
Math 711: Lecture of October 23, 2006

One of our goals is to discuss what is known about the following conjecture of C. Lech,
which has been an open question for over forty years.

Conjecture. If R → S is a flat local map of local rings, then e(R) ≤ e(S).

This is open even in dimension three when S is module-finite and free over R. Note
that one can immediately reduce to the case where both rings are complete.

Under mild conditions, a local ring R of multiplicity 1 is regular: it suffices if the
completion R̂ has no associated prime P such that dim (R̂/P ) < dim (R̂). Therefore, the
following result is related to Lech’s conjecture:

Theorem. If S is faithfully flat over R and S is regular then R is regular. In particular,
if (R, m, K) → (S, n, L) is a flat local map of local rings and S is regular, then R is
regular.

Proof. The second statement implies the first, for if P is any prime of R then some prime
Q of S lies over P , and we can apply the second statement to RP → SQ to conclude that
RP is regular.

To prove the second statement, let

(∗) · · · → Gn → · · · → G1 → G0 → R → R/m → 0

be a minimal resolution of R/m over R. Then the matrix αi of the map Gi → Gi−1 has
entries in m for all i ≥ 1. Since S is R-flat, the complex obtained by applying S ⊗R ,
namely

(∗∗) · · · → S ⊗R Gn → · · · → S ⊗R G1 → S ⊗R G0 → S/mS → 0

gives an S-free resolution of S/mS over R. Moreover, the entries of the matrix of the map
S ⊗Gi → S ⊗R Gi−1 are simply the images of the entries of the matrix αi in S: these are
in n, and so the complex given in (∗∗) is a minimal free resolution of S/mS over S. Thus,
all of its terms are eventually 0, and this implies that all of the terms of (∗) are eventually
0. Hence, K has finite projective dimension over R, which implies that R is regular. �

Before treating Lech’s conjecture itself, we want to give several other characterizations
of eI(M) when I is generated by a system of parameters. There is a particularly simple
characterization in the Cohen-Macaulay case. We first recall some facts about regular
sequences. The results we state in the Proposition below are true for an arbitrary regular
sequence on an arbitrary module. However, we only indicate proofs for the situation where
R is local, M is a finitely generated R-module, and x1, . . . , xd are elements of the maximal
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ideal of R. The proofs are valid whenever we are in a situation where regular sequences are
permutable, which makes the arguments much easier. (There is a treatment of the case
where the regular sequence is not assumed to be permutable in the Extra Credit problems
in Problem Sets #2 and #3 from Math 615, Winter, 2004. It is assumed that M = R
there, but the proofs are completely unchanged in the module case.) Recall that, in all
cases, by virtue of the definition, the fact that x1, . . . , xd is a regular sequence on M
implies that (x1, . . . , xd)M 6= M .

Proposition. Let x1, . . . , xd ∈ R, let I = (x1, . . . , xd)R, and let M be an R-module.

(a) Let t1, . . . , td be nonnegative integers. Then x1, . . . , xd is a regular sequence if and
only if xt1

1 , . . . , xtd

d is a regular sequence on M .

(b) If x1, . . . , xd is a regular sequence on M , and a1, . . . , ad are nonnegative integers,
then xa1

1 · · ·xad

d w ∈ (xa1+1
1 , . . . , xad+1

d )M implies that w ∈ (x1, . . . , xd)M .

(c) If x1, . . . , xd is a regular sequence on M , µ1, . . . , µN are the monomials of degree n

in x1, . . . , xd, and w1, . . . , wN are elements of M such that
∑N

j=1 µjwj ∈ In+1M ,
then every wj ∈ IM .

(d) If x1, . . . , xd is a regular sequence on M , then grI(M) may be identified with

(M/IM)⊗R/I (R/I)[X1, . . . , Xd],

where the Xj are indeterminates and for nonnegative integers a1, . . . , ad such that∑d
j=1 aj = n, the image of xa1

1 · · ·xad

d M in InM/In+1M corresponds to

(M/IM)Xa1
1 · · ·Xad

d .

(e) If x1, . . . , xd is a regular sequence on M , then M/In+1M has a filtration in which
the factors are

(
n+d

d

)
copies of M/IM .

Proof. (a) It suffices to prove the statement in the case where just one of ti is different
from 1: we can adjust the exponents on one element at a time. Since R-sequences are
permutable, it suffices to do the case where only td is different from 1, and for this purpose
we may work with M/(x1, . . . , xd−1)M . Thus, we may assume that d = 1, and the
assertion we need is that xt is a nonzerodivisor if and only if x is. Clearly, if xw = 0 then
xtw = 0, while if xtw = 0 for t chosen as small as possible and w 6= 0 then x(xt−1w) = 0.

(b) If all the ai are zero then we are already done. If not, we use induction on the
number of ai > 0. Since we are assuming a situation in which R-sequences on a module
are permutable we may assume that ad > 0. Then

xa1
1 · · ·xad

d w =
d−1∑
j=1

x
aj+1
j wj + xad+1

d wd
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for elements w1, . . . , wd ∈ M . Then

xad

d (xa1
1 · · ·xad−1

d−1 w − xdwd) ∈ (xa1+1
1 , . . . , x

ad−1+1
d−1 )M,

and since xa1+1
1 , . . . , x

ad−1
d−1 , xad

d is also a regular sequence on M , we have that

xa1
1 · · ·xad−1

d−1 w − xdwd ∈ (xa1+1
1 , . . . , x

ad−1+1
d−1 )M.

This yields that
xa1

1 · · ·xad−1
d−1 w ∈ (xa1+1

1 , . . . , x
ad−1+1
d−1 , xd)M,

providing an example in which the number of aj > 0 has decreased. This is a contradiction.

(c) Fix one of the µj = xa1
1 · · ·xad

d . Then in every other µk and in every monomial of de-
gree n+1, at least one xi occurs with exponent ai +1. Thus, µjw ∈ (xa1+1

1 , . . . , xad+1
d )M ,

and wj ∈ IM by part (b).

(d) For each monomial µ̃ in X1, . . . , Xd we write µ for the corresponding monomial
in x1, . . . , xd. We define a map from

InM →
⊕

deg(µ̃)=n

(M/IM)µ̃

by sending
∑

i µjwj 7→
∑

j µ̃jwj , where wj is the image of wj ∈ M in M/IM . This map is
well-defined by part (c), and is obviously surjective. The elements of In+1M are precisely
those elements of M which can be represented as

∑
i µjwj with every wj ∈ IM , and it

follows at once that the kernel of the map is In+1M .

(e) This follows at once from part (d), since we can initially use a filtration with factors
IkM/Ik+1M , 0 ≤ k ≤ n, and then refine it because each of these splits into a direct sum of
copies of M/IM such that the number of copies is the same as the number of monomials

of degree k in X1, . . . , Xd. The number of monomials of degree at most d is
(

n + d

d

)
. �

We next note:

Theorem. If (R, m, K) is local of dimension d, M is Cohen-Macaulay of dimension d
over R, x1, . . . , xd is a regular sequence on M , and I = (x1, . . . , xd), then eI(M) =
`
(
M/(x1, . . . , xd)M

)
.

Proof. By part (e) of the Lemma just above, we have that M/In+1M has a filtration such
that

(1) Every factor is ∼= M/IM .

(2) The number of factors is
(

n + d

d

)
, i.e., is the same as the number of monomials of

degree at most n in d indeterminates X1, . . . , Xd.
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This gives the result, for we then have

`(M/In+1M) =
(

n + d

d

)
`(M/IM),

and the leading term of
(

n + d

d

)
is

nd

d!
. �

Theorem. Let (R, m, K) be module-finite over a regular local ring A such that x1, . . . , xd

is a regular system of parameters of A, and let M be an R-module of dimension d. Let
I = (x1, . . . , xd)R. Then eI(M) is the torsion-free rank of M over A.

Proof. From the definition, it does not matter whether we think of M as an R-module,
or whether we think of it as an A-module with maximal ideal n = (x1, . . . , xd)A. In the
latter case, if ρ is the torsion-free rank of M as an A-module, we have an exact sequence
of A-modules

0 → Aρ → M → C → 0

where C is a torsion A-module, so that dim (C) < d. It follows that

eI(M) = en(M) = ren(A) + 0 = r`(A/(x1, . . . , xd)A
)

= r · 1 = r.

�

Discussion. If R is equicharacteristic, we can always reach the situation of the Theorem
above. The mulltiplicity does not change if we replace R by R̂. But then we can choose a
coefficient field K, and the structure theorems for complete local rings guarantee that R

is module-finite over A = K[[x1, . . . , xd]] ⊆ R̂.

More generally:

Theorem. Let R be module-finite over a Cohen-Macaulay local ring B such that x1, . . . , xd

is a system of parameters for B. Let M be an R-module of dimension d. Let I =
(x1, . . . , xd)R. If B is a domain, eI(M) = `(B/IB)ρ, where ρ is the torsion-free rank
of M over B. When B is not a domain, if there is a short exact sequence

0 → Bρ → M → C → 0

with dim (C) < d, then eI(M) = `(B/IB)ρ.

Proof. `(M/In+1)M is independent of whether one thinks of x1, . . . , xd as in B or in R.
Thus, we can replace R by B. The result is then immediate from our results on additivity
of multiplicity and the fact that when B is Cohen-Macaulay, eI(B) = `(B/I). �

We want to give a different characterization of multiplicities due to C. Lech. If n =
n1, . . . , nd is a d-tuple of nonnegative integers and f is a real-valued function of n, we



5

write lim
n→∞

f(n) = r, where r ∈ R, to mean that for all ε > 0 there exists N such that

for all n = n1, . . . , nd satisfying ni ≥ N , 1 ≤ i ≤ d, we have that |f(n) − r| < ε. One
might also write lim

min n→∞
f(n) = r with the same meaning. If x = x1, . . . , xd is a system

of parameters for R, we temporarily define the Lech multiplicity eL
x(M) to be

lim
n→∞

`
(
M/(xn1

1 , . . . , xnd

d )M
)

n1 · · ·nd
.

We shall show that the limit always exists, is 0 if dim (M) < d, and, with I = (x1, . . . , xd)R,
is eI(M) when dim (M) = d.

We first prove:

Lemma. Let x = x1, . . . , xd, d ≥ 1, be a system of parameters for a local ring (R, m, K)
and let M ′, M , and M ′′ be finitely generated R-modules. Given n = n1, . . . , nd, let
In = (xn1

1 , . . . , xnd

d )R, and let Ln(M) = `(M/InM)/n1 · · ·nd.

(a) If
0 → M ′ → M → M ′′ → 0

is exact, then for any m-primary ideal J ,

`(M ′′/JM ′′) ≤ `(M/JM) ≤ `(M ′/JM ′) + `(M ′′/JM ′′),

i.e.,
0 ≤ `(M/JM)− `(M ′′/JM ′′) ≤ `(M ′/JM ′).

Hence, for all n,
Ln(M ′′) ≤ Ln(M) ≤ Ln(M ′) + Ln(M ′′),

i.e.,
0 ≤ Ln(M)− Ln(M ′′) ≤ Ln(M ′).

Therefore, if the three limits exist,

eL
x(M ′′) ≤ eL

x(M) ≤ eL
x(M ′) + eL

x(M ′′),

If eL
x(M ′) = 0 and eL

x(M ′′) = 0, then eL
x(M) = 0.

(b) If M has a finite filtration with factors Nj we have that for any m-primary ideal J ,
`(M/JM) ≤

∑
j `(Nj/JNj). Hence, for all n, Ln(M) ≤

∑
j Ln(Nj), and eL

x(M) = 0
whenever eL

x(Nj) = 0 for all j.

(c) If dim (M) < d then eL
x(M) = 0.

(d) If 0 → M ′ → M → M ′′ → 0 is exact and dim (M ′) < d, then eL
x(M) and eL

x(M ′′)
exist or not alike, and if they exist they are equal.
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(e) If each of M and M ′ embeds in the other so that the cokernel has dimension < d, then
eL
x(M) and eL

x(M ′) exist or not alike, and they are equal.

Proof. Part (a) follows because we have an exact sequence of finite length modules

0 → M ′/(JM ∩M ′) → M/JM → M ′′/JM → 0 → 0

and JM ∩M ′ ⊇ JM ′, so that

`
(
M ′/(JM ∩M ′)

)
≥ `(M ′/JM ′).

The remaining statements in part (a) follow at once.

Part (b) follows from part (a) by a straightforward induction on the length of the
filtration.

To prove (c) we may use induction on d. If d = 1 then dim (M) = 0, so that
`(M/InM) = `(M) is constant for all sufficiently large n, while the denominator n1 →∞.
If d > 1 we first take a finite prime cyclic filtration of M . Thus, we may assume without
loss of generality that M is a prime cyclic module. If dim (M) = 0, we again have a
constant numerator and a denominator that → ∞, and so we may assume dim (M) > 0.
Since the xi generate a primary ideal, some xi does not kill M = R/Q, and so is a
nonzerodivisor on M . By renumbering, we assume that i = d. Consider n = n1, . . . , nd

and let n− = n1, . . . , nd−1, let x− = x1, . . . , xd−1, and let In− = (xn1
1 , . . . , x

nd−1
d−1 )R.

Then
M

InM
=

M

(In− + xnd

d )M
∼=

M/xnd

d M

In−(M/xnd

d M)
.

Note that M/xnd

d M has a filtration with nd factor modules Nj , 0 ≤ j ≤ nd − 1, where
Nj = xj

dM/xj+1
d M ∼= M/xdM , and so with M = M/xdM , we have that `(M/InM) ≤

nd`(M/In−M). It follows that

(∗)
`(M/InM)
n1 · · ·nd

≤
nd`(M/In−M)
n1 · · ·nd−1nd

=
`(M/In−M)
n1 · · ·nd−1

.

We may view M as a module over R/xnd

d R, and

dim (M) < dim (M) ≤ dim (R)− 1 = dim (R/xnd

d ).

By the induction hypothesis, eL
x−(M) = 0 (working over R/xnd

d R), and it follows from (∗)
that eL

x(M) = 0 as well.

For part (d), note that (a) implies that |Ln(M) − Ln(M ′′)| ≤ Ln(M ′), and we are
assuming that Ln(M ′) → 0 as n →∞.

Finally, for part (e), note that if we have short exact sequences

0 → M ′ → M → C1 → 0 and 0 → M → M ′ → C2 → 0

then from the first we have Ln(M) − Ln(M ′) ≤ Ln(C1) and from the second we have
Ln(M ′)− Ln(M) ≤ Ln(C2). Hence, |Ln(M)− Ln(M ′)| ≤ max{Ln(C1), Ln(C2)} → 0 as
n →∞. �


