
Math 711: Lecture of November 8, 2006

We have completed the proof of the theorem on comparison of symbolic powers of prime
ideals in regular rings as soon as we have established:

Lemma. Let P be a prime ideal of the ring R that is generated by a regular sequence,
x1, . . . , xk. Then P (n) = Pn for every integer n.

Proof. Let u ∈ R − P . We need only show that u is not a zerodivsor on Pn. Suppose
ur ∈ Pn with r /∈ Pn. Choose h, which may be 0, such that r ∈ Ph − Ph+1: evidently,
h < n. Then ur ∈ Pn ⊆ Ph+1. This implies that the image of u in R/P is a zerodivisor
on Ph/Ph+1. But by part (d) of the Proposition on p. 2 of the Lecture Notes of October
23, Ph/Ph+1 is a free R/P -module with a free basis in bijective correspondence with
monomials of degree h in variables X1, . . . , Xk. �

Before proceeding further, we want to record an import result on flatness. We first note:

Lemma. Let M be an R-module with a finite filtration such that x ∈ R is not a zerodivisor
on any factor. Then x is not a zerodivisor on M .

Proof. By induction on the number of factors, it suffices to consider that case of two
factors, i.e., where one has a short exact sequence 0 → N1 → M → N2 → 0. If u ∈ M is
such that xu = 0, then the image of u in N2 must be 0, or else x will be a zerodivisor on
N2. But then u ∈ N1, and so xu = 0 implies that u = 0. �

Next note that when (R, m, K) → (S, n, L) is local and M is an S-module, M/mM
is called the closed fiber of M (because it is the fiber over the unique closed point m of
Spec (R)). In this case, if we make a base change to R/I, where I ⊆ m is an ideal of R,
R, S, and M become R/I, S/IS, and M/IM , respectively, but the closed fiber does not
change: (M/IM)/m(M/IM) ∼= M/mM .

In the result that follows, the most important case is when M = S.

Theorem. Let (R, m, K) → (S, n, L) be a local homomorphism of local rings and let M
be an S-module that is R-flat. Then:

(a) dim (M) = dim (R) + dim (M/mM).

(b) If y ∈ n is a nonzerodivisor on M/mM , then it is a nonzerodivisor on M and on
M/IM for every ideal I ⊆ m of R. Moreover, if y ∈ n is a nonzerodivisor on
M/mM , then M/yM is again flat over R.

If depthmR = 0, then y ∈ n is a nonzerodivisor on M if and only if it is a nonzero-
divisor on M/mM .

1



2

(c) depthnM = depthmnR + depthnM/mM .

Proof. For part (a), we proceed by induction on dim (R). If dim (R) = 0 then m is
nilpotent, and (a) holds even without the assumption that M is R-flat. If dim (R) ≥ 1,
let A be the ideal of nilpotent elements in R, and make a base change to R/A. The
dimensions of R and M do not change, and the closed fiber does not change. Thus,
we may assume that R is reduced. But then m contains a nonzerodivisor x, which is
consequently also a nonzerodivisor on M because M is R-flat. Make a base change to
R/xR. By the induction hypothesis, dim (M/xM) = dim (R/xR) + dim (M/mM). Since
dim (M/xM) = dim (M)− 1 and dim (R/xR) = dim (R)− 1, the result follows.

For part (b), suppose that y is not a zerodivisor on M/mM . We want to show that y
is not a zerodivisor on M/IM . Suppose y kills a nonzero element u of M/IM . We can
choose N � 0 so large that u /∈ mN (M/IM). It follows that y kills the nonzero image
of u in (M/IM)/mN (M/IM) ∼= M/(I + mN )M , and so there is no loss of generality in
assuming that I is m-primary. In this case, R/I has a finite filtration in which every factor
is copy of K = R/m. When we apply M ⊗R , the fact that M is R-flat implies that
M/IM has a finite filtration in which every factor is a copy of M ⊗ R/m ∼= M/mM . By
the Lemma above, since y is not a zerodivisor on any of these factors, it is not a zerodivisor
on M/IM , as required.

To prove that M ′ is R-flat, it suffices to show that TorR
1 (N, M ′) = 0 for every finitely

generated R-module N , since every R-module is a direct limit of finitely generated R-
modules. Since a finitely generated R-module N has a finite filtration with cyclic factors,
it follows that it suffices to prove that TorR(R/I, M ′) = 0 for every ideal I of R. Let
M ′ = M/yM . Starting with the short exact sequence

0 −→ M
y−→ M −→ M/yM −→ 0

we may apply R/I ⊗R to get a long exact sequence part of which is

−→ TorR
1 (R/I, M) −→ TorR

1 (R/I, M/yM) −→ M/IM
y·−→ M/IM −→ · · · .

Since M is R-flat, the leftmost term is 0, and since we have already shown that y is not a
zerodivisor on M/IM , it follows that TorR

1 (R/I, M/yM) = 0 for all I, as required.

We next consider the case where depthm(R) = 0. Then we can choose a nonzero element
z ∈ R such that zm = 0, i.e.,

0 −→ m −→ R
z·−→ R

is exact. Applying ⊗R M , we have that

0 −→ m⊗R M −→ M
z·−→ M

is exact. This shows both that m ⊗R M may be identified with its image, which is mM ,
and that AnnMz = mM . We have already shown that if y is a nonzerodivisor on M/mM
then it is a nonzerodivisor on M . For the converse, suppose u ∈ M is such that yu ∈ mM .
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We must show that u ∈ mM . But zyu ∈ zmM = 0, and so zu = 0, i.e., u ∈ AnnMz,
which we have already shown is mM , as required.

To prove part (c), let x1, . . . , xh ∈ m be a maximal regular sequence in R. Since M
is flat, we may make a base change to R/(x1, . . . , xh)R, M/(x1, . . . , xh)M . Both sides
of the equality we are trying to prove decrease by h, since the closed fiber is unchanged.
Thus, we may assume without loss of generality that depthm(R) = 0. We complete the
argument by induction on dim (M/mM). Since y ∈ n is a nonzerodivisor on M/mM if
and only if it is a nonzerodivisor on M , if one of these two modules has depth 0 on n then
so does the other. Therefore, we may assume that depthnM/mM > 0. Choose y ∈ n that
is a nonzerodivisor on M/mM . Then y is also a nonzerodivisor on M , and M/yM is again
R-flat. Let M/mM = M . We may apply the induction hypothesis to M/yM to conclude
that

depthn(M/yM) = depthn(M/yM) + depthm(R),

since M/yM may be identified with the closed fiber of M/yM . Since

depthn(M/yM) = depthn(M)− 1

and
depthn(M/yM) = depthn(M/mM)− 1,

the result follows. �

Lemma. Let (R, m, K) to (S, n, L) be a flat local map of local rings.

(a) R(t) → S(t) is flat, where t is an indeterminate.

(b) R̂ → Ŝ is flat.

Proof. For (a), R⊗Z Z[t] → S⊗Z Z[t] is flat by base change, so that R[t] → S[t] is flat, and
S[t] → S(t) is a localization, and so flat. Hence, S(t) is flat over R[t], and the map factors
R[t] → R(t) → S(t). Whenver B is flat over A and the map factors A → W−1A → T , T is
also flat over W−1A. This follows form the fact that for (W−1A)-modules 0 → N ↪→ M ,
the map T ⊗W−1A N → T ⊗W−1A N may be identified with T ⊗A N → T ⊗A M . To
see this, note that we have a map T ⊗A M → T ⊗W−1A M , and the kernel is spanned by
elements of the form w−1u ⊗ v − u ⊗ w−1v. But since w in invertible in T , we can prove
that this is 0 by multiplying by w2, which yields wu⊗ v − u⊗ wv = 0. This proves (a).

To prove (b), note that it suffices to prove that 0 → N ↪→ M , a map of R̂-modules,
remains injective after applying Ŝ⊗

R̂
in the case where N and M are finitely generated.

Given a counterexample, we can choose u ∈ Ŝ⊗
R̂

N that is not 0 and is killed when mapped
into Ŝ ⊗

R̂
M . We can choose k so large that u /∈ mk(Ŝ ⊗

R̂
N), and, by the Artin-Rees

lemma, we can choose n so large that mnM ∩ N ⊆ mkN . Then there is a commutative
diagram

N ↪→ M
↓↓ ↓↓

N/(mnM ∩N) ↪→ M/mnM
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and we may apply Ŝ⊗
R̂

to see that the image of u in Ŝ⊗
R̂

(
N/(mnM ∩N)

)
is nonzero

(even if we map further to Ŝ ⊗
R̂

(N/mkM)), but maps to 0 in Ŝ ⊗
R̂

(M/mnM). When
applied to maps of finite length R̂-modules, the functor Ŝ ⊗

R̂
preserves injectivity

because R → S → Ŝ is flat, and Ŝ ⊗
R̂

and Ŝ ⊗R are the same functor on finite
length R̂-modules V : we have that R̂ ⊗R V ∼= V since V is killed by ms for some s and
R̂/msR̂ ∼= R/ms, and so, by the associativity of tensor,

Ŝ ⊗
R̂

V ∼= Ŝ ⊗
R̂

(R̂⊗R V ) ∼= Ŝ ⊗R V. �

We can now make several reductions in studying Lech’s conjecture.

Theorem. In order to prove Lech’s conjecture that e(R) ≤ e(S) when (R, m, K) →
(S, n, L) is flat local and R has dimension d, it suffices to prove the case where dim (S) =
dim (R) = d, R and S are both complete with infinite residue class field, S has algebraically
closed residue class field, R is a domain, and S has pure dimension.

Proof. By the Lemma above and the final Proposition in the Lecture Notes of October
20, we can replace R and S by R(t) and S(t) and so assume that the residue class fields
are infinite. Likewise, we can replace R and S by their completions. We can choose a
minimal prime Q of mS such that dim (S/Q) = dim (S/mS). By the Lemma on p. 1 of
the Lecture Notes of October 30, we have that height (Q) = height (m) = dim (R). Since
dim (S) = dim (S/mS) +dim (R), we have that dim (S) = dim (S/Q) +height (Q). By the
Theorem on behavior of multiplicities under localization in complete local rings, we then
have e(SQ) ≤ e(S). Thus, if e(R) ≤ e(SQ) we have e(R) ≤ e(S) as well. It follows that we
may replace S by SQ and so we may assume that dim (S) = dim (R) = d. We may have
lost completeness, but we may complete again. By the second Proposition on p. 1 of the
Lecture Notes of November 1, we can give a local flat map (S, n, L) → (S′, n′, L′) such
that S′ is complete, n′ = nS′ and L′ is algebraically closed. Thus, we may assume that S
has an algebraically closed residue class field.

We can give a filtration of R by prime cyclic modules R/Pi, 1 ≤ i ≤ h. Then e(R) is the
sum of the e(R/Pi) for those i such that dim (R/Pi) = dim (R). Tensoring with S over R
gives a corresponding filtration of S by modules S/PiS, and e(S) is the sum of the e(S/PiS)
for those i such that dim (S/PiS) = dim (S). Since dim (S) = dim (R) + dim (S/mS) and,
for each i, dim (S/PiS) = dim (R/Pi)+dim (S/mS), the values of i such that dim (R/Pi) =
dim (R) are precisely those such that dim (S/PiS) = dim (S). Thus, it suffices to consider
the case where R is a complete local domain.

If dim (R) = dim (S) and R is a complete local domain, then it follows that S has
pure dimension. We use induction on the dimension. If dim (R) = 0 then dim (S) = 0 and
the result is clear. Let R′ be the normalization of R. R′⊗R S is faithfully flat over R′ and
still local (the maximal ideal of R′ is nilpotent modulo the maximal ideal of R). Moreover,
S ⊆ R′ ⊗R S, so that we may assume that R is normal. Suppose that S contains an S-
submodule of dimension smaller than S, say J , and choose J maximum, so that S/J has
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pure dimension d. Then R does not meet J , and so injects into S/J . Choose x ∈ m−{0}.
Then x is a nonzerodivisor in R, and, hence a nonzerodivisor on S and on J . It is also a
nonzerodivisor on S/J , for any submodule killed by x would be a module over S/xS, and
hence of smaller dimension. It follows that

0 → xJ → xS → x(S/J) → 0

is exact, and we get that

0 → J/xJ → S/xS → (S/J)/x(S/J) → 0

is exact. Then

dim (J/xJ) ≤ dim (J)− 1 < dim (S)− 1 = dim (S/xS).

Therefore, S/xS does not have pure dimension. Because all associated primes of xR have
height one, R/xR has a filtration whose factors are torsion-free modules over rings R/Pi of
dimension dim (R)−1, where the Pi are the minimal primes of x. By the induction hypoth-
esis, every S/PiS has pure dimension. Since a finitely generated torsion-free module over
R/Pi embeds in a finitely generated free module over R/Pi, the tensor product of a finitely
generated torsion-free module over R/Pi with S also has pure dimension. Thus, S/xS has
a filtration whose factors are modules of pure dimension, and so has pure dimension itself.
This contradiction establishes the result. �

One approach to obtaining a class of local rings R for which Lech’s conjecture holds for
every flat local map R → S is via the notion of a linear maximal Cohen-Macaulay module.
Recall that over a local ring (R, m, K), a module M is a Cohen-Macaulay module if it
is finitely generated, nonzero, and depthmM = dim (M). In particular, M is Cohen-
Macaulay module over R if and only if it is Cohen-Macaulay module over R/I, where
I = AnnRM . E.g., the residue class field K = R/m is always Cohen-Macaulay module
over R. By a maximal Cohen-Macaulay module we mean a Cohen-Macaulay module
module whose dimension is equal to dim (R). It is not known whether every excellent local
ring has a maximal Cohen-Macaulay module: this is an open question in dimension 3 in
all characteristics.

We write ν(M) for the least number of generators of the R-module M . If M is finitely
generated over a local (or quasi-local) ring (R, m, K), Nakayama’s lemma implies that
ν(M) = dim K(M/mM).

Note the following fact, which has proved useful in studying Lech’s conjecture:

Proposition. Let (R, m, K) be local and let M be a maximal Cohen-Macaulay module.
Then e(M) ≥ ν(M).

Proof. We may replace R by R(t) and M by R(t)⊗R M if necessary and so assume that
the residue class field of R is infinite. Let I = (x1, . . . , xd) be a minimal reduction of m,
where d = dim (R). Then e(M) = `(M/IM) ≥ `(M/mM) = ν(M). �
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We shall call M a linear maximal Cohen-Macaulay module over the local ring (R, m, K)
if it is a maximal Cohen-Macaulay module and e(M) = ν(M). Because of the inequality in
the Proposition just above, the term maximally generated maximal Cohen-Macaulay mod-
ule is also used in the literature, as well as top-heavy maximal Cohen-Macaulay module
and Ulrich maximal Cohen-Macaulay module. The idea of the proof of the Proposition
above also yields:

Proposition. Suppose that M is a maximal Cohen-Macaulay module over a local ring
(R, m, K) and that K is infinite or, at least, the m has a minimal reduction I generated
by a system of parameters x1, . . . , xd. Then:

(a) M is a linear maximal Cohen-Macaulay module if and only if mM = IM .

(b) If M is a linear maximal Cohen-Macaulay module then mnM = InM for all n ∈ N.

(c) If M is a linear maximal Cohen-Macaulay module then grm(M) is a Cohen-Macaulay
module over grm(R).

Proof. (a) Since IM ⊆ mM ⊆ M we have that

e(M) = `(M/IM) = `(M/mM) + `(mM/IM) = ν(M) + `(mM/IM).

Hence, e(M) = ν(M) if and only if `(mM/IM) = 0, i.e., if and only if mM = IM .

Part (b) follows by induction on n: if mnM = InM then

mn+1M = mnmM = mn(IM) = I(mnM) = I(InM) = In+1M.

For part (c), observe that grmM = grIM , by part (b), and the result is then immediate
from part (d) of the Proposition on p. 2 of the Lecture Notes of October 23, which identifies
grI(M) with

(M/IM)⊗R/I (R/I)[X1, . . . , Xd],

where Xi is the image of xi in I/I2, 1 ≤ i ≤ d, and X1, . . . , Xd are algebraically indepen-
dent over R/I. �


