity of MP over RP with respect to the maximal ideal, by part
(d) of the Proposition.



6

Theorem. Let (R, m, K) be local and I ⊆ J m-primary ideals such that J is integral over
I. Then for every finitely generated R-module M of positive Krull dimension, eI(M) =
eJ(M).

Proof. The condition that J is integral over I implies that for some integer k, Jk = IJk−1,
and then for all n ≥ 0, Jn+k = In+1Jk−1. See the Theorem on p. 2 of the Lecture Notes
of September 13. Then eJ(M) = eJ(JkM) by part (e) of the Proposition above, and so

eJ(M) = d! lim
n→∞

`(JkM/InJkM)
nd

= d! lim
n→∞

`(M/JkM) + `(JkM/InJkM)
nd

since we have added a constant in the numerator and the denominator is nd with d ≥ 1.
This becomes

d! lim
n→∞

`(M/InJkM)
nd

= d! lim
n→∞

`(M/Jn+kM)
nd

which gives eJ(M) because the leading term of the Hilbert polynomial does not change
when we substitute n + k, where k is a constant, for n. �

Lemma. Let (R, m, K) → (S, n, L) be a faithfully flat map of local rings such that mS
is primary to n. Then for every R-module M , dim (S ⊗R M) = dim (M).

Proof. We use induction on dim (M). We may work with the factors in a prime cyclic
filtration of M , and so reduce to the case M = R/P . Then S/PS is flat over R/P , and
we may replace R by R/P . Thus, we may assume that R is a domain. If dim (R) = 0
m = 0 and n is nilpotent, so that dim (S) = 0. If dim (R) > 0 choose x ∈ m. Then x is
not a zerodivisor in m, and, since S is flat, not a zerodivisor in S. We may make a base
change from R to R/xR. By the induction hypothesis, dim (S/xS) = dim (R/xR), and so
dim (S) = dim (S/xS) + 1 = dim (R/xR) + 1 = dim (R). �

Proposition. Let (R, m, K) → (S, n, L) be a faithfully flat map of local rings such that
n = mS. In particular, this holds when S = R̂ or S = R(t) for an indeterminate t. Let M
be a finitely generated R-module, and I an m-primary ideal. Then eI(M) = eIS(S⊗R M).

Proof. Quite generally, when S is flat over R and N has a finite filtration with factors Ni,
then S⊗M has a finite filtration with factors S⊗R Ni. Since M/In + 1M has a filtration
with `(M/In+1M factors all equal to K = R/m, it follows that (S ⊗R M)/(IS)n+1M ∼=
S ⊗R (M/In+1M) has a filtration with `(M/In+1M) factors equal to S ⊗K ∼= S/mS =
S/n = L, and so `S

(
(S ⊗R M)/(IS)n+1M

)
= `(M/In+1M). S ⊗R M and M have the

same dimension, by the Lemma, the result is immediate. �

This means that questions about multiplicities typically reduce to the case where
the ring has an infinite residue field, and likewise to the case where the ring is complete.
Since ideals primary to the maximal ideal in a local ring (R, m, K) have analytic spread
d = dim (R), when K is infinite each m-primary ideal will be integral over a d-generator
ideal which must, of course, be generated by a system of parameters. Hence, multiplicities
can, in general, be computed using ideals that are generated by a system of parameters,
and we shall be particularly interested in this case.


