Math 711: Lecture of November 6, 2006

To finish our comparison of symbolic powers in a regular ring, we shall make use of quadratic transforms (also called *quadratic transformations* or *quadratic dilatations*) in a more general context than in the proof of the Lipman-Sathaye Jacobian Theorem.

Let (R, m, K) be a local domain with $R \subseteq (V, \mathfrak{n})$ a local map, where V is a not necessarily Noetherian valuation domain. The *first quadratic transform* of R along V is the localization (R_1, m_1) of R[m/x] at the contraction of \mathfrak{n} , where x is any element of m such that xV = mV. This ring is again a local ring with a local map $R_1 \to V$.

The quadratic transform is independent of the choice of the element x. To see this, suppose that xV = yV, where $y, x \in m$. Then $y/x \in R[m/x]$ is a unit in V, so its inverse $x/y \in R_1$. Since m/y = (m/x)(x/y), it follows that $R[m, y] \subseteq R_1$. Moreover, each element of R[m/y] that is invertible in V has an inverse in R_1 , so that if Q is the contraction of \mathfrak{n} to R[m/y] we have an induced inclusion map $R[m/y]_Q \to R_1$. An exactly symmetric argument gives the opposite inclusion.

As in our earlier situation, we may take iterated quadratic transforms

$$R \subseteq R_1 \subseteq \cdots \subseteq R_k \subseteq \cdots \subseteq V.$$

Note that if $m = x_1, \ldots, x_h$, then $mV = (x_1, \ldots, x_h)V$, so that x may be chosen from among the x_i . Putting this together with the Lemma on p. 2 of the Lecture Notes of September 29, we have:

Proposition. Let (R, m, K) be regular local with x_1, \ldots, x_d a regular system of parameters and suppose that $R \subseteq (V, \mathfrak{n})$ is local where V is a valuation domain. If the x_i are numbered so that $x_j V \subseteq x_1 V$ for all j > 1, then the quadratic transform R_1 is a localization of the ring $S = R[x_2/x_1, \ldots, x_d/x_1]$, which is regular of dimension d. In particular, R_1 has dimension at most d. Moreover, $S/x_1 S \cong K[X_2, \ldots, X_d]$, where X_i is the image of $x_i/x_1, 2 \le i \le d$. \Box

Here is another important example:

Theorem. Let R be a one dimensional local domain whose integral closure (V, \mathfrak{n}) is local and module-finite over R. (This is always the case if R is a complete one-dimensional local domain.) Let

$$R \subseteq R_1 \subseteq \cdots \subseteq R_k \subseteq \cdots \subseteq V$$

be the sequence of iterated quadratic transforms. Then for all sufficiently large $k, R_k = V$.

Proof. Since V is module-finite over R, it cannot have an infinite ascending chain of R-submodules. It follows that the chain R_i is eventually stable. But if the maximal ideal of

 R_i is not principal and has minimal generators y_1, \ldots, y_h with y_1 of least order in V, then for some j > 1, $y_j/y_1 \in V - R_i$, and $y_j/y_1 \in R_{i+1}$. Therefore, for sufficiently large i, the maximal ideal of R_i is principal. But then R_i is a DVR, and is a normal ring inside the fraction field of R and containing R. It follows that $R_i = V$. \Box

We also note:

Theorem. Let (R, m, K) be a local domain with $R \subseteq (V, \mathfrak{n})$ a local inclusion, where V is a valuation domain of the fraction field of R. Let \mathfrak{q} be a prime ideal of V lying over $P \neq m$ in R. Let

$$R \subseteq R_1 \subseteq R_2 \subseteq \cdots \subseteq R_k \subseteq \cdots \subseteq V$$

be the sequence of quadratic transforms of R along V. Let P_i be the contraction of P to R_i . Then

$$R/P \subseteq R_1/P_1 \subseteq R_2/P_2 \subseteq \cdots \subseteq R_k/P_k \subseteq \cdots \subseteq V/\mathfrak{q}$$

is the sequence of quadratic transforms of $R/P \subseteq V/\mathfrak{q}$ along V/\mathfrak{q} .

Proof. By induction on k, it suffices to see this when k = 1. Let x_1, \ldots, x_h generate the maximal ideal m of R with $x_1V = mV$. Some $x \in m$ is not in n, and since $xV \subseteq$ $mV = x_1V, x_1 \notin \mathfrak{q}$ and so $x_1 \notin P$. Moreover, $x_1(V/\mathfrak{q}) = (m/P)(V/\mathfrak{q})$. It follows that the quadratic transform of R/P along V/\mathfrak{q} is the localization at the contraction of n of $(R/P)[\tilde{m}/\bar{x}_1]$, where \tilde{m} is m/P and \bar{x}_1 is the image of x_1 in R/P. The stated result follows at once. Note that we again have $P_1 \neq m_1$, the maximal ideal of R_1 , since $x_1 \in m_1 - P_1$. \Box

We next observe:

Lemma. Let (R, m, K) be a regular local ring with algebraically closed residue class field, and suppose $R \subseteq (V, \mathfrak{n})$ is local, where V is a valuation domain and $R/m \to Vn$ is an isomorphism. Then there is a regular system of parameters x_1, \ldots, x_d for R such that the first quadratic transform is the localization of $R[x_2/x_1, \ldots, x_d/x_1]$ at the height d maximal ideal generated by $x_1, x_2/x_1, \ldots, x_d/x_1$, so that these elements are a regular system of parameters in the first quadratic transform.

Proof. Let x_1, y_2, \ldots, y_d be one regular system of parameters for R such that $x_1V = mV$. n contains x_1 , and so n lies over a prime ideal of R containing x_1 . Hence, the quotient of $R[m/x_1]$ by the contraction of n is also a quotient of $K[Y_2, \ldots, Y_d]$, where Y_i is the image of $y_i/x_1, 2 \leq i \leq d$. The resulting quotient domain imbeds embeds K-isomorphically in K = V/n, and so is equal to K. It follows that the contraction of n corresponds to a maximal ideal of $K[Y_2, \ldots, Y_d]$, which must have the form $(Y_2 - c_2, \ldots, Y_d - c_d)$ for elements $c_2, \ldots, c_d \in K$. Therefore we may let $x_i = y_i - c_i x_1$ for each $i, 2 \leq i \leq d$. \Box

Proof of the theorem on comparison of symbolic powers. We want to show that if R is regular and $P \subseteq Q$ are prime, then $P^{(n)} \subseteq Q^{(n)}$ for all n. By considering a saturated chain of primes joining P to Q we immediately reduce to the case where the height if Q/P in R/P is one. We may replace R by R_Q , and so we may assume that Q is m in the regular local ring (R, m) and that dim (R/P) = 1.

Suppose that $(R, m, K) \to S$ is a flat local map, where S is regular with maximal ideal mS. Then it suffices to prove the theorem for S, for if P_1 in S lies over P and we know the theorem for S, we have

$$P^{(n)} \subseteq P_1^{(n)} \subseteq (mS)^n = m^n S,$$

and then

$$P^{(n)} \subseteq m^n S \cap R = m^n,$$

because S is faithfully flat over R. We may therefore replace R first by its completion, and then by a complete regular local ring with an algebraically closed residue field. Hence, from now on, we shall assume that R is complete with residue class field K that is algebraically closed, as well as that dim (R/P) = 1.

We now introduce valuations. Let V_1 be a valuation domain of the fraction field of R whose maximal ideal contracts to P: we may use, for example, order with respect to powers of PR_P to construct V_1 . Let W be the integral closure of R/P, which will be a discrete valuation ring because R/P is a complete local domain of dimension one. Since K is algebraically closed, the residue class field of W is K. Let (V, \mathfrak{n}) be the composite valuation. Then \mathfrak{n} lies over m, and $V/\mathfrak{n} = K$. Moreover, V has a prime [q] lying over P. Now consider the sequence of quadratic transforms

$$(R, m, K) \subseteq (R, m_1, K) \subseteq (R, m_2, K) \subseteq \cdots \subseteq (R_k, m_k, K) \subseteq \cdots \subseteq (V, \mathfrak{n}, K).$$

Each R_i has a prime P_i that is the contraction of \mathfrak{q} . Now R/P_k is the k th quadratic transform of R/P, by the Theorem above, and so for large k is the DVR W, by the earlier Theorem. Then R_k/P_k is regular, and so P_k is generated by part of a regular system of parameters. We shall see in the sequel that $P_k^{(n)} = P_k^n \subseteq m^n$ in this case. Assuming this, to complete the proof it suffices to show that if a given R_i provides a counterexample (where $R_0 = R$), then so does its quadratic transform.

We might as well work with R and

$$R_1 = R[x_2/x_1, \ldots, x_d]_{\mathcal{M}},$$

where \mathcal{M} is the maximal ideal $(x_1, x_2/x_1, \ldots, x_d/x_1)R[m/x_1]$. Suppose $f \in R$ has madic order n, but order at least n + 1 in R_P . Since $m^n/x_1^n \subseteq R[m/x_1]$, we have that $f/x_1^n \in R[m/x_1]$. Since $x_1 \notin P_1$, f_n/x_1^n has the same order as f in $(R_1)_{P_1}$, and since P_1 lies over P this will be at least n + 1. It therefore will suffice to show that f/x_1^n has m_1 -adic order at most n in R_1 . Since R_1/\mathcal{M}^{n+1} already local, it suffices to show that $f/x_1^n \notin \mathcal{M}^{n+1}$. Suppose otherwise. The ideal \mathcal{M}^{n+1} is generated by elements μ/x_1^{n+1} where μ is a monomial of degree n + 1 in x_1^2, x_2, \ldots, x_n , and

$$R[m/x_1] = \bigcup_t m^t / x_1^t.$$

Therefore, for some t, we have

$$f/x_1^n \in (1/x_1^{n+1})(x_1^2, x_2, \dots, x_d)^{n+1}m^t/x_1^t$$

and so

$$x_1^{t+1} f \in (x_1^2, x_2, \dots, x_d)^{n+1} m^t.$$

Each of the obvious generators obtained by expanding the product on the right that involves x_1^2 has degree at least n + t + 2. Hence, in the degree n + t + 1 part of $gr_m(R) = K[X_1, \ldots, X_d]$, we have that

$$X_1^{t+1}F \in (X_2, \ldots, X_d)^{n+1}(X_1, \ldots, X_d)^t,$$

where F is the image of f in m^n/m^{n+1} , and is supposedly not 0. By taking homogeneous components in degree n + t + 1 we see that $x_1^{t+1}F$ must be in the K-vector space span of the obvious monomial generators of

$$(X_2, \ldots, X_d)^{n+1} (X_1, \ldots, X_d)^t.$$

But this is clearly impossible with $F \neq 0$, since none of these monomials is divisible by X_1^{t+1} .

This completes the proof, once we have shown that for primes generated by a regular sequence, symbolic powers are the same as ordinary powers. \Box