
Math 711: Lecture of October 27, 2006

Discussion: the difference operator. Consider the ring Q[n] of polynomials in one variable
n over the rational numbers. We define a Q-linear function τ from this ring to itself by
τ
(
P (n)

)
= P (n − 1). Note that τ preserves degree and leading term. We write 1 for the

identity map on Q[n], and ∆ for the operator 1− τ that sends P (n) 7→ P (n)− P (n− 1).
Note that ∆ lowers degree by one (if the degree is positive) and kills scalars. Moreover,
if the leading term of P (n) is and, where a ∈ Q, the leading term of ∆

(
P (n)

)
is adnd−1,

which is similar to the behavior of the differentiation operator. In particular, if P (n) has
degree d, ∆dP (n) is the scalar d!a, where a is the leading coefficient of P (n). For each
constant integer c ≥ 0, τ c

(
P (n)

)
= P (n − c). By the binomial theorem, for each k the

operator

∆k = (1− τ)k = 1−
(

k

1

)
τ +

(
k

2

)
τ2 − · · ·+ (−1)k

(
k

k

)
τk

so that

(#) ∆k
(
P (n)

)
= P (n)− kP (n− 1) + · · ·+ (−1)i

(
k

i

)
P (n− i) + · · ·+ (−1)kP (n− k).

We also note:

Lemma. If 0 → Nb → · · · → Na → 0 is a bounded complex of modules of finite length,
the alternating sum of the lengths

∑b
i=a(−1)i`(Ni) is the same as

∑b
i=a(−1)i`

(
Hi(N•)

)
.

Proof. Let Bi be the image of Ni+1 in Ni and Zi the kernel of Ni → Ni−1, so that
Hi = Hi(N•) = Zi/Bi. Then we have short exact sequences

0 → Zi → Ni → Bi−1 → 0 and 0 → Bi → Zi → Hi → 0

for all i. It will be convenient to think of our summations as taken over all integers i ∈ Z:
this still makes sense since all but finitely many terms are zero, and will permit a convenient
shift in the summation index. We then have:∑

i

(−1)i`(Hi) =
∑

i

(−1)i
(
`(Zi)− `(Bi)

)
=

∑
i

(−1)i`(Zi) +
∑

i

(−1)i+1`(Bi) =

∑
i

(−1)i`(Zi) +
∑

i

(−1)i`(Bi−1) =
∑

i

(−1)i
(
`(Zi) + `(Bi−1)

)
=

∑
i

(−1)i`(Ni).

�

If (R, m, K) is local and x1, . . . , xd is a system of parameters, then for any finitely
generated R-module M , all the modules Hi(x1, . . . , xd; M) have finite length: each is a
finitely generated module killed by (x1, . . . , xd)R.
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Theorem (Serre). Let (R, m, K) be a local ring of Krull dimension d, and let M be a
finitely generated R-module. Let I = (x1, . . . , xd)R. Then

d∑
i=0

(−1)i`
(
Hi(x1, . . . , xd; M)

)
is eI(M) if dim (M) = d and is 0 if dim (M) < d.

Proof. By the Theorem at the end of the Lecture Notes of October 25, the subcomplex
A(n)
• whose i th term is In−iKi, where Ki = Ki(x1, . . . , xd; M), is exact for all n � 0.

Call the quotient complex Q(n)
• . The long exact sequence of homology coming from the

short exact sequence
0 → A(n)

• → K• → Q(n)
• → 0

shows that Hi(x1, . . . , xd; M) ∼= Hi(Q(n)
• ) for all i if n � 0. Let H(n) denote the Hilbert

polynomial of M with respect to I, which agrees with `(M/In+1M) for all n � 0. Then∑
i

(−1)i`
(
Hi(x1, . . . , xd;M)

)
is the same as ∑

i

(−1)i`
(
Hi(Q(n+1)

• )
)

for all n � 0, and this in turn equals∑
i

(−1)i`(Q(n+1)
i )

by the Lemma just above. Since Q(n+1)
i is the direct sum of

(
d
i

)
copies of M/In+1−iM ,

for n � 0 this is ∑
i

(−1)i

(
d

i

)
H(n− i),

which is ∆d
(
H(n)

)
by the formula (#) in the Discussion at the beginning of this Lecture.

By that same Discussion, this is also d! times the leading coefficient of H(n). �

Discussion: mapping cones. Let φ• : A• → B• be a map of complexes of R-modules, so
that we have a commutative diagram:

· · · di+1−−−−→ Bi
di−−−−→ Bi−1

di−1−−−−→ · · ·

φi

x φi−1

x
· · · δi+1−−−−→ Ai

δi−−−−→ Ai−1
δi−1−−−−→ · · ·
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We define the mapping cone Mφ
• to be the complex such that Mφ

i = Bi

⊕
Ai−1, where

the differential takes bi ⊕ ai−1 7→
(
dibi + (−1)i−1φi−1(ai−1)

)
⊕ δi−1(ai−1). It is easy to

check that Mφ
• is a complex. Note that B• is a subcomplex, and the quotient is A•−1

(the complex A•, but with the indices shifted so that the degree i term is Ai−1). It is
straightforward to check that the mapping cone is a complex.

It is also straightforward to check that K•(x1, . . . , xd; M) is the mapping cone of the
map

φ• : K•(x1, . . . , xd−1; M) → K•(x1, . . . , xd−1; M)

given by multiplication by xd on each module.

We next observe that if
0 → A•

φ−→ B• → C• → 0

is a short exact sequence of complexes, then the homology of the mapping cone Mφ
• of

A• ↪→ B• is the same as H•(C•). The isomorphism is induced by

Mφ
i = Bi ⊕Ai−1 � Bi � Ci.

For a suitable choice of ±, u⊕v is a cycle inMφ
n iff du = ±φ(v). Note that we automatically

have δ(v) = 0, since φ(δ(v)) = d(φ(v)) = ±ddu = 0, and φ is injective. The cycle is
completely determined by u, and u occurs in a cycle iff its image represents a cycle in Ci.
The module of boundaries is d(Bi+1) + φ(Ai) ⊆ Bi, and obviously maps onto the module
of boundaries in Ci. �

Corollary. If xd is not a zerodivisor on M , then

Hi(x1, . . . , xd; M) ∼= Hi(x1, . . . , xd−1; M/xdM)

for all i.

Proof. We apply the discussion of mapping cones when the map φ is injective with A• =
B• = K•(x1, . . . , xd−1, M), and φ = ·xn. The fact that xn is not a zerodivisor on M
implies that the map φ is injective. Note that C• ∼= K•(x1, . . . , xd−1;M/xnM). The
stated result is immediate.

Theorem. Let (R, m, K) be local of dimension d and let x ∈ m be part of a system of
parameters generating a reduction of m. Suppose that x is not a zerodivisor on M . Then
e(M) = e(M/xM), where M/xM is viewed as a module over R/xR.

Proof. Let x1, . . . , xd be a system of parameters generating a reduction I of m, where
x = xn. Then the images of x1, . . . , xd−1 generate a reduction J for m/xR in R/xR.
Thus, e(M) = eI(M), and e(M/xM) = eJ(M/xM), and we may compute each of these
as an alternating sum of lengths of Koszul homology. But the correspondingly indexed
Koszul homology modules are isomorphic by the preceding Corollary. �

Our next goal is to prove that, under mild conditions, rings of multiplicity 1 are regular.
We first need:
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Lemma (Hironaka). Let (R, m, K) be a local domain and let x ∈ R − {0} be such
that xR has a unique minimal prime P . Suppose that R/P is normal and that RP is a
discrete valuation ring in which x generates the maximal ideal PRP . Suppose also that
the normalization S of R is module-finite over R (which is true when R is complete) and
that every minimal prime Q of xS lies over P (which is true if R is universally catenary).
Then R is normal, and P = xR.

Proof. Note that if R is universally catenary, and Q is any minimal prime of xS in S, if P ′

is the contraction of Q to R, the height of P ′ must be one by the dimension formula: R and
S have the same fraction field, and R/P ′ ↪→ S/Q is module-finite, so that the extension
or residue class fields RP ′ → SQ is algebraic. Since P ′ contains x, we must have P ′ = P .

Since RP is a discrete valuation ring, it is normal and so S ⊆ RP . Hence, SP = RP

is already local of dimension one, and SQ is a further localization of dimension one. It
follows that SQ = RP , and that QSQ = PRP . Moreover, since QSQ ∩ S = Q, we have
that PRP ∩ S = Q, and so only one prime Q of S lies over P .

We have that S/Q is contained in the fraction field of R/P , and it is an integral exten-
sion. Since R/P is normal, we must have that S/Q = R/P , and so every residue class in
S/Q can be represented by an element of R. This implies that S = Q+R. We can also see
that xS = Q: we have that xS ⊆ Q, and to check Q ⊆ xS it suffices to show that this is
true after localization at each minimal prime of xS, since S is normal. Q is the only such
prime, and QSQ = PRP = xRP = xSQ. Since S = Q + R, we now have that S = xS + R.
By Nakayama’s lemma, this implies that S = R, so that R is normal. Then P = Q, and
Q = xS = xR. �

We shall say that a module M over a Noetherian ring R has pure dimension d (M
may be equal to R) if for every associated prime P of M , dim (R/P ) = d. An equivalent
condition is that every nonzero submodule of M has dimension d.

Theorem. Let (R, m, K) by a local ring. The R is regular if and only if R has multiplicity
1 and suppose R̂ has pure dimension.

Proof. If R is regular, it is Cohen-Macaulay and its multiplicity is the length when w we
kill a regular system of parameters, which is 1. Moreover, (̂R) is again regular, and so is a
domain. We therefore only need to show the “If” part: we assume that R has multiplicity
1 and R̂ is of pure dimension, and we need to prove that R is regular.

We use induction on dim (R). If dim (R) = 0, then e(R) = `(R) = 1, so that R must be
a field and is regular.

We may replace R by R̂ without affecting any relevant issue. Then

(∗) e(R) =
∑
P

`(RP )e(R/P )

where P runs through all the associated primes of R, each of which is minimal and such
that dim (R/P ) = dim (R), by hypothesis. It follows that there is only one associated
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prime, necessarily minimal, and that RP has length one, and so is a field. This implies
that R is a domain.

If the residue field of R is infinite, we can complete the argument as follows. Choose
x ∈ R so that it is part of system of parameters that generates a reduction of m. If
dim (R) = 1, the e(R) = `(R/xR) = 1, so that R/xR is a field and m = xR, which shows
that R is regular.

If dim (R) ≥ 2, then we still have e(R/xR) = e(R) = 1. Thus, applying (∗) of the
second paragraph to R/xR, we find that xR has a unique minimal prime P in R (a priori,
xR may have embedded primes), that (R/xR)P is a field, so that PRP = xRP , and that
e(R/P ) = 1. By the induction hypothesis, R/P is regular, and, therefore, normal. R
is universally catenary (complete local rings are homomorphic images of regular rings)
and and has a module-finite normalization. Hence, we are in the situation of Hironaka’s
Lemma, and P = xR. Since R/xR is regular, so is R.

If the residue field of R is finite, we may replace R by R(t). The theory of excellent
rings then implies that if we complete again, the hypothesis we need on associated primes is
preserved: the completion of a ring of ring or module of pure dimension has pure dimension
in the excellent case. (One can reduce this to studying the situation when R is an excellent
local domain. The theory of excellent rings then yields that the completion is reduced,
and is such that all minimal primes have quotients of the same dimension.)

An alternative is to take an irreducible polynomial f of large degree over the residue
field K of R, lift it to a monic polynomial g over R, and replace R by R1 = R[x]/(g). This
ring is still complete, and it is module-finite and free over R, so that it has pure dimension.
Killing m gives L = K[x]/(f), which is a field. Therefore the new ring still has multiplicity
one. Once the cardinality of L is sufficiently large, there will exist a system of parameters
of R1 that gives a reduction of the maximal ideal of R1, and we can proceed as above. �


