Math 711: Lecture of November 8, 2006

We have completed the proof of the theorem on comparison of symbolic powers of prime
ideals in regular rings as soon as we have established:

Lemma. Let P be a prime ideal of the ring R that is generated by a reqular sequence,
z1, ... ,x5. Then P = P™ for every integer n.

Proof. Let u € R — P. We need only show that u is not a zerodivsor on P™. Suppose
ur € P" with r ¢ P™. Choose h, which may be 0, such that r € P" — P"*1: evidently,
h < n. Then ur € P* C P"*!. This implies that the image of u in R/P is a zerodivisor
on P"/Ph+1 But by part (d) of the Proposition on p. 2 of the Lecture Notes of October
23, P"/P"*! is a free R/P-module with a free basis in bijective correspondence with
monomials of degree h in variables Xy, ..., X;. O

Before proceeding further, we want to record an import result on flatness. We first note:

Lemma. Let M be an R-module with a finite filtration such that x € R is not a zerodivisor
on any factor. Then x is not a zerodivisor on M.

Proof. By induction on the number of factors, it suffices to consider that case of two
factors, i.e., where one has a short exact sequence 0 — Ny — M — Ny — 0. If u € M is
such that xu = 0, then the image of v in Ny must be 0, or else x will be a zerodivisor on
N5. But then u € Ny, and so zu = 0 implies that v = 0. O

Next note that when (R, m, K) — (S, n, L) is local and M is an S-module, M /mM
is called the closed fiber of M (because it is the fiber over the unique closed point m of
Spec (R)). In this case, if we make a base change to R/I, where I C m is an ideal of R,
R, S, and M become R/I, S/IS, and M /IM, respectively, but the closed fiber does not
change: (M/IM)/m(M/IM) = M/mM.

In the result that follows, the most important case is when M = S.

Theorem. Let (R, m, K) — (S, n, L) be a local homomorphism of local rings and let M
be an S-module that is R-flat. Then:

(a) dim (M) = dim (R) + dim (M /mM).

(b) If y € n is a nonzerodivisor on M /mM, then it is a nonzerodivisor on M and on
M/IM for every ideal I C m of R. Moreover, if y € M is a nonzerodivisor on
M/mM, then M/yM is again flat over R.

If depth,, R = 0, then y € 1 is a nonzerodivisor on M if and only if it is a nonzero-
divisor on M /mM .
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(c¢) depth,, M = depth,,nR + depth M /mM.

Proof. For part (a), we proceed by induction on dim (R). If dim(R) = 0 then m is
nilpotent, and (a) holds even without the assumption that M is R-flat. If dim (R) > 1,
let 2 be the ideal of nilpotent elements in R, and make a base change to R/. The
dimensions of R and M do not change, and the closed fiber does not change. Thus,
we may assume that R is reduced. But then m contains a nonzerodivisor z, which is
consequently also a nonzerodivisor on M because M is R-flat. Make a base change to
R/xzR. By the induction hypothesis, dim (M /zM) = dim (R/zR) + dim (M /mM). Since
dim (M/zM) = dim (M) — 1 and dim (R/xR) = dim (R) — 1, the result follows.

For part (b), suppose that y is not a zerodivisor on M/mM. We want to show that y
is not a zerodivisor on M/IM. Suppose y kills a nonzero element u of M/IM. We can
choose N >> 0 so large that u ¢ m™ (M/IM). Tt follows that y kills the nonzero image
of uin (M/IM)/m~N(M/IM) = M/(I +m”)M, and so there is no loss of generality in
assuming that I is m-primary. In this case, R/I has a finite filtration in which every factor
is copy of K = R/m. When we apply M ®pr _, the fact that M is R-flat implies that
M/IM has a finite filtration in which every factor is a copy of M @ R/m = M/mM. By
the Lemma above, since y is not a zerodivisor on any of these factors, it is not a zerodivisor

on M/IM, as required.

To prove that M’ is R-flat, it suffices to show that Torf(N, M’) = 0 for every finitely
generated R-module N, since every R-module is a direct limit of finitely generated R-
modules. Since a finitely generated R-module N has a finite filtration with cyclic factors,
it follows that it suffices to prove that Tor(R/I, M’') = 0 for every ideal I of R. Let
M' = M/yM. Starting with the short exact sequence

0—-MLM-—M/yM —0
we may apply R/I @z _ to get a long exact sequence part of which is
— Torf(R/I, M) — Torf(R/I, M/yM) — M/IM 2> M/IM — ---

Since M is R-flat, the leftmost term is 0, and since we have already shown that y is not a
zerodivisor on M/IM, it follows that Torf(R/I, M/yM) = 0 for all I, as required.

We next consider the case where depth,,, (R) = 0. Then we can choose a nonzero element
z € R such that zm =0, i.e.,
0—m—R>R

is exact. Applying _ ®r M, we have that
0—-merM— M =M

is exact. This shows both that m ® g M may be identified with its image, which is mM,
and that Annjy;z = mM. We have already shown that if y is a nonzerodivisor on M /mM
then it is a nonzerodivisor on M. For the converse, suppose v € M is such that yu € mM.
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We must show that v € mM. But zyu € 2zmM = 0, and so zu = 0, i.e., u € Anny,z,
which we have already shown is mM, as required.

To prove part (c), let z1, ... ,xp, € m be a maximal regular sequence in R. Since M
is flat, we may make a base change to R/(z1, ... ,zn)R, M/(z1, ... ,xn)M. Both sides
of the equality we are trying to prove decrease by h, since the closed fiber is unchanged.
Thus, we may assume without loss of generality that depth,,(R) = 0. We complete the
argument by induction on dim (M/mM). Since y € n is a nonzerodivisor on M /mM if
and only if it is a nonzerodivisor on M, if one of these two modules has depth 0 on n then
so does the other. Therefore, we may assume that depth,, M/mM > 0. Choose y € n that
is a nonzerodivisor on M/mM. Then y is also a nonzerodivisor on M, and M /yM is again
R-flat. Let M/mM = M. We may apply the induction hypothesis to M /yM to conclude
that

depth,, (M /yM) = depth,, (M /yM) + depth, (R),

since M /yM may be identified with the closed fiber of M /yM. Since
depth,, (M /yM) = depth,, (M) — 1

and
depth, (M /yM) = depth, (M/mM) — 1,

the result follows. O

Lemma. Let (R, m, K) to (S,n, L) be a flat local map of local rings.
(a) R(t) — S(t) is flat, where t is an indeterminate.
(b) R — S is flat.

Proof. For (a), R®yzZ[t] — S ®zZ][t] is flat by base change, so that R[t] — S[t] is flat, and
S[t] — S(t) is a localization, and so flat. Hence, S(t) is flat over R[t], and the map factors
R[t] — R(t) — S(t). Whenver B is flat over A and the map factors A — WA — T, T is
also flat over W~ A. This follows form the fact that for (W ~!A)-modules 0 — N — M,
the map T @y -14 N — T @y -14 N may be identified with T®a4 N — T ®4 M. To
see this, note that we have a map T'®4 M — T Qv -14 M, and the kernel is spanned by
elements of the form w™'u ® v — v ® w™'v. But since w in invertible in T, we can prove
that this is 0 by multiplying by w?, which yields wu ® v — u ® wv = 0. This proves (a).

To prove (b), note that it suffices to prove that 0 — N — M, a map of ﬁ-modules,
remains injective after applying S®z _ in the case where N and M are finitely generated.
Given a counterexample, we can choose u € S RzN that is not 0 and is killed when mapped

into §®§ M. We can choose k so large that u ¢ m*(S ®5 V), and, by the Artin-Rees

lemma, we can choose n so large that m"M NN C m*N. Then there is a commutative
diagram
N — M

N/(m"MNN) — M/m"M
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and we may apply §®§ _ to see that the image of u in §®§ (N/(m™M NN)) is nonzero
(even if we map further to §®§ (N/m*M)), but maps to 0 in §®§ (M/m"™M). When
applied to maps of finite length R-modules, the functor ®z _ preserves injectivity
because R — S — S is flat, and S Qp _ and S ®r _ are the same functor on finite

length R-modules V: we have that R ®p V = V since V is killed by m?® for some s and
R/m*R = R/m?, and so, by the associativity of tensor,

SezV=Se:(RerV)=S®rV. O

We can now make several reductions in studying Lech’s conjecture.

Theorem. In order to prove Lech’s conjecture that e(R) < e(S) when (R, m, K) —
(S,n, L) is flat local and R has dimension d, it suffices to prove the case where dim (S) =
dim (R) =d, R and S are both complete with infinite residue class field, S has algebraically
closed residue class field, R is a domain, and S has pure dimension.

Proof. By the Lemma above and the final Proposition in the Lecture Notes of October
20, we can replace R and S by R(t) and S(t) and so assume that the residue class fields
are infinite. Likewise, we can replace R and S by their completions. We can choose a
minimal prime @ of mS such that dim (S/Q) = dim (S/mS). By the Lemma on p. 1 of
the Lecture Notes of October 30, we have that height (Q)) = height (m) = dim (R). Since
dim (S) = dim (S/mS) + dim (R), we have that dim (S) = dim (S/Q) + height (Q). By the
Theorem on behavior of multiplicities under localization in complete local rings, we then
have e(Sq) < e(S). Thus, if e(R) < e(Sg) we have e(R) < e(S) as well. It follows that we
may replace S by Sg and so we may assume that dim (S) = dim (R) = d. We may have
lost completeness, but we may complete again. By the second Proposition on p. 1 of the
Lecture Notes of November 1, we can give a local flat map (S,n,L) — (S’, n/, L") such
that S’ is complete, 1" = nS’ and L' is algebraically closed. Thus, we may assume that S
has an algebraically closed residue class field.

We can give a filtration of R by prime cyclic modules R/P;, 1 < i < h. Then e(R) is the
sum of the e(R/P;) for those i such that dim (R/P;) = dim (R). Tensoring with S over R
gives a corresponding filtration of S by modules S/ P;S, and e(S) is the sum of the e(S/P;S)
for those i such that dim (S/P;S) = dim (). Since dim (S) = dim (R) + dim (S/mS) and,
for each ¢, dim (S/P;S) = dim (R/P;)+dim (S/m.S), the values of i such that dim (R/FP;) =
dim (R) are precisely those such that dim (S/P;S) = dim (S). Thus, it suffices to consider
the case where R is a complete local domain.

If dim (R) = dim (S) and R is a complete local domain, then it follows that S has
pure dimension. We use induction on the dimension. If dim (R) = 0 then dim (S) = 0 and
the result is clear. Let R’ be the normalization of R. R’ ® g S is faithfully flat over R’ and
still local (the maximal ideal of R’ is nilpotent modulo the maximal ideal of R). Moreover,
S C R ®gr S, so that we may assume that R is normal. Suppose that S contains an S-
submodule of dimension smaller than S, say J, and choose J maximum, so that S/J has
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pure dimension d. Then R does not meet J, and so injects into S/J. Choose z € m — {0}.
Then x is a nonzerodivisor in R, and, hence a nonzerodivisor on S and on J. It is also a
nonzerodivisor on S/J, for any submodule killed by = would be a module over S/xS, and
hence of smaller dimension. It follows that

0—aJ —xS—x(S/J)—0
is exact, and we get that
0—J/xd — S/xS — (S/J)/z(S/J) — 0
is exact. Then
dim (J/xJ) < dim (J) — 1 < dim (S) — 1 = dim (S/z5).

Therefore, S/xS does not have pure dimension. Because all associated primes of 2R have
height one, R/x R has a filtration whose factors are torsion-free modules over rings R/ P; of
dimension dim (R)—1, where the P; are the minimal primes of z. By the induction hypoth-
esis, every S/P;S has pure dimension. Since a finitely generated torsion-free module over
R/ P; embeds in a finitely generated free module over R/P;, the tensor product of a finitely
generated torsion-free module over R/P; with S also has pure dimension. Thus, S/zS has
a filtration whose factors are modules of pure dimension, and so has pure dimension itself.
This contradiction establishes the result. [

One approach to obtaining a class of local rings R for which Lech’s conjecture holds for
every flat local map R — S is via the notion of a linear mazimal Cohen-Macaulay module.
Recall that over a local ring (R, m, K), a module M is a Cohen-Macaulay module if it
is finitely generated, nonzero, and depth,,M = dim (M). In particular, M is Cohen-
Macaulay module over R if and only if it is Cohen-Macaulay module over R/I, where
I = AnngM. E.g., the residue class field K = R/m is always Cohen-Macaulay module
over R. By a maximal Cohen-Macaulay module we mean a Cohen-Macaulay module
module whose dimension is equal to dim (R). It is not known whether every excellent local
ring has a maximal Cohen-Macaulay module: this is an open question in dimension 3 in
all characteristics.

We write v(M) for the least number of generators of the R-module M. If M is finitely
generated over a local (or quasi-local) ring (R, m, K), Nakayama’s lemma implies that
v(M) = dim g (M/mM).

Note the following fact, which has proved useful in studying Lech’s conjecture:

Proposition. Let (R, m, K) be local and let M be a mazimal Cohen-Macaulay module.
Then e(M) > v(M).

Proof. We may replace R by R(t) and M by R(t) ® g M if necessary and so assume that
the residue class field of R is infinite. Let I = (x1, ... ,z4) be a minimal reduction of m,

where d = dim (R). Then e(M) = ¢(M/IM) > ¢{(M/mM) =v(M). O



We shall call M a linear maximal Cohen-Macaulay module over the local ring (R, m, K)
if it is a maximal Cohen-Macaulay module and e(M) = v(M). Because of the inequality in
the Proposition just above, the term maximally generated maximal Cohen-Macaulay mod-
ule is also used in the literature, as well as top-heavy maximal Cohen-Macaulay module
and Ulrich maximal Cohen-Macaulay module. The idea of the proof of the Proposition
above also yields:

Proposition. Suppose that M s a maximal Cohen-Macaulay module over a local ring
(R, m, K) and that K is infinite or, at least, the m has a minimal reduction I generated
by a system of parameters x1, ... ,xq. Then:

(a) M is a linear maximal Cohen-Macaulay module if and only if mM = IM.
(b) If M is a linear mazimal Cohen-Macaulay module then m™M = I"M for all n € N.

(¢) If M is a linear maximal Cohen-Macaulay module then gr,, (M) is a Cohen-Macaulay
module over gr,,(R).

Proof. (a) Since IM C mM C M we have that
e(M)=4M/IM) =t(M/mM) + (mM/IM) =v(M)+{(mM/IM).
Hence, e(M) = v(M) if and only if ¢(mM/IM) = 0, i.e., if and only if mM = IM.
Part (b) follows by induction on n: if m"M = I"M then

m" P M = m"mM = m"(IM) = I(m"M) = I(I"M) = I" "' M.

For part (c), observe that gr,, M = gr; M, by part (b), and the result is then immediate
from part (d) of the Proposition on p. 2 of the Lecture Notes of October 23, which identifies
gr; (M) with

(M/IM) QR/1 (R/1)[ X4, ..., X4,

where X; is the image of z; in I/I%,1 <i <d, and X1, ..., X4 are algebraically indepen-
dent over R/I. O



