
Math 711: Lecture of November 1, 2006

Before attacking the problem of comparing symbolic powers of primes, we want to
discuss some techniques that will be needed. One is connected with enlarging the residue
class field of a local ring.

Proposition. Let (R, m, K) be a local ring, and let θ be an element of the algebraic
closure of K with minimal monic irreducible polynomial f(x) ∈ K[x]. Let F (x) be a
monic polynomial of the same degree d as f that lifts F to R[x]. Let S = R[x]/(F ). Then
S is module-finite, free of rank d, and local over R. Hence, S is R-flat. The residue field
of S is isomorphic with L = K[θ], and S has maximal ideal mS.

Proof. S is module-finite and free of rank d over R by the division algorithm. Hence, every
maximal ideal of S must lie over m, and the maximal ideals of S correspond bijectively to
those of S/mS = R[x]/(mR[x] + FR[x]) ∼= K[x]/fK[x] ∼= K[θ], which shows that mS is
maximal and that it is the only maximal ideal of S. This also shows that S/mS ∼= K[θ]. �

Discussion: getting reductions such that the number of generators is the analytic spread. Let
(R, m, K) be local and I an ideal with analytic spread h. One way of enlarging the residue
field so as to guarantee the existence of a reduction of I with h generators is to replace R by
R(t), so that the residue class field becomes infinite. For this purpose, it is not necessary
to enlarge R so that K becomes infinite. One only needs that K have sufficiently large
cardinality. When K is finite, one can choose a primitive element θ for a larger finite field
extension L: the cardinality of the finite field L may be taken a large as one likes, and
a primitive element exists because the extension is separable. Recall that the issue is to
give one-forms of B = K ⊗R grI(R) that are a homogeneous system of parameters. After
making the type of extension in the Proposition, one has, because mS is the maximal ideal
of S, that

L⊗S grIS(S) ∼= L⊗S

(
S ⊗R grI(R)

) ∼= L⊗R grI(R) ∼= L⊗K

(
K ⊗R grI(R)

)
.

If one makes a base change to K ⊗K B, where K is the algebraic closure of K, one
certainly has a linear homogeneous system of parameters. The coefficients will lie in L for
any sufficiently large choice of finite field L.

Proposition. Let (R, m, K) be any complete local ring. Then R has a faithfully flat
extension (S, n, L) such that n = mS and L is the algebraic closure of K. If R is regular,
then S is regular.

Proof. We may take R to be a homomorphic image of T = K[[x1, . . . , xd]], where K is a
field, or of T = V [[x1, . . . , xd]], where (V, πV,K) is a complete DVR such that the induced
map of residue class fields is an isomorphism. In the first case, let L be the algebraic
closure of K. Then T1 = L[[x1, . . . , xn]] is faithfully flat over T , and the expansion of
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(x1, . . . , xd)T to T1 is the maximal ideal of T1. Here , faithful flatness follows using the
Lemma on p. 2 of the Lecture Notes of October 18, becasuse every system of parameters
for T is a system of parameters for T1, and so a regular sequence on T1, since T1 is Cohen-
Macaulay. Then S = T1 ⊗T R is faithfully flat over R, has residue class field L, and m
expands to the maximal ideal.

We can solve the problem in the same way in mixed characteristic provided that we
can solve the problem for V : if (W,πW,L) is a complete DVR that is a local extension of
V with residue class field L, then T1 = W [[x1, . . . , xd]] will solve the problem for T , and
T1 ⊗T R will solve the problem for R, just as above.

We have therefore reduced to studying the case where the ring is a complete DVR V .
Furthermore, if (W, πW, L) solves the problem but is not necessarily complete, we may
use Ŵ to give a solution that is a complete DVR.

Next note that if (Vλ, πVλ, Kλ) is a direct limit system of DVRs, all with the same
generator π for their maximal ideals, such that the maps are local and injective, then
lim
−→ λ Vλ is DVR with maximal ideal generated by π. It is then clear that the residue class
field is lim

−→ λ Kλ. The reason is that every nonzero element of the direct limit may be
viewed as arising from some Vλ, and in that ring it may be written as a unit times a power
of π. Thus, every nonzero element of the direct limit is a unit times a power of π.

We now construct the required DVR as a direct limit of DVRs, where the index set is
given by a well-ordering of the field L, the algebraic closure of K, in which 0 is the least
element. We shall construct the family {(Vλ, π, , Kλ)}λ∈L in such a way that for every
λ ∈ L,

{µ ∈ L : µ ≤ λ} ⊆ Kλ ⊆ L.

This will complete the proof, since the direct limit of the family will be the required DVR
with residue class field L.

Take V0 = V . If λ ∈ L and Vµ has been constructed for µ < λ such that for all µ < λ,

{ν ∈ L : ν ≤ µ} ⊆ Kµ ⊆ L,

then we proceed as follows to construct Vλ. There are two cases.

(1) If λ has an immediate predecessor µ and λ ∈ Kµ we simply let Vλ = Vµ, while if
λ /∈ Kµ, we take θ = λ in the first Proposition to construct Vλ.

(2) If λ is a limit ordinal, we first let (V ′, πV ′, K ′) = lim
−→ µ<λ Vµ. If λ is in the residue

class field of V ′, we let Vλ = V ′. If not, we use the first Proposition to extend V ′ so that
its residue class field is K ′[λ]. �

To prove the theorem on comparison of symbolic powers in regular rings, we shall also
need some results on valuation domains that are not necessarily Noetherian. In particular,
we need the following method of constructing such valuation domains.
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Proposition. Let (V, n, L) be a valuation domain with fraction field K and let (W,m, K)
be a valuation domain with fraction field L. Let g : V � L be the quotient map. Then
T = {v ∈ V : g(v) ∈ W} ⊆ V is a valuation domain with fraction field K. Its maximal
ideal is {v ∈ V : g(v) ∈ m}. Its residue class field is K, and it contains a prime ideal q
which may be described as n ∩ T . Moreover T/q = W , while Tq = V .

Proof. Let f ∈ K be nonzero. If f /∈ V then 1/f is not only in V : it must be in n, and
so has image 0 in L. Thus, 1/f ∈ T . If f ∈ V − n then 1/f ∈ V − n as well. The images
of these two elements are reciprocals in W/n = K, and so at least one of the two is in W .
Thus, either f or 1/f is in V . Finally, if f ∈ n then g(f) = 0 ∈ W , and so f ∈ T . This
shows that V is a valuation domain with fraction field K.

The restriction of g to T clearly maps T onto K. This means that the kernel of this map
must be the unique maximal ideal of T , and that the residue class field is K. The prime
q is clearly the kernel of the surjection T � W obtained by restricting g to T , whence
T/q = W . Since n lies over q, we have an induced local map Tq → V of valuation domains
of K. This map must be the identity by the third Remark on p. 1 of the Lecture Notes of
October 2. �

The valuation domain T is called the composite of V and W .

Corollary. Let R be a domain with fraction field K, and

P0 ⊆ P1 ⊆ · · · ⊆ Pk

a chain of prime ideals of R. Then there exists a valuation domain V with R ⊆ V ⊆ K
and a chain of prime ideals

q0 ⊆ q1 ⊆ · · · ⊆ qk

of V such that qi ∩R = Pi, 1 ≤ i ≤ k. Morevover, we may assume that qk is the maximal
ideal of V .

Proof. If n = 0, we simply want to find V a valuation domain with maximal ideal q lying
over P = P0. We may replace R by RP and apply the Corollary on p. 2 of the Lecture
Notes of September 11 with I = PRP and L = K.

Now suppose that Vk−1 together with

q0 ⊆ · · · ⊆ qk−1

solve the problem for
P0 ⊆ · · · ⊆ Pk−1.

If Pk = Pk−1 take V = Vk−1 and qk = qk−1. If Pk−1 ⊂ Pk is strict, we can choose a
valuation domain W of the fraction field of R/Pk−1 containing R/Pk−1 and whose maximal
ideal lies over Pk/Pk−1. Take V to be the composite of Vk−1 and W . �


