
Math 711: Lecture of November 13, 2006

We are going to use certain matrix factorizations to construct linear maximal Cohen-
Macaulay modules over hypersurfaces.

Discussion: Cohen-Macaulay modules over hypersurfaces R/fR of finite projective dimen-
sion over R. In order to illustrate the connection, we first consider the following relatively
simple situation. Let (R, m, K) be a Cohen-Macaulay local ring of dimension n, let f ∈ m
be a nonzerodivisor, and suppose that we want to study maximal Cohen-Macaulay mod-
ules over R/fR that have finite projective dimension over R. Such a module M has depth
n− 1, and so pdRM = 1. Thus, there is a minimal free resolution

0 → Rh → Rs → M → 0

of M over R. If we localize at f , since Mf = 0, we see that h = s, and so M is given as the
cokernel of an s × s matrix α. Let ei be the i th standard basis vector for Rs, written as
a column. Then for every i, 1 ≤ i ≤ s, we have, since fM = 0, that fei is in the column
space of α, which means that there is a column vector Bi such that αBi = fei. If we form
the s × s matrix β whose columns are B1, . . . , Bn, we have that αβ = fIs, where Is is
the s × s identity matrix. Over the ring Rf ⊇ R, β = fα−1, which implies that α and β
commute, i.e., αβ = βα = fIs.

Let indicate images in R/fR. We claim that the complex

· · · β−→ R
s α−→ R

s β−→ R
s α−→ R

s −→ 0,

whose augmentation is M , is acyclic. Suppose v ∈ Rs represents a vector in the kernel
of α (the argument for β is identical). Then α(v) vanishes mod fRs, and so α(v) = fu.
Then βα(v) = β(fu) = fβ(u), but βα = fIs, and so we have fv = fβ(u). Since f is not
a zerodivisor, v = β(u), and exactness follows.

Given M , we obtain a matrix factorization. Conversely, given a matrix factorization of
fIs, the argument we just gave shows that the complex

· · · β−→ R
s α−→ R

s β−→ R
s α−→ R

s −→ 0,

is exact over R = R/fR. Call the augmentation M . Then M = Coker (α) is its own
k th module of syzygies for arbitarily large k. This implies that depthm(M) = n − 1:
over a Cohen-Macaulay ring, if a module has depth b smaller than that of the ring, its
first module of syzygies has depth b + 1. Once the module has depth equal to that of
the ring, the modules of syzygies, if nonzero, continue to have depth equal to that of the
ring (in the case of R/fR, the eventual depth is n − 1). We have therefore established a
correspondence between matrix factorizations of f into two factors and Cohen-Macaulay
modules over R/fR that have finite projective dimension over R.
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In our eventual construction of linear maximal Cohen-Macaulay modules over hyper-
surfaces, we shall make use of matrix factorizations with large numbers of factors.

By a matrix factorization of f ∈ R over R of size s with d factors we mean a d-tuple of
matrices α = (α1, . . . , αd) over R such that

fIs = α1 · · ·αd

and satisfying the additional condition that for all i,

fIs = αiαi+1 · · ·αdα1α2 · · ·αi−1

as well. Here, it will be convenient to interpret the subscripts mod d. Note that the weak
commutativity condition is automatic if f is a nonzerodivisor in R, for then

(α1 · · ·αi−1)−1 = fαiαi+1 · · ·αd

for all i, which implies that α1 · · ·αi−1 and αiαi+1 · · ·αd commute for all i. If α is either
a matrix or a d-tuple of matrices, I(α) = I1(α) denotes the ideal generated by the entries
of α or by the entries of all of the matrices occurring in α.

We define two matrix factorizations of size s with d factors, say α = (α1, . . . , αd) and
β = (β1, . . . , βd), to be equivalent if there are invertible s× s matrices γ0, γ1, . . . , γd over
R such that γ0 = γd and for all i, 1 ≤ i ≤ d, we have βi = γi−1αiγ

−1
i .

Our goal is to prove that if I ⊆ R and f ∈ Id for d ≥ 2 then f has a matrix factorization
α = (α1, . . . , αd) of some size s with d factors such that I(α) = I. Moreover, we shall see
that by increasing s this can even be done in such a way that all of the matrices αi are
the same, and I(αi) = I for all i.

The argument will involve solving the problem for a “generic form” of degree s in
indeterminates over Z, and then specializing.

We shall use the theory of Clifford algebras and Clifford modules over a field K to prove
the existence of matrix factorizations.

Discussion: the definition of Clifford algebras. Let K be a field, let L be the vector space
spanned by n variables X1, . . . , Xn, and let V = L∗ = HomK(V, K) be the space of linear
functionals on L with dual basis e1, . . . , en. Let f be a form of degree d in X1, . . . , Xd

such that f does not vanish identically on Kd. This is automatic when K is infinite. Our
main interest is in the case where K = Q.

The Clifford algebra over K corresponding to f , which we denote C(f), is defined as
follows. Let T (V ) denote the tensor algebra of V over K, which is an N-graded associative
algebra over K such that [T (V )]h is the h-fold tensor product V ⊗K V ⊗K · · · ⊗K V ,
where there are h copies of V . We may alternatively write [T (V )]h = V ⊗h. Note that
T (V )]0 = K, and [T (V )]1 = V , which generates T (V ) over K. The multiplication is such
that

(v1 ⊗ · · · ⊗ va)(w1 ⊗ · · · ⊗ wb) = (v1 ⊗ · · · ⊗ va ⊗ w1 ⊗ · · · ⊗ wb).
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C(f) is defined as the quotient of T (V ) by the two-sided ideal generated by all elements
of the form

(c1e1 + · · ·+ cnen)d − f(c1, . . . , cn)

for all (c1, . . . , cn) ∈ Kn. Thus, T (f) is universal with respect to the property the d th
power of every linear form is a scalar whose value is determined by applying f to the
coefficients of the form.

The most common use of these algebras is in the case where d = 2, but it will be very
important to consider larger values of d here.

We note that the the Clifford algebra C(f) is Zd-graded: this follows from the fact
that every homogeneous component of every generator has degree 0 or d. When C is a
Zd-graded algebra or module, and i is an integer, we may write either [C]i or [C][i] for the
component of C in degree [i], where [i] is the class of i modulo d.

By a Clifford module over a Clifford algebra C(f) we mean a Zd-graded C(f)-module M
such that M is a nonzero finite-dimensional K-vector space. It is not at all clear whether
a Clifford algebra has a Clifford module. The following result makes a strong connection
with matrix factorization. We may write either [M ]i or Mi for the graded component in
degree i.

Proposition. Let K be an field, let L be the vector space spanned over K by n indetermi-
nates X1, . . . , Xn, let f be a form of degree d ≥ 2 that does not vanish identically on Kn,
which is always the case when f is nonzero and K is infinite, let V = L∗, and let C(f) be
the Clifford algebra of f over K.

(a) If M is a Clifford module, then all the Mi have the sameK-vector space dimension,
say s.

(b) If K is infinite, then there is a bijective correspondence between isomorphism classes
of Clifford modules M over C(f) such that every Mi has dimension s ≥ 1 over K and
equivalence classes of of matrix factorizations of f over K.

Proof. For part (a), suppose F (c1, . . . , cn) 6= 0 and let v = c1e1 + · · · + cnen ∈ V .
Multiplication by v gives a K-linear map Mi → Mi+1 for every i. The composition of all of
these maps is multiplication by vn, which is the same as multiplication by f(c1, . . . , cn) =
a ∈ K − {0}. Since vn is an automorphism of M , each map Mi → Mi+1 given by
multiplication by v is a K-linear bijection.

We now prove (b). Fix a K-basis for every Mi. Let ηij be the matrix of multiplication
by ej ∈ V as a map Mi → Mi+1 with respect to the fixed bases. Let c = c1, . . . , cn be
any elements of K. Then the matrix of multiplication by v = c1e1 + · · · cnen mapping
Mi → Mi+1 is θi(c) = c1ηi1 + · · ·+ cnηin. For all choices of c, the composition of maps(

Mi+d−1
θi+d−1(c)−−−−−−→ Mi+d

)
◦ · · · ◦

(
Mi+1

θi+1(c)−−−−→ Mi+2

)
◦

(
Mi

θi(c)−−−→ Mi+1

)
is multiplication by f(c1, . . . , cn), i.e.,

(∗) f
(
(c)

)
Is = θi(c)θi+1(c) · · · θi+d−1(c).
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Keep in mind here that Mi+d = Mi. Since K is infinite, it follows that (∗) holds when we
replace the elements ci by indeterminates. Thus, if for every i we let

α′i = X1ηi1 + · · ·+ Xnηin,

which is a matrix of linear forms in the Xj over K, then we must have

(∗∗) f
(
X1, . . . , Xn

)
Is = α′i−1(X1, . . . , Xn)α′i−2(X1, . . . , Xn) · · ·α′i(X1, . . . , Xn)

for all i. Thus gives a matrx factorization except that the matrices are numbered in reverse.
If we let αi = α′d+1−i we have a matrix factorization

Conversely, given a matrix factorization of size s, we may construct a Clifford module
M with all components Mi isomorphic to Ks by letting the multiplication by the linear
form

v = c1e1 + · · ·+ cnen

from the i th component to the i + 1 st component be the map whose matrix is obtained
by the substitution X1 = c1, . . . , Xn = cn in the matrix αd+1−i.

The statement about isomorphism now follows from the fact that if γ1, . . . , γd are
change of basis matrices for the various Md+1−i = Ks, the matrices αi change to γi−1αiγ

−1
i . �

Let C and C ′ be two Zd-graded associative K-algebras (this statement includes the
hypothesis that K is in the center of each). Let Ψd(t) ∈ Z[t] denote the d th cyclotomic
polynomial (we discuss these further later) over Q, which is the minimal polynomial over
Q of a primitive d th root of unity in C. Assume that K contains a root ξ of Ψd(t), which
will, of course, be a d th root of unity, since Ψ(t) divides td − 1 even in Z[t]. K can
always be enlarged by a finite algebraic extension to contain such an element ξ. If K has
characteristic 0, ξ is simply a primitive d th root of unity.

We then define the twisted tensor product C ⊗K C ′ to be the Zd-graded K-algebra
which, as a K-vector space, is simply C ⊗K C ′, graded so that

[C ⊗K C ′]i =
⊕

j+k=i

[C]i ⊗K [C ′]j

where i, j, and k are in Zd, and with multiplication such that, if u, v ∈ C are forms and
u′, v′ ∈ C ′ are forms, then

(#) (u⊗ u′)(v ⊗ v′) = ξdeg(u′)deg(v)(uv)⊗ (u′v′).

It is easy to check that multiplication is associative for triples of elements each of which
is a tensor product of two forms, and the general case follows readily. Notice in particular
that if u and u′ are 1-forms, then

(1⊗ u′)(u⊗ 1) = ξ(u⊗ 1)(1⊗ u′).

Quite similarly, we can give essentially the same definition for the twisted tensor product
M ⊗K M ′ of a Zd-graded C-module M and a Zd-graded C ′-module M ′, which will be a
Zd-graded module over C ⊗K C ′. One has to give the action of C ⊗K C ′ on M ⊗K M ′.
The formula is the same as given in (#), but now u ∈ C, u ∈ C ′, v ∈ M and v′ ∈ M ′ are
forms.


