Math 711: Lecture of November 15, 2006

We want to establish that in the twisted tensor product of two \mathbb{Z}_d -graded K-algebras, $C \otimes_K C'$, one has that if $u \in C$ and $v \in C'$ are forms of degree 1, then

$$(u \otimes 1 + 1 \otimes v)^d = u^d \otimes 1 + 1 \otimes v^d,$$

a property reminiscent of the behavior of the Frobenius endomorphism in the commutive case. In order to prove this, we need to develop a "twisted" binomial theorem.

To this end, let \tilde{q} , \tilde{U} , and \tilde{V} be non-commuting indeterminates over \mathbb{Z} and form the free algebra they generate modulo the relations

- (1) $\widetilde{q} \widetilde{U} = \widetilde{U} \widetilde{q}$ (2) $\widetilde{q} \widetilde{V} = \widetilde{V} \widetilde{q}$
- (3) $\widetilde{V}\widetilde{U} = \widetilde{q}\,\widetilde{U}\widetilde{V}$

We denote the images of \tilde{q} , \tilde{U} , and \tilde{V} by q, U, and V, respectively. Thus, q is in the center of quotient ring \mathcal{A} . While U and V do not commute, it is clear that every monomial in U and V may be rewritten in the form $q^i U^j V^k$, with $i, j, k \in \mathbb{N}$, in this ring. In fact, \mathcal{A} is the free \mathbb{Z} -module spanned by these monomials, with the multiplication

$$(q^{i}U^{j}V^{k})(q^{i'}U^{j'}V^{k'}) = q^{i+i'+kj'}U^{j+j'}V^{k+k'}.$$

This is forced by iterated use of the relations (1), (2), and (3), and one can check easily that this gives an associative multiplication on the free \mathbb{Z} -module on the monomials $q^i U^j V^k$.

In this algebra, one may calculate $(U + V)^d$ and write it as a linear combination of monomials $U^i V^j$ each of whose coefficients is a polynomial in $\mathbb{Z}[q]$. When q is specialized to 1, the coefficients simply become ordinary binomial coefficients. We want to investigate these coefficients, which are called *Gaussian polynomials*, *Gaussian coefficients*, or q-binomial coefficients. We shall denote the coefficient of $U^k V^{d-k}$, $0 \le i \le d$, as $\begin{bmatrix} d \\ k \end{bmatrix}_q^q$. For example,

$$(U+V)^{2} = V^{2} + UV + VU + U^{2} = V^{2} + (q+1)UV + V^{2},$$

and so $\begin{bmatrix} 2\\0 \end{bmatrix}_q = \begin{bmatrix} 2\\2 \end{bmatrix}_q = 1$ while $\begin{bmatrix} 2\\1 \end{bmatrix}_q = q+1$.

Theorem (twisted binomial theorem). Let notation be as above.

(a) The coefficient polynomials
$$\begin{bmatrix} d \\ k \end{bmatrix}_q$$
 are determined recursively by the rules

(1)
$$\begin{bmatrix} d \\ 0 \end{bmatrix}_q = \begin{bmatrix} d \\ d \end{bmatrix}_q = 1$$
 and
(2) $\begin{bmatrix} d+1 \\ k+1 \end{bmatrix}_q = \begin{bmatrix} d \\ k \end{bmatrix}_q + q^{k+1} \begin{bmatrix} d \\ k+1 \end{bmatrix}_q$

(b) For all d and k,
$$\begin{bmatrix} d \\ k \end{bmatrix}_q = \prod_{i=0}^{k-1} \frac{1-q^{d-i}}{1-q^{i+1}}.$$

(c) Let λ , u, and v be elements of any associative ring \mathcal{R} with identity such that λ commutes with u and v and $vu = \lambda uv$. Let $\begin{bmatrix} d \\ k \end{bmatrix}_q^{(\lambda)}$ denote the element of \mathcal{R} that is the image of $\begin{bmatrix} L \\ k \end{bmatrix}$

$$\begin{bmatrix} k \\ d \end{bmatrix}_q \text{ under the map } \mathbb{Z}[q] \to \mathcal{R} \text{ that sends } q \mapsto \lambda. \text{ Then}$$

$$(u+v)^{d} = \sum_{k=0}^{a} \begin{bmatrix} d\\ k \end{bmatrix}_{q} (\lambda) u^{k} v^{d-k}.$$

Proof. For part (a), first note that is it is evident that the coefficients of V^d and U^d in the expansion of $(U + V)^d$ are both 1. Now $(U + V)^{d+1} = (U + V)(U + V)^d$, and it is clear that there are two terms in the expansion that contribute to the coefficient of $U^{k+1}V^{d-k}$: one is the product of U with the U^kV^{d-k} term in $(U + V)^{d-k}$, which gives $\begin{bmatrix} d \\ k \end{bmatrix}_q U^{k+1}V^{d-k}$, and the other is the product of V with the $U^{k+1}V^{d-k-1}$ term, which gives $\begin{bmatrix} d \\ k+1 \end{bmatrix}_q VU^{k+1}V^{d-k-1}$. Since $VU^{k+1} = q^{k+1}U^{k+1}V$, the result follows.

For part (b), it will suffice to show that the proposed expressions for the $\begin{bmatrix} d \\ k \end{bmatrix}_q$ satisfy the recursion in part (a), that is:

$$\prod_{i=0}^{k} \frac{1-q^{d+1-i}}{1-q^{i+1}} = \prod_{i=0}^{k-1} \frac{1-q^{d-i}}{1-q^{i+1}} + q^{k+1} \prod_{i=0}^{k} \frac{1-q^{d-i}}{1-q^{i+1}}.$$

We can clear denominators by multiplying by the denominator of the left hand term to get the equivalent statement:

(*)
$$\prod_{i=0}^{k} (1 - q^{d+1-i}) = (1 - q^{k+1}) \prod_{i=0}^{k-1} (1 - q^{d-i}) + q^{k+1} \prod_{i=0}^{k} (1 - q^{d-i}).$$

The left hand term may be rewritten as

$$\prod_{j=-1}^{k-1} (1-q^{d-j}) = (1-q^{d+1}) \prod_{i=0}^{k-1} (1-q^{d-i}).$$

 $\mathbf{2}$

We may divide both sides of (*) by

$$\prod_{i=0}^{k-1} (1 - q^{d-i})$$

to see that (*) is equivalent to

$$1 - q^{d+1} = 1 - q^{k+1} + q^{k+1}(1 - q^{d-k}),$$

which is true.

Part (c) follows at once, for there is a homomorphism of $\mathcal{A} = \mathbb{Z}[q, U, V] \to \mathcal{R}$ such that $q \mapsto \lambda, U \mapsto u$ and $V \mapsto v$. \Box

Recall that the *d* th cylcotomic polynomial $\Psi_d(t)$, $d \ge 1$, is the minimal polynomial of a primitive *d* th root of unity over \mathbb{Q} . It is a monic polynomial with coefficients in \mathbb{Z} and irreducible over \mathbb{Z} and \mathbb{Q} . The degree of $\Psi_d(t)$ is the Euler function $\Phi(d)$, whose value is the number of units in \mathbb{Z}_d . If $d = p_1^{k_1} \cdots p_h^{k_h}$ is the prime factorization of *d*, where the p_i are mutually distinct, then

$$\Phi(d) = \prod_{j=1}^{n} (p^{k_j} - p^{k_j - 1}).$$

The polynomials $\Psi_d(t)$ may be found recursively, using the fact that

$$t^d - 1 = \prod_{a|d} \Psi_a(t),$$

where a runs through the positive integer divisors of d. We next observe:

Corollary. For every d and $1 \le k \le d-1$, $\Psi_d(q)$ divides $\begin{bmatrix} d \\ k \end{bmatrix}_q$ in $\mathbb{Z}[q]$.

Proof. Let ξ be a primitive d th root of unity in \mathbb{C} . It suffices to show that $\begin{bmatrix} d \\ k \end{bmatrix}_q (\xi) = 0$. This is immediate from the formula in part (b) of the Theorem, since one of the factors in the numerator, corresponding to i = 0, is $q^d - 1$, which vanishes when $q = \xi$, while the

in the numerator, corresponding to i = 0, is $q^d - 1$, which vanishes when $q = \xi$, while the exponents on q in the factors in the denominator vary between 1 and k < d, and so the denominator does not vanish when we substitute $q = \xi$. \Box

Corollary. In the twisted tensor product $C \otimes C'$ of two \mathbb{Z}_d -graded K-algebras, if u is any form of degree 1 in C and v is any form of degree 1 in C', then $(u \otimes 1 + 1 \otimes v)^d = u^d \otimes 1 + 1 \otimes_d v^d$.

Proof. By the preceding Corollary, all the q-binomial coefficients of the terms involving both $u \otimes 1$ and $1 \otimes v$ vanish. \Box

Theorem. Let f and g be forms of degree d over a field K in disjoint sets of variables, say X_1, \ldots, X_n and Y_1, \ldots, Y_m . Then there is a surjective \mathbb{Z}_d -graded K-algebra homomorphism $C(f + g) \twoheadrightarrow C(f) \otimes_K C(g)$. Hence, if M is a Clifford module over C(f) and N is a Clifford module over C(g), then the twisted tensor product $M \otimes_K N$ is a Clifford module over C(f + g).

Proof. Let V be the dual of the K-span of X_1, \ldots, X_n , with dual K-basis e_1, \ldots, e_n , and let V' the dual of the K-span of Y_1, \ldots, Y_m , with dual basis e'_1, \ldots, e'_m . Then C(f+g) is the quotient of $\mathcal{T}(V \oplus V')$ by the two-sided ideal generated by all relations of the the form

(*)
$$(c_1e_1 + \dots + c_ne_n + c'_1e'_1 + \dots + c'_me'_m)^d - f(c_1, \dots, c_n) - g(c'_1, \dots, c'_m),$$

where $\underline{c} = c_1, \ldots, c_n \in K$ and $\underline{c'} = c'_1, \ldots, c'_m \in K$. The maps $\mathcal{T}(V) \twoheadrightarrow C(f)$ and $\mathcal{T}(V') \twoheadrightarrow C(g)$ will induce a map $C(f+g) \twoheadrightarrow C(f) \otimes_K C(g)$ provided that each of the relations (*) maps to 0 in $C(f) \otimes_K C(g)$. With

$$u = c_1 e_1 + \dots + c_n e_n$$

and

$$v = c_1'e_1' + \dots + c_m'e_m',$$

we have that

$$(v \otimes 1)(u \otimes 1) = \xi (u \otimes 1)(1 \otimes v)$$

in the twisted tensor product, and so $(u+v)^d$ maps to $u^d \otimes 1 + 1 \otimes v^d$. Thus, the element displayed in (*) maps to

$$u^{d} \otimes 1 + 1 \otimes v^{d} - f(\underline{c})(1 \otimes 1) - g(\underline{c'})(1 \otimes 1) = \left(u^{d} - f(\underline{c})\right) \otimes 1 + 1 \otimes \left(v^{d} - g(\underline{c'})\right) = 0 + 0 = 0,$$

as required. \Box

We now use these ideas to get a matrix factorization for a generic form. In a sense, we carry this out over the field $Q[\xi]$, but we observe that the entries of the matrices are actually in $\mathbb{Z}[\xi]$. We then embed $\mathbb{Z}[\xi]$ in a ring of matrices over \mathbb{Z} to get a solution over \mathbb{Z} . This result gives the a version of the theorem over any ring, by applying a suitable homomorphism.

We first introduce two notations. If $\alpha_1, \ldots, \alpha_d$ are square matrices, then diag (a_1, \ldots, a_d) denotes the square matrix whose size is the sum of the sizes of the $\alpha_1, \ldots, \alpha_d$, and whose block form is

1	α_1	0	0	• • •	0	
1	0	α_2	0	•••	0	
	0	0	α_3	•••	0	
			•••			
			•••			
1	0	0	0	•••	$lpha_d$)

This matrix corresponds to the direct sum of the maps represented by the $\alpha_1, \ldots, \alpha_d$.

When $\alpha_1, \ldots, \alpha_d$ are square matrices of the same size, say s, we write $cyc(\alpha_1, \ldots, \alpha_d)$ for the matrix whose block form is

$$\begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & \alpha_1 \\ \alpha_d & 0 & 0 & \cdots & 0 & 0 \\ 0 & \alpha_{d-1} & 0 & \cdots & 0 & 0 \\ & & & \ddots & & \\ & & & \ddots & & \\ 0 & 0 & 0 & \cdots & \alpha_2 & 0 \end{pmatrix}$$

Here "cyc" stands for "cyclic." One may think about this matrix as follows. Suppose that the α_i are thought of as linear transformations on a vector space V of dimension sover K. Let $V_i = V$, $1 \leq i \leq d$, and let $W = V^{\oplus d}$ thought of as $V_1 \oplus \cdots \oplus V_d$. Then $\operatorname{cyc}(\alpha_1, \ldots, \alpha_d)$ corresponds to the linear transformation of V whose restriction to V_i is given by $\alpha_{d+1-i} : V_i \to V_{i+1}$. The subscript i should be read modulo d, so that the restriction to V_d is $\alpha_1 : V_d \to V_1$. Thus, $(\operatorname{cyc}(\alpha_1, \ldots, \alpha_d))^d$, when restricted to V_i , is the composite

$$(V_{i-1} \xrightarrow{\alpha_{d+1-(i-1)}} V_i) \circ \cdots \circ (V_{i+1} \xrightarrow{\alpha_{d-i}} V_{i+2}) \circ (V_i \xrightarrow{\alpha_{d+1-i}} V_{i+1}),$$

i.e.,

$$\alpha_{d+2-i}\alpha_{d+3-i}\cdots\alpha_d\alpha_1\cdots\alpha_{d-i}\alpha_{d+1-i}.$$

Hence, if $\alpha_1, \ldots, \alpha_d$ is a matrix factorization of f of size s, one also has a matrix factorization of f of size ds with d factors all of which are equal to $cyc(\alpha_1, \ldots, \alpha_d)$.

Theorem. Let $d \ge 2$ and $s \ge 1$ be integers, and let f denote the degree d linear form over \mathbb{Z} in sd variables given as

$$f = X_{1,1}X_{1,2}\cdots X_{1,d} + \cdots + X_{s,1}X_{s,2}\cdots X_{s,d}.$$

Note that f is the sum of s products of d variables, where all of the variables that occur are distinct. Let ξ be a primitive d th root of unity. Then f has a matrix factorization $f \mathbf{I}_{d^{s-1}} = \alpha_1 \cdots \alpha_d$ over

$$R = \mathbb{Z}[\xi][X_{ij} : 1 \le i \le s, \ 1 \le j \le d]$$

of size s^{d-1} such that $I(\alpha) = (X_{ij} : 1 \leq i \leq s, 1 \leq j \leq d)R$. Moreover, every entry of every matrix is either 0 or of the form $\xi^k X_{ij}$.

Proof. We use induction on s. We construct the factorization over $\mathbb{Q}[\xi]$, but show as we do so that the entries of the matrices constructed are in $\mathbb{Z}[\xi]$.

If s = 1 we have that

$$(x_{1,1}x_{1,2}\cdots x_{1,d}) = (x_{1,1})(x_{1,2})\cdots (x_{1,d}).$$

By part (b) of the Proposition on p. 3 of the Lecture Notes of November 13, we have a corresponding Clifford module.

Now suppose that we have constructed a matrix factorization β_1, \ldots, β_d of size d^{s-1} for

$$f_1 = X_{11}X_{12}\cdots X_{1d} + \cdots + X_{s-1,1}X_{s2}\cdots X_{s-1,d}$$

that satisfies the conditions of the theorem. Let M be the corresponding Clifford module. We also have a factorization for $g = x_{s,1} \cdots x_{s_d}$, namely

$$(x_{s,1}x_{s,2}\cdots x_{s,d}) = (x_{s,1})(x_{s,2})\cdots (x_{s,d})$$

Since the two sets of variables occurring in f_1 and g respectively are disjoint, the twisted tensor product $M \otimes_K N$, where $K = \mathbb{Q}[\xi]$, of the corresponding Clifford modules is a Clifford module Q over $C(f_1 + g) = C(f)$, by the Theorem at the top of p. 4 of today's Lecture Notes. Note that each N_i has dimension 1, and that

(*)
$$Q_i = M_{i-1} \otimes_K N_1 \oplus M_{i-2} \otimes_K N_2 \oplus \cdots \oplus M_i \otimes_K N_d$$

has dimension s^{d-1} . Then Q gives a matrix factorization of $f = f_1 + g$ of size d^{s-1} over $\mathbb{Q}[\xi]$.

However, we shall give explicit bases for the Q_i and show that the matrices that occur have entries of the form specified in the statement of the theorem, which shows that one has a matrix factorization over $Z[\xi]$. We use all the tensors of pairs of basis elements, one from one of the M_i and one from one of the N_j but order the basis for Q_i as indicated in the direct sum displayed in (*) above. The result is that the map from $Q_i \to Q_{i+1}$ that comes from multiplication by $c_{1,1}e_{1,1} + \cdots + c_{s-1,d}e_{s-1,d}$ (the indexing on the scalars $c_{i,j}$ corresponds to the indexing on the variables $X_{i,j}$) has as its matrix the result obtained by substituting the $c_{i,j}$ for the $X_{i,j}$ in diag $(\beta_{d+1-i-1}, \beta_{d+1-i-2}, \cdots, \beta_{d+1-i})$, for the map is the direct sum of the maps $M_{i-j} \otimes_K N_j \to M_{i-j+1} \otimes_K N_j$ induced by the maps $M_{i-j} \to M_{i-j+1}$.

On the other hand, the map from $Q_i \to Q_{i+1}$ given by multiplication by $c'_1 e'_1 + \cdots + c'_d e'_d$ maps the *j* th term $M_{i-j} \otimes_K N_j$ to the *j* + 1 st term $M_{i-j} \otimes_K N_{j+1}$, and corresponds to multiplication by $\xi^{i-j} X_{s,d+1-j}$ evaluated at (\underline{c}') on the summand $M_{i-j} \otimes_K N_j$, which has *K*-vector space dimension d^{s-2} . The result γ_{d+1-i} is the matrix

$$\operatorname{cyc}(\xi^{i-d}X_{s,1}\boldsymbol{I}_{d^{s-2}},\xi^{i-(d-1)}X_{s,2}\boldsymbol{I}_{d^{s-2}},\ldots,\xi^{i-1}X_{s,1}\boldsymbol{I}_{d^{s-2}}),$$

Therefore, we get a matrix factorization of f with d factors of size d^{s-1} in which

$$\alpha_i = \operatorname{diag}(\beta_{i-1}, \beta_{i-2}, \cdots, \beta_i) + \gamma_i.$$

Since all of the coefficients needed are 0 or powers of ξ , this is a factorization over $\mathbb{Z}[\xi]$. All of the variables occur, possibly with coefficient ξ^k , but ξ is a unit in $\mathbb{Z}[\xi]$, and so all of the conditions of the theorem are satisfied. \Box

 $\mathbf{6}$