
Math 711: Lecture of October 30, 2006

Examples. Let R = K[[x, y]]/(x2, xy). This ring has a unique minimal prime, xR, and
m = (x, y)R is embedded. The image x of x in the ring generates a submodule isomorphic
to R/m, which has lower dimension. Then e(R) = e(R/xR) = e(K[[y]]) = 1.

Likewise, if R = K[[x, y, z]]/
(
x, y) ∩ (z)

)
, then R has two minimal primes, (x, y)R and

zR. Thus, dim (R) = dim (R/zR) = dim (K[[x, y]], while the module zR ∼= R/(x, y) ∼=
K[[z]] is one-dimensional. Thus, e(R) = e(R/zR) = e(K[[x, y]]) = 1.

These examples illustrate that a local ring of multiplicity 1 need not be regular. In the
first example, Rred is a domain. In the second, R is reduced, but not equidimensional.

Finally, consider R = K[[u, v, x, y, z]]/
(
(u, v) ∩ (x, y) ∩ z

)
. This ring is reduced but

not equidimensional. It has dimension 4 (when we kill zR we get K[[u, v, x, y]]), but has
two minimal primes with quotients of dimension 3. Consider the ring obtained when we
localize at P = (u, v, x, y). The localization S of T = K[[u, v, x y, z]] at (u, v, x, y)T
is regular of dimension 4, and u, v, x, y is a regular system of parameters. Thus, RP =
S/

(
(u, v)∩ (x, y)

)
has two minimal primes with quotients that are regular of dimension 2.

It follows that e(R) = 1 while e(RP ) = 2. The problem here is that we “localized away”
the relevant minimal prime of R that governed its multiplicitiy.

Discussion: localization. One expects that under mild conditions, e(RP ) ≤ e(R). But we
only expect this for primes P such that dim (RP )+dim (RP ) = dim (R). (We always have
dim (R/P ) + dim (RP ) ≤ dim (R). The condition of equality means that P is part of a
chain of primes of maximum length, dim (R), in R.) It is conjectured that in all local rings,
whenever dim (RP ) + dim (RP ) = dim (R), one has that e(RP ) ≤ e(R).

In studying this problem, one is naturally led to Lech’s Conjecture. The result on
localization is true if R is excellent (and under various weaker hypotheses), but, so far as
I know, remains open in the general case. It would follow, however, from a proof of Lech’s
Conjecture, which permits a reduction to the case where the ring is complete.

First note:

Lemma. Let P be a prime ideal of a local ring R. Then:

(a) For every minimal prime Q of PR̂, height (Q) = height (P ).

(b) If dim (R/P )+dim (RP ) = dim (R), then there exists a minimal prime Q of PR such
that dim (R̂/Q) + dim (R̂Q) = dim (R̂).

(c) If R̂/P is reduced, then with Q as in part (b) we have that e(RP ) = e(R̂Q).

Proof. (a) RP → R̂Q is faithfully flat, so that dim (R̂Q) ≥ dim (RP ). The minimality of Q

implies that PRP expands to a QR̂Q-primary ideal in R̂Q, so that a system of parameters
for RP will be a system of parameters for R̂Q as well.
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For (b), note that the completion of R/P , which is R̂/P R̂, has the same dimension
as R/P , and so has a minimal prime, say Q/PR̂, where Q is prime in R̂, such that
dim (R̂/Q) = dim (R̂/P R̂ = dim (R/P ). By part (a), dim (R̂Q = dim (RP ) as well.

To prove (c), observe that if R̂/P is reduced, then so is R̂Q/PR̂Q, which means that
PRP expands to the maximal ideal in R̂Q. The equality of multiplicities then follows from
the Proposition on p. 6 of the Lecture Notes of October 20. �

Our next objective, which will take a while, is to prove the following:

Theorem (localization theorem for multiplicities). If P is a prime ideal of a com-
plete local ring R such that dim (R/P ) + dim (RP ) = dim (R), then e(RP ) ≤ e(R).

Assuming this for the moment, we have several corollaries.

Corollary. If P is a prime of a local ring R such that dim (R/P ) + dim (RP ) = dim (R)
and the completion of R/P is reduced,1 then e(RP ) ≤ e(R).

Proof. Choose a minimal prime Q of PR̂ such that dim (R̂/Q) + dim (R̂Q) = dim (R̂), as
in part (b) of the Lemma. Then by part (c),

e(RP ) = e(R̂Q) ≤ e(R̂) = e(R).

Corollary. If Lech’s conjecture holds, then for every prime P of a local ring R such that
dim (R/P ) + dim (RP ) = dim (R), e(RP ) ≤ e(R).

Proof. Choose Q as in part (b) of the Lemma. Then RP → R̂Q is flat local, and so by
Lech’s conjecture

e(RP ) ≤ e(R̂Q) ≤ e(R̂) = e(R). �

We also get corresponding results for modules.

Corollary. If R is a local ring, M a finitely generated R-module, and P is a prime of the
support of M such that dim (R/P ) + dim (MP ) = dim (M), then:

(a) If the completion of R/P is reduced, then e(MP ) ≤ e(M).

(b) If Lech’s conjecture holds, then e(MP ) ≤ e(M).

Proof. Note that we can replace R by R/AnnRM , so that we may assume that M is
faithful and dim (R) = dim (M) = d, say. Note that M is faithful if and only if for some
(equivalently, every) finite set of generators u1, . . . , uh for M , the map R → M⊕h such

1This is always true if R is excellent: the completion of an excellent reduced local ring is reduced.
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that r 7→ (ru1, . . . , ruh) is injective. This condition is obviously preserved by localization.
Now,

(∗) e(M) =
∑

1≤i≤h, dim(R/Pi)=d

`RPi
(MPi)e(R/Pi).

Note that once we have that M is faithful, dim (R/P )+dim (MP ) = dim (M) is equivalent
to dim (R/P ) + dim (RP ) = dim (R), since MP is faithful over RP . The minimal primes
of M and R are the same, and so are the minimal primes of MP and RP : the latter
correspond to the minimal primes of R that are contained in P . There is a formula like
(∗) for e(MP ), where the summation is extended over minimal primes p of the support of
MP , i.e., of RP , such that dim (RP )/p = dim (MP ), which is dim (RP ). Let p be such a
minimal prime. Then there is a chain of primes from p to P of length height (P ), and this
can be concatenated with a chain of primes of length dim (R/P ) from P to m, producing a
chain of length dim (R). It follows that dim (R/p) ≥ d, and the other inequality is obvious.
Therefore, p is one of the Pi. Moreover, in R/Pi, we still have

dim
(
(R/Pi)/(P/Pi)

)
+ height

(
(R/Pi)P/Pi

)
= dim (R/Pi) = d.

Thus, the terms in the formula corresponding to (∗) for MP correspond to a subset of the
the terms occurring in (∗), but have the form

`RPi
(MPi

)e(RP /PiRP ).

Note that each Pi occurring is contained in P , and localizing first at P and then at PiRP

produces the same result as localizing at Pi. Using either (a) or (b), whichever holds, we
have that every e

(
(R/Pi)P

)
≤ e(R/Pi). �

We next want to understand multiplicities in the hypersurface case.

Theorem. Let (R,m, K) be a regular local ring of dimension d and let f ∈ m. Let
S = R/fR. The e(S) is the m-adic order of f , i.e., the unique integer k such that
f ∈ mk −mk+1.

Proof. We use induction on dim (R). If dim (R) = 1 the result is obvious. Suppose
dim (R) > 1. We replace R by R(t) if necessary so that we may assume the residue class
field is infinite. Choose a regular system of parameters x1, . . . , xd for R. By replacing
these by linearly independent linear combinatons we may assume that x1 is such that

(1) x1 does not divide f , so that the image of x1 is not a zerodivisor in S.

(2) The image of x1 in m/m2 does not divide the leading form of f in grm(R).

(3) The image of x1 in S is part of a minimal set of generators for a minimal reduction
of m/fR, the maximal ideal of S.

Let x be the image of x1 in S. Then e(S) = e(S/xS), and this is the quotient of the
regular ring R/x1R by the image of f . Moreover, the (m/x1R)-adic order of the image of
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f in R/x1R is the same as the m-adic order of f in R. The result now follows from the
induction hypothesis applied to the image of f in R/x1R. �

We next want to reduce the problem of proving the localization result for complete local
domains to proving the following statement:

Theorem (symbolic powers in regular rings). Let P ⊆ Q be prime ideals of a regular
ring R. Then P (n) ⊆ Q(n) for every positive integer n.

We postpone the proof for the moment. Note, however, that one can reduce at once to
the local case, where Q is the maximal ideal, by working with (RQ, QRQ) instead of R.

Discussion: the symbolic power theorem for regular rings implies that multiplciities do not
increase under localization. Let R be complete local, and let P be a prime ideal of R such
that dim (R/P )+height (RP ) = dim (R). We want to show that e(RP ) ≤ e(R). Exactly as
in the discussion of the module case in the proof of the Corollary, one can reduce to the case
where R is a domain. As usual, one may assume without loss of generality that the residue
field is sufficiently large for R to have a system of parameters x1, . . . , xd that generates
a minimal reduction of m. Then in the equicharacteristic case (respectively, the mixed
characteristic case), we can map K[[X1, . . . , Xd]] → R (respectively, V [[X1, . . . , Xd]] →
R), where K ⊆ R (respectively V ⊆ R) is a coefficient field (respectively, a complete
DVR that is a coefficient ring) and so that Xi 7→ xi, 1 ≤ i ≤ d. In both cases, R is
module-finite over the image A: in the equicharacteristic case, A = K[[x1, . . . , xd]] is
regular, while in mixed characteristic the kernel of V [[X1, . . . , Xd]] → R must be a height
one prime, and therefore principle, so that A ∼= V [[x1, . . . , xd]]/(f). Since the maximal
ideal of R is integral over (x1, . . . , xd)R and R is module-finite over A, the maximal ideal
of A is also integral over (x1, . . . , xd)A. Let ρ denote the torsion-free rank of R as an
A-module, which is the same as the degree of the extension of fraction fields. Suppose
that P is a prime of R and let p be its contraction to A. Let I be the ideal (x1, . . . , xd)A.
Then e(R) = eIR(R), which is the same as eI(R) with R thought of as an A-module.
This is ρ eI(A) = ρ e(A). The result on symbolic powers gives the result on localization
of multiplicities for A = T/(f), when T is regular: one multiplicity is the order of f in
T with respect to the maximal ideal, while the other is the order of f in a localization
of T . (In the equicharacteristic case, both A and its localization are regular, and both
multiplicities are 1.) Thus, ρ e(Ap) ≤ ρ e(A) = e(R). But we shall see in the sequel that
e(RP ) ≤ ep(Rp), with Rp is viewed as an Ap module. Since R is module-finite over A, Rp

is module-finite over Ap, and Rp/pnRp is an Artin ring, and is a product of local rings one
of which is RP /(pnRP ). Then

`Ap(Rp/pnRp) ≥ `Ap(RP /pnRP ) ≥ `Ap(RP /PnRP ) ≥ `RP
(RP /PnRP )

for all n, so that the multiplicity of Rp as an Ap-module is greater than or equal to e(RP ).
But then

e(RP ) ≤ ep(Rp) = ρ e(Ap) ≤ ρ e(A) = e(R),
as required. �

Thus, all that remains is to prove the theorem on symbolic powers in regular rings.


