
Math 711: Lecture of November 6, 2006

To finish our comparison of symbolic powers in a regular ring, we shall make use of
quadratic transforms (also called quadratic transformations or quadratic dilatations) in a
more general context than in the proof of the Lipman-Sathaye Jacobian Theorem.

Let (R, m, K) be a local domain with R ⊆ (V, n) a local map, where V is a not
necessarily Noetherian valuation domain. The first quadratic transform of R along V is
the localization (R1, m1) of R[m/x] at the contraction of n, where x is any element of m
such that xV = mV . This ring is again a local ring with a local map R1 → V .

The quadratic transform is independent of the choice of the element x. To see this,
suppose that xV = yV , where y, x ∈ m. Then y/x ∈ R[m/x] is a unit in V , so its inverse
x/y ∈ R1. Since m/y = (m/x)(x/y), it follows that R[m, y] ⊆ R1. Moreover, each element
of R[m/y] that is invertible in V has an inverse in R1, so that if Q is the contraction of
n to R[m/y] we have an induced inclusion map R[m/y]Q → R1. An exactly symmetric
argument gives the opposite inclusion.

As in our earlier situation, we may take iterated quadratic transforms

R ⊆ R1 ⊆ · · · ⊆ Rk ⊆ · · · ⊆ V.

Note that if m = x1, . . . , xh, then mV = (x1, . . . , xh)V , so that x may be chosen from
among the xi. Putting this together with the Lemma on p. 2 of the Lecture Notes of
September 29, we have:

Proposition. Let (R, m, K) be regular local with x1, . . . , xd a regular system of param-
eters and suppose that R ⊆ (V, n) is local where V is a valuation domain. If the xi are
numbered so that xjV ⊆ x1V for all j > 1, then the quadratic transform R1 is a localiza-
tion of the ring S = R[x2/x1, . . . , xd/x1], which is regular of dimension d. In particular,
R1 has dimension at most d. Moreover, S/x1S ∼= K[X2, . . . , Xd], where Xi is the image
of xi/x1, 2 ≤ i ≤ d. �

Here is another important example:

Theorem. Let R be a one dimensional local domain whose integral closure (V,n) is local
and module-finite over R. (This is always the case if R is a complete one-dimensional local
domain.) Let

R ⊆ R1 ⊆ · · · ⊆ Rk ⊆ · · · ⊆ V

be the sequence of iterated quadratic transforms. Then for all sufficiently large k, Rk = V .

Proof. Since V is module-finite over R, it cannot have an infinite ascending chain of R-
submodules. It follows that the chain Ri is eventually stable. But if the maximal ideal of
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Ri is not principal and has minimal generators y1, . . . , yh with y1 of least order in V , then
for some j > 1, yj/y1 ∈ V − Ri, and yj/y1 ∈ Ri+1. Therefore, for sufficiently large i, the
maximal ideal of Ri is prinicpal. But then Ri is a DVR, and is a normal ring inside the
fraction field of R and containing R. It follows that Ri = V . �

We also note:

Theorem. Let (R, m, K) be a local domain with R ⊆ (V,n) a local inclusion, where V
is a valuation domain of the fraction field of R. Let q be a prime ideal of V lying over
P 6= m in R. Let

R ⊆ R1 ⊆ R2 ⊆ · · · ⊆ Rk ⊆ · · · ⊆ V

be the sequence of quadratic trransforms of R along V . Let Pi be the contraction of P to
Ri. Then

R/P ⊆ R1/P1 ⊆ R2/P2 ⊆ · · · ⊆ Rk/Pk ⊆ · · · ⊆ V/q

is the sequence of quadratic transforms of R/P ⊆ V/q along V/q.

Proof. By induction on k, it suffices to see this when k = 1. Let x1, . . . , xh generate
the maximal ideal m of R with x1V = mV . Some x ∈ m is not in n, and since xV ⊆
mV = x1V , x1 /∈ q and so x1 /∈ P . Moreover, x1(V/q) = (m/P )(V/q). It follows that
the quadratic transform of R/P along V/q is the localization at the contraction of n of
(R/P )[m̃/x1], where m̃ is m/P and x1 is the image of x1 in R/P . The stated result follows
at once. Note that we again have P1 6= m1, the maximal ideal of R1, since x1 ∈ m1−P1. �

We next observe:

Lemma. Let (R, m, K) be a regular local ring with algebraically closed residue class field,
and suppose R ⊆ (V,n) is local, where V is a valuation domain and R/m → V n is an
isomorphism. Then there is a regular system of parameters x1, . . . , xd for R such that
the first quadratic transform is the localization of R[x2/x1, . . . , xd/x1] at the height d
maximal ideal generated by x1, x2/x1, . . . , xd/x1, so that these elements are a regular
system of parameters in the first quadratic transform.

Proof. Let x1, y2, . . . , yd be one regular system of parameters for R such that x1V = mV .
n contains x1, and so n lies over a prime ideal of R containing x1. Hence, the quotient of
R[m/x1] by the contraction of n is also a quotient of K[Y2, . . . , Yd], where Yi is the image
of yi/x1, 2 ≤ i ≤ d. The resulting quotient domain imbeds embeds K-isomorphically
in K = V/n, and so is equal to K. It follows that the contraction of n corresponds to
a maximal ideal of K[Y2, . . . , Yd], which must have the form (Y2 − c2, . . . , Yd − cd) for
elements c2, . . . , cd ∈ K. Therefore we may let xi = yi − cix1 for each i, 2 ≤ i ≤ d. �

Proof of the theorem on comparison of symbolic powers. We want to show that if R is
regular and P ⊆ Q are prime, then P (n) ⊆ Q(n) for all n. By considering a saturated chain
of primes joining P to Q we immediately reduce to the case where the height if Q/P in
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R/P is one. We may replace R by RQ, and so we may assume that Q is m in the regular
local ring (R,m) and that dim (R/P ) = 1.

Suppose that (R, m, K) → S is a flat local map, where S is regular with maximal ideal
mS. Then it suffices to prove the theorem for S, for if P1 in S lies over P and we know
the theorem for S, we have

P (n) ⊆ P
(n)
1 ⊆ (mS)n = mnS,

and then
P (n) ⊆ mnS ∩R = mn,

because S is faithfully flat over R. We may therefore replace R first by its completion, and
then by a complete regular local ring with an algebraically closed residue field. Hence, from
now on, we shall assume that R is complete with residue class field K that is algebraically
closed, as well as that dim (R/P ) = 1.

We now introduce valuations. Let V1 be a valuation domain of the fraction field of
R whose maximal ideal contracts to P : we may use, for example, order with respect to
powers of PRP to construct V1. Let W be the integral closure of R/P , which will be a
discrete valuation ring because R/P is a complete local domain of dimension one. Since
K is algebraically closed, the residue class field of W is K. Let (V,n) be the composite
valuation. Then n lies over m, and V/n = K. Moreover, V has a prime [q] lying over P .
Now consider the sequence of quadratic transforms

(R, m, K) ⊆ (R, m1, K) ⊆ (R, m2, K) ⊆ · · · ⊆ (Rk, mk, K) ⊆ · · · ⊆ (V, n, K).

Each Ri has a prime Pi that is the contraction of q. Now R/Pk is the k th quadratic
transform of R/P , by the Theorem above, and so for large k is the DVR W , by the earlier
Theorem. Then Rk/Pk is regular, and so Pk is generated by part of a regular system of
parameters. We shall see in the sequel that P

(n
k = Pn

k ⊆ mn in this case. Assuming this, to
complete the proof it suffices to show that if a given Ri provides a counterexample (where
R0 = R), then so does its quadratic transform.

We might as well work with R and

R1 = R[x2/x1, . . . , xd]M,

where M is the maximal ideal (x1, x2/x1, . . . , xd/x1)R[m/x1]. Suppose f ∈ R has m-
adic order n, but order at least n + 1 in RP . Since mn/xn

1 ⊆ R[m/x1], we have that
f/xn

1 ∈ R[m/x1]. Since x1 /∈ P1, fn/xn
1 has the same order as f in (R1)P1 , and since

P1 lies over P this will be at least n + 1. It therefore will suffice to show that f/xn
1 has

m1-adic order at most n in R1. Since R1/Mn+1 already local, it suffices to show that
f/xn

1 /∈ Mn+1. Suppose otherwise. The ideal Mn+1 is generated by elements µ/xn+1
1

where µ is a monomial of degree n + 1 in x2
1, x2, . . . , xn, and

R[m/x1] =
⋃
t

mt/xt
1.



4

Therefore, for some t, we have

f/xn
1 ∈ (1/xn+1

1 )(x2
1, x2, . . . , xd)n+1mt/xt

1

and so
xt+1

1 f ∈ (x2
1, x2, . . . , xd)n+1mt.

Each of the obvious generators obtained by expanding the product on the right that in-
volves x2

1 has degree at least n + t + 2. Hence, in the degree n + t + 1 part of grm(R) =
K[X1, . . . , Xd], we have that

Xt+1
1 F ∈ (X2, . . . , Xd)n+1(X1, . . . , Xd)t,

where F is the image of f in mn/mn+1, and is supposedly not 0. By taking homogeneous
components in degree n + t + 1 we see that xt+1

1 F must be in the K-vector space span of
the obvious monomial generators of

(X2, . . . , Xd)n+1(X1, . . . , Xd)t.

But this is clearly impossible with F 6= 0, since none of these monomials is divisible by
Xt+1

1 .

This completes the proof, once we have shown that for primes generated by a regular
sequence, symbolic powers are the same as ordinary powers. �


