Math 711: Lecture of November 6, 2006

To finish our comparison of symbolic powers in a regular ring, we shall make use of
quadratic transforms (also called quadratic transformations or quadratic dilatations) in a
more general context than in the proof of the Lipman-Sathaye Jacobian Theorem.

Let (R, m, K) be a local domain with R C (V, n) a local map, where V is a not
necessarily Noetherian valuation domain. The first quadratic transform of R along V is
the localization (Ry, m1) of R[m/x] at the contraction of n, where x is any element of m
such that £V = mV. This ring is again a local ring with a local map R; — V.

The quadratic transform is independent of the choice of the element x. To see this,
suppose that V' = yV, where y, x € m. Then y/x € R[m/x] is a unit in V, so its inverse
x/y € Ry. Since m/y = (m/z)(z/y), it follows that R[m, y] C Ry. Moreover, each element
of R|m/y| that is invertible in V' has an inverse in Rj, so that if @) is the contraction of
n to R[m/y] we have an induced inclusion map R[m/y]g — Ri. An exactly symmetric
argument gives the opposite inclusion.

As in our earlier situation, we may take iterated quadratic transforms

RCR C---CR,C---CV.

Note that if m = x1, ... ,zp, then mV = (z1, ... ,x25)V, so that z may be chosen from
among the x;. Putting this together with the Lemma on p. 2 of the Lecture Notes of
September 29, we have:

Proposition. Let (R, m, K) be regular local with x1, ... ,xq a reqular system of param-
eters and suppose that R C (V, n) is local where V is a valuation domain. If the x; are
numbered so that x;V C x1V for all j > 1, then the quadratic transform Ry is a localiza-
tion of the ring S = R[xa/x1, ..., x4/x1], which is reqular of dimension d. In particular,
Ry has dimension at most d. Moreover, S/x1S = K|[Xa, ..., X4], where X; is the image
of vi/x1,2<i1<d. O

Here is another important example:

Theorem. Let R be a one dimensional local domain whose integral closure (V,n) is local
and module-finite over R. (This is always the case if R is a complete one-dimensional local
domain.) Let

RCR C---CR,C---CV

be the sequence of iterated quadratic transforms. Then for all sufficiently large k, R = V.
Proof. Since V' is module-finite over R, it cannot have an infinite ascending chain of R-

submodules. It follows that the chain R; is eventually stable. But if the maximal ideal of
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R; is not principal and has minimal generators y1, ...,y with y; of least order in V', then
for some j > 1, y;/y1 € V — R;, and y;/y1 € Ri11. Therefore, for sufficiently large 7, the
maximal ideal of R; is prinicpal. But then R; is a DVR, and is a normal ring inside the
fraction field of R and containing R. It follows that R, =V. U

We also note:

Theorem. Let (R, m, K) be a local domain with R C (V,n) a local inclusion, where V
1s a valuation domain of the fraction field of R. Let q be a prime ideal of V' lying over
P #m in R. Let

RCRICR,C---CRC---CV

be the sequence of quadratic trransforms of R along V. Let P; be the contraction of P to
R;. Then
R/PCRy/Pi CRy/Py C---CRy/P, C---CV/q

is the sequence of quadratic transforms of R/P C V/q along V/q.

Proof. By induction on k, it suffices to see this when k£ = 1. Let xy, ... ,z, generate
the maximal ideal m of R with z;V = mV. Some x € m is not in n, and since xV C
mV = x1V, 1 ¢ q and so 1 ¢ P. Moreover, z1(V/q) = (m/P)(V/q). It follows that
the quadratic transform of R/P along V/q is the localization at the contraction of n of
(R/P)[m/Z1], where m is m/P and T is the image of z1 in R/P. The stated result follows
at once. Note that we again have P; # m1, the maximal ideal of Ry, since x1 € my—P;. U

We next observe:

Lemma. Let (R, m, K) be a regular local ring with algebraically closed residue class field,
and suppose R C (V,n) is local, where V is a valuation domain and R/m — Vn is an

isomorphism. Then there is a regular system of parameters x1, ... ,xq for R such that
the first quadratic transform is the localization of R[xa/x1, ..., x4/x1] at the height d
mazximal ideal generated by x1,x2/x1, ..., xq/T1, So that these elements are a regular

system of parameters in the first quadratic transform.

Proof. Let x1, ya, ..., yq be one regular system of parameters for R such that z;V = mV.
N contains x1, and so n lies over a prime ideal of R containing x;. Hence, the quotient of
R[m/z1] by the contraction of n is also a quotient of K[Ys, ..., Y], where Y; is the image
of y;/x1, 2 < i < d. The resulting quotient domain imbeds embeds K-isomorphically
in K = V/n, and so is equal to K. It follows that the contraction of n corresponds to
a maximal ideal of K[Y3, ..., Yy, which must have the form (Yo — ¢a, ..., Yy — ¢q) for
elements co, ..., cq € K. Therefore we may let x; = y; — ¢;x1 for each 7, 2 <i <d. [0

Proof of the theorem on comparison of symbolic powers. We want to show that if R is
regular and P C @ are prime, then P C Q(") for all n. By considering a saturated chain
of primes joining P to @) we immediately reduce to the case where the height if /P in
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R/P is one. We may replace R by Rg, and so we may assume that ) is m in the regular
local ring (R, m) and that dim (R/P) = 1.

Suppose that (R, m, K) — S is a flat local map, where S is regular with maximal ideal
m.S. Then it suffices to prove the theorem for S, for if P, in S lies over P and we know
the theorem for S, we have

P c p™ C (mS)" =m"S,

and then
pm) Cm"SNR=m",

because S is faithfully flat over R. We may therefore replace R first by its completion, and
then by a complete regular local ring with an algebraically closed residue field. Hence, from
now on, we shall assume that R is complete with residue class field K that is algebraically
closed, as well as that dim (R/P) = 1.

We now introduce valuations. Let V; be a valuation domain of the fraction field of
R whose maximal ideal contracts to P: we may use, for example, order with respect to
powers of PRp to construct V;. Let W be the integral closure of R/P, which will be a
discrete valuation ring because R/P is a complete local domain of dimension one. Since
K is algebraically closed, the residue class field of W is K. Let (V,n) be the composite
valuation. Then n lies over m, and V/n = K. Moreover, V has a prime [9] lying over P.
Now consider the sequence of quadratic transforms

(R7m7K)g(R7m17K)g(R7m27 K)QQ(Rkvmka K)QQ(V7n7K)

Each R; has a prime P; that is the contraction of q. Now R/Pj is the kth quadratic
transform of R/ P, by the Theorem above, and so for large k is the DVR W, by the earlier
Theorem. Then Ry /P is regular, and so Py is generated by part of a regular system of
parameters. We shall see in the sequel that P}gn = P! € m" in this case. Assuming this, to
complete the proof it suffices to show that if a given R; provides a counterexample (where
Ry = R), then so does its quadratic transform.

We might as well work with R and
R, = R[x2/$17 SRR md]Ma

where M is the maximal ideal (x1, x3/x1, ... ,zq4/x1)R[m/x1]. Suppose f € R has m-
adic order m, but order at least n + 1 in Rp. Since m"/z} C R[m/z1]|, we have that
f/x} € Rlm/x1]. Since x1 ¢ Py, f,/x} has the same order as f in (R1)p,, and since
Py lies over P this will be at least n + 1. It therefore will suffice to show that f/x} has
mi-adic order at most n in R;. Since R; /./\/l”Jrl already local, it suffices to show that
f/xp ¢ M™t1. Suppose otherwise. The ideal M"™*! is generated by elements p/z}**
where 4 is a monomial of degree n + 1 in 22,29, ... ,2,, and

R[m/x1] = Umt/xﬁ.



Therefore, for some ¢, we have
flat € (1zy™h) (@t w2, .o )" it 2]
and so
et e (22,20, .. 2q)" TIml.

Each of the obvious generators obtained by expanding the product on the right that in-
volves 72 has degree at least n +t + 2. Hence, in the degree n + ¢ + 1 part of gr,,(R) =
K[X1, ...,X4], we have that

XHEP e (Xo, o0, Xo)" (X, ..., XQ),

where F' is the image of f in m™/m™*!, and is supposedly not 0. By taking homogeneous
components in degree n +t 4+ 1 we see that :L*?LIF must be in the K-vector space span of

the obvious monomial generators of
(X2, vy Xa)" (X, .., X))

But this is clearly impossible with F' # 0, since none of these monomials is divisible by
Xt

This completes the proof, once we have shown that for primes generated by a regular
sequence, symbolic powers are the same as ordinary powers. [



