
Math 711: Lecture of October 25, 2006

Proposition. Let M be an R-module. Let

(a) If M has a finite filtration with factors Nj, 1 ≤ j ≤ s, and x is a nonzerodivisor on
every Nj, then M/xM has a filtration with s factors Nj/xNj, and M/xnM has a
filtration with ns factors: there are n copies of every Nj/xNj, 1 ≤ j ≤ s.

(b) If x1, . . . , xd is a regular sequence on M and n1, . . . , nd are nonnegative integers,
then M/(xn1

1 , . . . , xnd

d )M has a filtration by n1 · · ·nd copies of M/(x1, . . . , xd)M .

Proof. (a) By induction on the number of factors, this comes down to the case where there
are two factors. That is, one has 0 → N1 → M → N2 → 0. This has an isomorphic
subcomplex 0 → xN1 → xM → xN2 → 0, and the desired statement now follows from
the exactness of the quotient complex. It follows as well that M/xnM has a filtration by
the modules Nj/xnNj , and each of these has a filtration with n factors, xkNj/xk+1Nj

∼=
Nj/xNj , 0 ≤ k ≤ n− 1.

For part (b) we use induction on d. The case d = 1 has already been handled in part (a).
For the inductive step, we know that M/(xn1

1 , . . . , x
nd−1
d−1 )M has a filtration by n1 · · ·nd−1

copies of M/(x1, . . . , xd−1)M , and x = xd is a nonzerodivisor on each of these. The result
now follows from the last statement in part (a), with n = nd. �

We next observe:

Lemma. Let R be a Noetherian ring and let M be a finitely generated R-module of di-
mension d > 0.

(a) M contains a maximum submodule N such that dim (N) < d, and M/N has pure
dimension d, i.e., for every P ∈ Ass (M/N), dim (R/P ) = d.

(b) Let W be a multiplicative system of R consisting of nonzerodivisors and suppose that M
and M ′ are R-modules such that W−1M ∼= W−1M ′. Then there exist exact sequences
0 → M ′ → M → C1 → 0 and 0 → M → M ′ → C2 → 0 such that each of C1 and C2

is killed by a single element of W .

(c) Let (R, m, K) be a complete local ring of dimension d, and let M be a finitely generated
faithful R-module of pure dimension d. Let x1, . . . , xd be a system of parameters for
R. If R contains a field there is a coefficient field K ⊆ R for R, and M is a torsion-
free module over A = K[[x1, . . . , xd]], so that for some integer ρ > 0, M and Aρ

become isomorphic when we localize at W = A− {{0}.

In mixed characteristic, there exists Cohen-Macaulay ring A ⊆ R containing x1, . . . , xd

as a system of parameters such that A has the form B/(f) where B is regular and
f 6= 0. Moreover, if W is the multiplicative system of nonzerodivisors in A then W
consists of nonzero divisors of on M and W−1M is a finite direct sum of modules of
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the form W−1B/gjB where each gj is a divisor of f . In particular, M ′ =
⊕

j B/gjB is
a Cohen-Macaulay module over A of pure dimension d such that W−1M and W−1M ′

are isomorphic as A-modules.

Proof. To prove (a), first note that since M has ACC on submodules, it has a maximal
submodule N of dimension less than d: it may be 0. If N ′ is another submodule of M of
dimension < d, then d > dim (N ⊕N ′) ≥ dim (N + N ′), and so N + N ′ ⊆ M contradicts
the maximality of N . Thus, N contains every submodule of M of dimension < d. If M/N
had any nonzero submodule of dimension less than d, its inverse image in M would be
strictly larger than N and of dimension less than d as well.

(b) Since M ⊆ W−1M ∼= W−1M ′, we have an injection M ↪→ W−1M ′. Let u1, . . . , uh

be generators of M . Suppose that ui maps to vi/wi, 1 ≤ i ≤ h, where vi ∈ M ′ and wi ∈ W .
Let w = w1 · · ·wh. Then M ∼= wM ↪→

∑
i Rvi ⊆ M ′. The map W−1M → W−M ′ that

this induces is still an isomorphsim, since w is a unit in W−1R. It follows that the cokernel
C1 of the map M → M ′ that we constructed is such that W−1C1 = 0. Since C1 is finitely
generated, there is a single element of W that kills C1. An entirely similar argument yields
0 → M ′ → M → C2 such that C2 is killed by an element of W .

(c) Let u1, . . . , uh generate M . Then the map R → M⊕h sending r 7→ (ru1, . . . , ruh)
is injective. It follows that Ass (R) ⊆ Ass (M⊕h) = Ass (M), so that R is also of pure
dimension d. Choose a field or discrete valuation ring V that maps onto a coefficient ring
for R (so that the residue class field of V maps isomorphically to the residue class field of
R), and let X1, . . . , Xd be formal indeterminates over V . Then the map V → R extends
uniquely to a continuous map B = V [[X1, . . . , Xd]] → R such that Xi 7→ xi, 1 ≤ i ≤ d.
Let MB be the maximal ideal of B. Since the map B → R induces an isomorphism of
residue class fields, and since R/mBR has finite length over B (the xi generate an m-
primary ideal of R), R is module-finite over the image A of B in R. Moreover, we must
have dim (A) = dim (R).

In the equal characteristic case, where V = K is a field, we must have B ∼= A =
K[[x1, . . . , xd]]. Moreover, M must be torision-free over A, since a nonzero torsion sub-
module would have dimension smaller than d. Hence M and Aρ, where ρ is the torsion-free
rank of M over A, become isomorphic when we localize at A− {0}.

We suppose henceforth that we are in the mixed characteristic case. We know that
the ring A has pure dimension d. It follows that A = B/J , where J is an ideal all of
whose associated primes in B have height one. Since B is regular, it is a UFD. Height one
primes are principal, and any ideal primary to a height one prime has the form gk, where
g generates the prime and k is a nonnegative integer. It follows that A = B/fB, where
f = fk1

1 · · · fkk

h is the factorization of f into prime elements. Let W be the multiplicative
system consisting of the complement of the union of the fjB. The associated primes of
A are the Pj = fjA, and these are also the associated primes of M . Then W−1A is an
Artin ring and is the product of the local rings AP j : each of these may be thought of as
obtained by killing f

kj

j in the DVR obtained by localizing B at the prime fjB. M , as a
B-module, is then a product of modules over the various APj , each of which is a direct sum
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of cyclic modules of the form B/fs
j B for 1 ≤ s ≤ kj . Each of these is Cohen-Macaulay of

dimension d, and the images the xi form a system of parameters, since each of these rings
is a homomorphic image of A. �

We can now prove:

Theorem. Let (R, m, K) be a local ring of dimension d and let x1, . . . , xd be a system of
parameters for R. Let I = (x1, . . . , xd)R. Let M be a finitely generated R-module. Then
eL
x(M) = 0 if dim (M) < d, and eL

x(M) = eI(M) if dim (M) = d.

Proof. We have already proved that eL
x(M) = 0 if dim (M) < d: this is part (c) of the

Lemma on p. 5 of the Lecture Notes from October 23. Now suppose that dim (M) = d.
We may complete R and M without changing either multiplicity. Let N be the maximum
submodule of M of dimension smaller than d. Then we may replace M by M/N (cf. part
(d) of the Lemma on p. 5 of the the Lecture Notes from October 23). Thus, we may assume
that M has pure dimension d. We may replace R by R/AnnRM and so assume that M
is faithful. We view R as module-finite over A as in part (c) of the preceding Lemma.
Since A contains x1, . . . , xd, we may replace R by A and I by (x1, . . . , xd)A. By parts (b)
and (c) of the preceding Lemma, there is a Cohen-Macaulay A-module M ′ of dimension
d such that each of M and M ′ embeds in the other with cokernel of dimension smaller
than d. Thus, by part (e) of the Lemma on p. 5 of the Lecture Notes of October 23, we
need only prove the result for M ′. Hence, we may assume that M is Cohen-Macaulay.
But it follows from the part (b) of the Proposition at the beginning of this lecture that
eL
x(M) = `(M/IM) when M is Cohen-Macaulay, and we also know that eI(M) = `(M/M)

in this case. �

We next review the definition and some basic properties of the Koszul complex

K•(x1, . . . , xn; M),

where x1, . . . , xn ∈ R and M is an R-module.

We first consider the case where M = R. We let K1(x1, . . . , xn; R) be the free module
G with free basis u1, . . . , un. As a module, we let Ki(x1, . . . , xn; R) be the free module∧i(G), which has a free basis with

(
n

i

)
generators uj1 ∧ · · · ∧ uji , j1 < · · · < ji. The

differential is such that dui = xi. More generally, the formula for the differential d is

(∗) d(uj1 ∧ · · · ∧ uji
) =

i∑
t=1

(−1)t−1xjt
uj1 ∧ · · · ∧ ujt−1 ∧ ujt+1 · · · ∧ uji

.

Consider an N-graded skew-commutative R-algebra Λ. (This is an N-graded associative
algebra with identity such that for any two forms of degree f , g of degree h and k respec-
tively, gf = (−1)hkgf . That is, elements of even degree are in the center, and multiplying
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two elements of odd degree in reverse order reverses the sign on the product). An R-linear
map d of Λ into itself that lowers degrees of homogeneous elements by one and satisfies

(#) d(uv) = (du)v + (−1)deg(u)u dv

when u is a form is called an R-derivation of Λ.

Then
∧•(G) is an N -graded skew-commutative R-algebra, and it is easy to verify that

the differential is an R-derivation. By the R-bilinearity of both sides in u and v, it suffices
to verify (#) when u = uj1 ∧ · · · ∧ ujh

and v = uk1 ∧ · · · ∧ uki
with j1 < · · · < jh and

k1 < · · · < ki. It is easy to see that this reduces to the assertion (∗∗) that the formula (∗)
above is correct even when the sequence j1, . . . , ji of integers in {1, 2, . . . , n} is allowed
to contain repetitions and is not necessarily in ascending order: one then applies (∗∗) to
j1, . . . , jh, k1, . . . , ki. To prove (∗∗), note that if we switch two consecutive terms in the
sequence j1, . . . , ji every term on both sides of (∗) changes sign. If the j1, . . . , ji are
mutually distinct this reduces the proof to the case where the elements are in the correct
order, which we know from the definition of the differential. If the elements are not all
distinct, we may reduce to the case where jt = jt+1 for some t. But then uj1 ∧· · ·∧uji = 0,
while all but two terms in the sum on the right contain ujt

∧ ujt+1 = 0, and the remaining
two terms have opposite sign.

Once we know that d is a derivation, we obtain by a straightforward induction on k
that if v1, . . . , vk are forms of degrees a1, . . . , ak, then

(∗ ∗ ∗) d(v1 ∧ · · · ∧ vi) =
∑
t=i

(−1)a1+···+at−1vj1 ∧ · · · ∧ vjt−1 ∧ dvjt
∧ vjt+1 ∧ · · · ∧ vji

.

Note that the formula (∗) is a special case in which all the given forms have degree 1.

It follows that the differential on the Koszul complex is uniquely determined by what
it does in degree 1, that is, by the map G → R, where G is the free R-module K1(x; R),
together with the fact that it is a derivation on

∧
(G). Any map G → R extends uniquely

to a derivation: we can choose a free basis u1, . . . , un for G, take the xi to be the values of
the map on the ui, and then the differential on K•(x1, . . . , xn; R) gives the extension we
want. Uniqueness follows because the derivation property forces (∗ ∗ ∗) to hold, and hence
forces (∗) to hold, thereby determining the values of the derivation on an R-free basis.

Thus, instead of thinking of the Koszul complex K(x1, . . . , xn; R) as arising from a
sequence of elements x1, . . . , xn of R, we may think of it as arising from an R-linear map
of a free module θ : G → R (we might have written d1 for θ), and we write K•(θ; R) for the
corresponding Koszul complex. The sequence of elements is hidden, but can be recovered
by choosing a free basis for G, say u1, . . . , un, and taking xi = θ(ui), 1 ≤ i ≤ n. The
exterior algebra point of view makes it clear that the Koszul complex does not depend
on the choice of the sequence of elements: only on the map of the free module G → R.
Different choices of basis produce Koszul complexes that look different from the “sequence
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of elements” point of view, but are obviously isomorphic. In particular, up to isomprphism,
permuting the elements does not change the complex.

We write K•(x1, . . . , xd; M), where M is an R-module, for K•(x1, . . . , xn; R) ⊗ M .
The homology of this complex is denoted H•(x1, . . . , xn; M). Let x = x1, . . . , xn and Let
I = (x)R.

We have the following comments:

(1) The complex is finite: if M is not zero, it has length n. The i the term is the direct

sum of
(

n

i

)
copies of M . Both the complex and its homology are killed by AnnRM .

(2) The map from degree 1 to degree 0 is the map Mn → M sending

(u1, . . . , un) 7→ x1u1 + · · ·xnun.

The image of the map is IM , and so H0(x1, . . . , xd; M) ∼= M/IM .

(3) The map from degree n to degree n− 1 is the map M → Mn that sends

u 7→ (x1u1, −x2u2, · · · ,±xnun),

and so Hn(x1, . . . , xn; M) ∼= AnnMI.

(4) Given a short exact sequence of modules 0 → M ′ → M → M ′′ → 0 we may tensor
with the free complex K•(x1, . . . , xn; R) to obtain a short exact sequence of complexes

K•(x1, . . . , xn; M ′) → K•(x1, . . . , xn; M) → K•(x1, . . . , xn; M ′′) → 0.

The snake lemma then yields a long exact sequence of Koszul homology:

· · · → Hi(x; M ′) → Hi(x; M) → Hi(x; M ′′) → Hi−1(x; M ′) → · · ·

→ H1(x; M ′) → H1(x; M) → H1(x; M ′′) → M ′/IM ′ → M/IM → M ′′/IM ′′ → 0

(5) I kills Hi(x; M) for every i and every R-module M . It suffices to see that xd kills the
homology: the argument for xi is similar. Let z ∈ Ki(x; M), and consider z ∧ un ∈
Ki+1(x; M). Then

(∗) d(z ∧ un) = dz ∧ un + (−1)ixnz.

Hence, if z is a cycle, d(z ∧ un) = (−1)ixnz, which shows that xnz is a boundary.

(6) Let x− denote x1, . . . , xn−1. Let G− ⊆ G be the free module on the free basis
u1, . . . , un−1. Then K•(x−; M) may be identified with∧•(G−)⊗R M ⊆

∧•(G)⊗M = K•(x; M).

This subcomplex is spanned by all terms that involve only u1, . . . , un−1. The quotient
complex my be identified with K•(x−;M) as well: one lets uj1 ∧ · · · ∧ uji−1 ∧ un ⊗ w
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in degree i, where the jν < n and w ∈ W , correspond to uj1 ∧ · · ·∧uji−1 ⊗w in degree
i− 1. This gives a short exact sequence of complexes

0 → K•(x−; M) → K•(x; M) → K•−1(x−; M).

This in turn leads to a long exact sequence for homology:

· · · → Hi(x−; M) → Hi(x−; M) → Hi(x; M) → Hi−1(x−; M) → Hi−1(x−; M) → · · · .

The maps δi : Hi(x−; M) → Hi(x−;M) and δi−1 : Hi−1(x−; M) → Hi−1(x−;M)
are connecting homomorphisms. They may be computed as follows: a cycle z in the
homology of the quotient complex K•(x−; M) in degree i can be lifted to Ki+1(x; M)
as z ∧ un, and the differential takes this to (−1)ixnz by the argument given in (5).
Hence, δi is the endomorphism given by multiplication by (−1)ixi. It follows that we
have short exact sequences:

0 → Hi(x−; M)
xnHi(x−; M)

→ Hi(x; M) → AnnHi−1(x−; M)xn → 0

for every i.

We next want to show that multiplicities with respect to a system of parameters can
be computed using Koszul homology. Note that the matrices of the maps in the Koszul
complex K•(x;M) have entries in I = (x)R, so that for all every Ki(x; M) maps into
IKi−1(x; M) and for all s, IsKi(x; M) maps into Is+1Ki−1(x; M).

Theorem. Let M be a finitely generated module over a Noetherian ring R, let x =
x1, . . . , xn ∈ R and let I = (x)R. Then for all sufficiently large h � n, the subcom-
plex

0 → Ih−nKn(x; M) → · · · → Ih−iKi(x; M) → · · · → Ih−1K1(x; M) → IhK0(x; M) → 0

of the Koszul complex K•(x; M) is exact (not just acyclic).

Proof. We abbreviate Ki = Ki(x; M). Since there are only finitely many spots where the
complex is nonzero, the assertion is equivalent to the statement that for fixed i, every cycle
in Ik+1Ki is the boundary of an element in IkKi+1 for all k � 0.

Let Zi denote the module of cycles in Ki. By the Artin-Rees lemma, there is a constant
ci such that for all k ≥ ci, IkKi ∩ Zi = Ik−ci(IciKi ∩ Zi). In particular, for all k ≥ ci,
Ik+1Ki ∩ Zi = I(IkKi ∩ Zi). For any k, the complex IkK•(x; M)., i.e.,

0 → IkKn(x; M) → · · · → IkKi(x; M) → · · · → IkK1(x; M) → IkK0(x; M) → 0,

is the same as K•(x; IkM), and so its homology is killed by I. Thus, a cycle in IkKi,
which is the same as an element of IkKi ∩ Zi, when multiplied by any element of I, is a
boundary. But for k � 0, Ik+1Ki ∩ Z = I(IkK ∩ Z), which is in the image of IkKi+1, as
required. �


