Math 711: Lecture of October 30, 2006

Examples. Let $R = K[[x, y]]/(x^2, xy)$. This ring has a unique minimal prime, xR, and m = (x, y)R is embedded. The image \overline{x} of x in the ring generates a submodule isomorphic to R/m, which has lower dimension. Then e(R) = e(R/xR) = e(K[[y]]) = 1.

Likewise, if $R = K[[x, y, z]]/(x, y) \cap (z))$, then R has two minimal primes, (x, y)R and zR. Thus, dim $(R) = \dim (R/zR) = \dim (K[[x, y]])$, while the module $zR \cong R/(x, y) \cong K[[z]]$ is one-dimensional. Thus, e(R) = e(R/zR) = e(K[[x, y]]) = 1.

These examples illustrate that a local ring of multiplicity 1 need not be regular. In the first example, $R_{\rm red}$ is a domain. In the second, R is reduced, but not equidimensional.

Finally, consider $R = K[[u, v, x, y, z]]/((u, v) \cap (x, y) \cap z)$. This ring is reduced but not equidimensional. It has dimension 4 (when we kill zR we get K[[u, v, x, y]]), but has two minimal primes with quotients of dimension 3. Consider the ring obtained when we localize at P = (u, v, x, y). The localization S of T = K[[u, v, xy, z]] at (u, v, x, y)Tis regular of dimension 4, and u, v, x, y is a regular system of parameters. Thus, $R_P = S/((u, v) \cap (x, y))$ has two minimal primes with quotients that are regular of dimension 2. It follows that e(R) = 1 while $e(R_P) = 2$. The problem here is that we "localized away" the relevant minimal prime of R that governed its multiplicity.

Discussion: localization. One expects that under mild conditions, $e(R_P) \leq e(R)$. But we only expect this for primes P such that $\dim(R_P) + \dim(R_P) = \dim(R)$. (We always have $\dim(R/P) + \dim(R_P) \leq \dim(R)$. The condition of equality means that P is part of a chain of primes of maximum length, $\dim(R)$, in R.) It is conjectured that in all local rings, whenever $\dim(R_P) + \dim(R_P) = \dim(R)$, one has that $e(R_P) \leq e(R)$.

In studying this problem, one is naturally led to Lech's Conjecture. The result on localization is true if R is excellent (and under various weaker hypotheses), but, so far as I know, remains open in the general case. It would follow, however, from a proof of Lech's Conjecture, which permits a reduction to the case where the ring is complete.

First note:

Lemma. Let P be a prime ideal of a local ring R. Then:

- (a) For every minimal prime Q of $P\hat{R}$, height (Q) = height (P).
- (b) If dim (R/P) + dim (R_P) = dim (R), then there exists a minimal prime Q of PR such that dim (\widehat{R}/Q) + dim (\widehat{R}_Q) = dim (\widehat{R}) .
- (c) If $\widehat{R/P}$ is reduced, then with Q as in part (b) we have that $e(R_P) = e(\widehat{R}_Q)$.

Proof. (a) $R_P \to \widehat{R}_Q$ is faithfully flat, so that dim $(\widehat{R}_Q) \ge \dim(R_P)$. The minimality of Q implies that PR_P expands to a $Q\widehat{R}_Q$ -primary ideal in \widehat{R}_Q , so that a system of parameters for R_P will be a system of parameters for \widehat{R}_Q as well.

For (b), note that the completion of R/P, which is $\widehat{R}/P\widehat{R}$, has the same dimension as R/P, and so has a minimal prime, say $Q/P\widehat{R}$, where Q is prime in \widehat{R} , such that $\dim(\widehat{R}/Q) = \dim(\widehat{R}/P\widehat{R}) = \dim(R/P)$. By part (a), $\dim(\widehat{R}_Q) = \dim(R_P)$ as well.

To prove (c), observe that if $\widehat{R/P}$ is reduced, then so is $\widehat{R}_Q/P\widehat{R}_Q$, which means that PR_P expands to the maximal ideal in \widehat{R}_Q . The equality of multiplicities then follows from the Proposition on p. 6 of the Lecture Notes of October 20. \Box

Our next objective, which will take a while, is to prove the following:

Theorem (localization theorem for multiplicities). If P is a prime ideal of a complete local ring R such that $\dim (R/P) + \dim (R_P) = \dim (R)$, then $e(R_P) \le e(R)$.

Assuming this for the moment, we have several corollaries.

Corollary. If P is a prime of a local ring R such that $\dim (R/P) + \dim (R_P) = \dim (R)$ and the completion of R/P is reduced,¹ then $e(R_P) \leq e(R)$.

Proof. Choose a minimal prime Q of $P\widehat{R}$ such that $\dim(\widehat{R}/Q) + \dim(\widehat{R}_Q) = \dim(\widehat{R})$, as in part (b) of the Lemma. Then by part (c),

$$e(R_P) = e(\widehat{R}_Q) \le e(\widehat{R}) = e(R).$$

Corollary. If Lech's conjecture holds, then for every prime P of a local ring R such that $\dim (R/P) + \dim (R_P) = \dim (R), \ e(R_P) \le e(R).$

Proof. Choose Q as in part (b) of the Lemma. Then $R_P \to \widehat{R}_Q$ is flat local, and so by Lech's conjecture

$$e(R_P) \le e(R_Q) \le e(R) = e(R). \qquad \Box$$

We also get corresponding results for modules.

Corollary. If R is a local ring, M a finitely generated R-module, and P is a prime of the support of M such that $\dim (R/P) + \dim (M_P) = \dim (M)$, then:

- (a) If the completion of R/P is reduced, then $e(M_P) \leq e(M)$.
- (b) If Lech's conjecture holds, then $e(M_P) \leq e(M)$.

Proof. Note that we can replace R by $R/\operatorname{Ann}_R M$, so that we may assume that M is faithful and dim $(R) = \dim(M) = d$, say. Note that M is faithful if and only if for some (equivalently, every) finite set of generators u_1, \ldots, u_h for M, the map $R \to M^{\oplus h}$ such

¹This is always true if R is excellent: the completion of an excellent reduced local ring is reduced.

that $r \mapsto (ru_1, \ldots, ru_h)$ is injective. This condition is obviously preserved by localization. Now,

(*)
$$e(M) = \sum_{1 \le i \le h, \dim(R/P_i) = d} \ell_{R_{P_i}}(M_{P_i})e(R/P_i).$$

Note that once we have that M is faithful, $\dim (R/P) + \dim (M_P) = \dim (M)$ is equivalent to $\dim (R/P) + \dim (R_P) = \dim (R)$, since M_P is faithful over R_P . The minimal primes of M and R are the same, and so are the minimal primes of M_P and R_P : the latter correspond to the minimal primes of R that are contained in P. There is a formula like (*) for $e(M_P)$, where the summation is extended over minimal primes \mathfrak{p} of the support of M_P , i.e., of R_P , such that $\dim (R_P)/\mathfrak{p} = \dim (M_P)$, which is $\dim (R_P)$. Let \mathfrak{p} be such a minimal prime. Then there is a chain of primes from \mathfrak{p} to P of length height (P), and this can be concatenated with a chain of primes of length dim (R/P) from P to m, producing a chain of length dim (R). It follows that dim $(R/\mathfrak{p}) \ge d$, and the other inequality is obvious. Therefore, \mathfrak{p} is one of the P_i . Moreover, in R/P_i , we still have

$$\dim \left((R/P_i)/(P/P_i) \right) + \operatorname{height} \left((R/P_i)_{P/P_i} \right) = \dim \left(R/P_i \right) = d.$$

Thus, the terms in the formula corresponding to (*) for M_P correspond to a subset of the terms occurring in (*), but have the form

$$\ell_{R_{P_i}}(M_{P_i})e(R_P/P_iR_P).$$

Note that each P_i occurring is contained in P, and localizing first at P and then at P_iR_P produces the same result as localizing at P_i . Using either (a) or (b), whichever holds, we have that every $e((R/P_i)_P) \leq e(R/P_i)$. \Box

We next want to understand multiplicities in the hypersurface case.

Theorem. Let (R, m, K) be a regular local ring of dimension d and let $f \in m$. Let S = R/fR. The e(S) is the m-adic order of f, i.e., the unique integer k such that $f \in m^k - m^{k+1}$.

Proof. We use induction on dim (R). If dim (R) = 1 the result is obvious. Suppose dim (R) > 1. We replace R by R(t) if necessary so that we may assume the residue class field is infinite. Choose a regular system of parameters x_1, \ldots, x_d for R. By replacing these by linearly independent linear combinatons we may assume that x_1 is such that

- (1) x_1 does not divide f, so that the image of x_1 is not a zerodivisor in S.
- (2) The image of x_1 in m/m^2 does not divide the leading form of f in $\operatorname{gr}_m(R)$.
- (3) The image of x_1 in S is part of a minimal set of generators for a minimal reduction of m/fR, the maximal ideal of S.

Let \overline{x} be the image of x_1 in S. Then $e(S) = e(S/\overline{x}S)$, and this is the quotient of the regular ring R/x_1R by the image of f. Moreover, the (m/x_1R) -adic order of the image of

f in R/x_1R is the same as the *m*-adic order of f in R. The result now follows from the induction hypothesis applied to the image of f in R/x_1R . \Box

We next want to reduce the problem of proving the localization result for complete local domains to proving the following statement:

Theorem (symbolic powers in regular rings). Let $P \subseteq Q$ be prime ideals of a regular ring R. Then $P^{(n)} \subseteq Q^{(n)}$ for every positive integer n.

We postpone the proof for the moment. Note, however, that one can reduce at once to the local case, where Q is the maximal ideal, by working with (R_Q, QR_Q) instead of R.

Discussion: the symbolic power theorem for regular rings implies that multiplciities do not increase under localization. Let R be complete local, and let P be a prime ideal of R such that dim (R/P) + height (R_P) = dim (R). We want to show that $e(R_P) \leq e(R)$. Exactly as in the discussion of the module case in the proof of the Corollary, one can reduce to the case where R is a domain. As usual, one may assume without loss of generality that the residue field is sufficiently large for R to have a system of parameters x_1, \ldots, x_d that generates a minimal reduction of m. Then in the equicharacteristic case (respectively, the mixed characteristic case), we can map $K[[X_1, \ldots, X_d]] \to R$ (respectively, $V[[X_1, \ldots, X_d]] \to$ R), where $K \subseteq R$ (respectively $V \subseteq R$) is a coefficient field (respectively, a complete DVR that is a coefficient ring) and so that $X_i \mapsto x_i$, $1 \leq i \leq d$. In both cases, R is module-finite over the image A: in the equicharacteristic case, $A = K[[x_1, \ldots, x_d]]$ is regular, while in mixed characteristic the kernel of $V[[X_1, \ldots, X_d]] \to R$ must be a height one prime, and therefore principle, so that $A \cong V[[x_1, \ldots, x_d]]/(f)$. Since the maximal ideal of R is integral over $(x_1, \ldots, x_d)R$ and R is module-finite over A, the maximal ideal of A is also integral over $(x_1, \ldots, x_d)A$. Let ρ denote the torsion-free rank of R as an A-module, which is the same as the degree of the extension of fraction fields. Suppose that P is a prime of R and let \mathfrak{p} be its contraction to A. Let I be the ideal $(x_1, \ldots, x_d)A$. Then $e(R) = e_{IR}(R)$, which is the same as $e_I(R)$ with R thought of as an A-module. This is $\rho e_I(A) = \rho e(A)$. The result on symbolic powers gives the result on localization of multiplicities for A = T/(f), when T is regular: one multiplicity is the order of f in T with respect to the maximal ideal, while the other is the order of f in a localization of T. (In the equicharacteristic case, both A and its localization are regular, and both multiplicities are 1.) Thus, $\rho e(A_{\mathfrak{p}}) \leq \rho e(A) = e(R)$. But we shall see in the sequel that $e(R_P) \leq e_{\mathfrak{p}}(R_{\mathfrak{p}})$, with $R_{\mathfrak{p}}$ is viewed as an $A_{\mathfrak{p}}$ module. Since R is module-finite over A, $R_{\mathfrak{p}}$ is module-finite over $A_{\mathfrak{p}}$, and $R_{\mathfrak{p}}/\mathfrak{p}^n R_{\mathfrak{p}}$ is an Artin ring, and is a product of local rings one of which is $R_P/(\mathfrak{p}^n R_P)$. Then

$$\ell_{A_{\mathfrak{p}}}(R_{\mathfrak{p}}/\mathfrak{p}^{n}R_{\mathfrak{p}}) \geq \ell_{A_{\mathfrak{p}}}(R_{P}/\mathfrak{p}^{n}R_{P}) \geq \ell_{A_{\mathfrak{p}}}(R_{P}/P^{n}R_{P}) \geq \ell_{R_{P}}(R_{P}/P^{n}R_{P})$$

for all n, so that the multiplicity of $R_{\mathfrak{p}}$ as an $A_{\mathfrak{p}}$ -module is greater than or equal to $e(R_P)$. But then

$$e(R_P) \le e_{\mathfrak{p}}(R_{\mathfrak{p}}) = \rho \, e(A_{\mathfrak{p}}) \le \rho \, e(A) = e(R),$$

as required. \Box

Thus, all that remains is to prove the theorem on symbolic powers in regular rings.