
Math 711: Lecture of November 15, 2006

We want to establish that in the twisted tensor product of two Zd-graded K-algebras,
C ⊗K C ′, one has that if u ∈ C and v ∈ C ′ are forms of degree 1, then

(u⊗ 1 + 1⊗ v)d = ud ⊗ 1 + 1⊗ vd,

a property reminiscent of the behavior of the Frobenius endomorphism in the commuative
case. In order to prove this, we need to develop a “twisted” binomial theorem.

To this end, let q̃, Ũ , and Ṽ be non-commuting indeterminates over Z and form the free
algebra they generate modulo the relations

(1) q̃ Ũ = Ũ q̃

(2) q̃ Ṽ = Ṽ q̃

(3) Ṽ Ũ = q̃ Ũ Ṽ

We denote the images of q̃, Ũ , and Ṽ by q, U , and V , respectively. Thus, q is in the
center of quotient ring A. While U and V do not commute, it is clear that every monomial
in U and V may be rewritten in the form qiU jV k, with i, j, k ∈ N, in this ring. In fact,
A is the free Z-module spanned by these monomials, with the multiplication

(qiU jV k)(qi′U j′V k′) = qi+i′+kj′U j+j′V k+k′ .

This is forced by iterated use of the relations (1), (2), and (3), and one can check easily that
this gives an associative multiplication on the free Z-module on the monomials qiU jV k.

In this algebra, one may calculate (U + V )d and write it as a linear combination of
monomials U iV j each of whose coefficients is a polynomial in Z[q]. When q is specialized
to 1, the coefficients simply become ordinary binomial coefficients. We want to investi-
gate these coefficients, which are called Gaussian polynomials, Gaussian coefficients, or

q-binomial coefficients. We shall denote the coefficient of UkV d−k, 0 ≤ i ≤ d, as
[

d
k

]
q

.

For example,

(U + V )2 = V 2 + UV + V U + U2 = V 2 + (q + 1)UV + V 2,

and so
[

2
0

]
q

=
[

2
2

]
q

= 1 while
[

2
1

]
q

= q + 1.

Theorem (twisted binomial theorem). Let notation be as above.

(a) The coefficient polynomials
[

d
k

]
q

are determined recursively by the rules
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(1)
[

d
0

]
q

=
[

d
d

]
q

= 1 and

(2)
[

d + 1
k + 1

]
q

=
[

d
k

]
q

+ qk+1

[
d

k + 1

]
q

.

(b) For all d and k,
[

d
k

]
q

=
k−1∏
i=0

1− qd−i

1− qi+1
.

(c) Let λ, u, and v be elements of any associative ring R with identity such that λ commutes

with u and v and vu = λuv. Let
[

d
k

]
q

(λ) denote the element of R that is the image of[
k
d

]
q

under the map Z[q] → R that sends q 7→ λ. Then

(u + v)d =
d∑

k=0

[
d
k

]
q

(λ)ukvd−k.

Proof. For part (a), first note that is it is evident that the coefficients of V d and Ud in
the expansion of (U + V )d are both 1. Now (U + V )d+1 = (U + V )(U + V )d, and it
is clear that there are two terms in the expansion that contribute to the coefficient of
Uk+1V d−k: one is the product of U with the UkV d−k term in (U + V )d−k, which gives[

d
k

]
q

Uk+1V d−k, and the other is the product of V with the Uk+1V d−k−1 term, which

gives
[

d
k + 1

]
q

V Uk+1V d−k−1. Since V Uk+1 = qk+1Uk+1V , the result follows.

For part (b), it will suffice to show that the proposed expressions for the
[

d
k

]
q

satisfy

the recursion in part (a), that is:

k∏
i=0

1− qd+1−i

1− qi+1
=

k−1∏
i=0

1− qd−i

1− qi+1
+ qk+1

k∏
i=0

1− qd−i

1− qi+1
.

We can clear denominators by multiplying by the denominator of the left hand term to
get the equivalent statement:

(∗)
k∏

i=0

(1− qd+1−i) = (1− qk+1)
k−1∏
i=0

(1− qd−i) + qk+1
k∏

i=0

(1− qd−i).

The left hand term may be rewritten as

k−1∏
j=−1

(1− qd−j) = (1− qd+1)
k−1∏
i=0

(1− qd−i).
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We may divide both sides of (∗) by

k−1∏
i=0

(1− qd−i)

to see that (∗) is equivalent to

1− qd+1 = 1− qk+1 + qk+1(1− qd−k),

which is true.

Part (c) follows at once, for there is a homomorphism of A = Z[q, U, V ] → R such that
q 7→ λ, U 7→ u and V 7→ v. �

Recall that the d th cylcotomic polynomial Ψd(t), d ≥ 1, is the minimal polynomial of
a primitive d th root of unity over Q. It is a monic polynomial with coefficients in Z and
irreducible over Z and Q. The degree of Ψd(t) is the Euler function Φ(d), whose value is
the number of units in Zd. If d = pk1

1 · · · pkh

h is the prime factorization of d, where the pi

are mutually distinct, then

Φ(d) =
h∏

j=1

(pkj − pkj−1).

The polynomials Ψd(t) may be found recursively, using the fact that

td − 1 =
∏
a|d

Ψa(t),

where a runs through the positive integer divisors of d. We next observe:

Corollary. For every d and 1 ≤ k ≤ d− 1, Ψd(q) divides
[

d
k

]
q

in Z[q].

Proof. Let ξ be a primitive d th root of unity in C. It suffices to show that
[

d
k

]
q

(ξ) = 0.

This is immediate from the formula in part (b) of the Theorem, since one of the factors
in the numerator, corresponding to i = 0, is qd − 1, which vanishes when q = ξ, while the
exponents on q in the factors in the denominator vary between 1 and k < d, and so the
denominator does not vanish when we substitute q = ξ. �

Corollary. In the twisted tensor product C ⊗ C ′ of two Zd-graded K-algebras, if u is
any form of degree 1 in C and v is any form of degree 1 in C ′, then (u ⊗ 1 + 1 ⊗ v)d =
ud ⊗ 1 + 1⊗d vd.

Proof. By the preceding Corollary, all the q-binomial coefficients of the terms involving
both u⊗ 1 and 1⊗ v vanish. �
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Theorem. Let f and g be forms of degree d over a field K in disjoint sets of variables,
say X1, . . . , Xn and Y1, . . . , Ym. Then there is a surjective Zd-graded K-algebra homo-
morphism C(f + g) � C(f) ⊗K C(g). Hence, if M is a Clifford module over C(f) and
N is a Clifford module over C(g), then the twisted tensor product M ⊗K N is a Clifford
module over C(f + g).

Proof. Let V be the dual of the K-span of X1, . . . , Xn, with dual K-basis e1, . . . , en, and
let V ′ the dual of the K-span of Y1, . . . , Ym, with dual basis e′1, . . . , e′m. Then C(f + g)
is the quotient of T (V ⊕ V ′) by the two-sided ideal generated by all relations of the the
form

(∗) (c1e1 + · · ·+ cnen + c′1e
′
1 + · · ·+ c′me′m)d − f(c1, . . . , cn)− g(c′1, . . . , c′m),

where c = c1, . . . , cn ∈ K and c′ = c′1, . . . , c′m ∈ K. The maps T (V ) � C(f) and
T (V ′) � C(g) will induce a map C(f + g) � C(f) ⊗K C(g) provided that each of the
relations (∗) maps to 0 in C(f)⊗K C(g). With

u = c1e1 + · · ·+ cnen

and
v = c′1e

′
1 + · · ·+ c′me′m,

we have that
(v ⊗ 1)(u⊗ 1) = ξ (u⊗ 1)(1⊗ v)

in the twisted tensor product, and so (u + v)d maps to ud ⊗ 1 + 1⊗ vd. Thus, the element
displayed in (∗) maps to

ud⊗ 1+1⊗ vd− f(c)(1⊗ 1)− g(c′)(1⊗ 1) =
(
ud− f(c)

)
⊗ 1+1⊗

(
vd− g(c′)

)
= 0+0 = 0,

as required. �

We now use these ideas to get a matrix factorization for a generic form. In a sense,
we carry this out over the field Q[ξ], but we observe that the entries of the matrices are
actually in Z[ξ]. We then embed Z[ξ] in a ring of matrices over Z to get a solution over
Z. This result gives the a version of the theorem over any ring, by applying a suitable
homomorphism.

We first introduce two notations. If α1, . . . , αd are square matrices, then diag(a1, . . . , ad)
denotes the square matrix whose size is the sum of the sizes of the α1, . . . , αd, and whose
block form is 

α1 0 0 · · · 0
0 α2 0 · · · 0
0 0 α3 · · · 0

· · ·
· · ·

0 0 0 · · · αd
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This matrix corresponds to the direct sum of the maps represented by the α1, . . . , αd.

When α1, . . . , αd are square matrices of the same size, say s, we write cyc(α1, . . . , αd)
for the matrix whose block form is

0 0 0 · · · 0 α1

αd 0 0 · · · 0 0
0 αd−1 0 · · · 0 0

· · ·
· · ·

0 0 0 · · · α2 0


Here “cyc” stands for “cyclic.” One may think about this matrix as follows. Suppose
that the αi are thought of as linear transformations on a vector space V of dimension s
over K. Let Vi = V , 1 ≤ i ≤ d, and let W = V ⊕d thought of as V1 ⊕ · · · ⊕ Vd. Then
cyc(α1, . . . , αd) corresponds to the linear transformation of V whose restriction to Vi is
given by αd+1−i : Vi → Vi+1. The subscript i should be read modulo d, so that the
restriction to Vd is α1 : Vd → V1. Thus,

(
cyc(α1, . . . , αd)

)d, when restricted to Vi, is the
composite

(Vi−1

αd+1−(i−1)−−−−−−−→ Vi) ◦ · · · ◦ (Vi+1
αd−i−−−→ Vi+2) ◦ (Vi

αd+1−i−−−−→ Vi+1),

i.e.,
αd+2−iαd+3−i · · ·αdα1 · · ·αd−iαd+1−i.

Hence, if α1, . . . , αd is a matrix factorization of f of size s, one also has a matrix factor-
ization of f of size ds with d factors all of which are equal to cyc(α1, . . . , αd).

Theorem. Let d ≥ 2 and s ≥ 1 be integers, and let f denote the degree d linear form over
Z in sd variables given as

f = X1,1X1,2 · · ·X1,d + · · ·+ Xs,1Xs,2 · · ·Xs,d.

Note that f is the sum of s products of d variables, where all of the variables that occur
are distinct. Let ξ be a primitive d th root of unity. Then f has a matrix factorization
fIds−1 = α1 · · ·αd over

R = Z[ξ][Xij : 1 ≤ i ≤ s, 1 ≤ j ≤ d]

of size sd−1 such that I(α) = (Xij : 1 ≤ i ≤ s, 1 ≤ j ≤ d)R. Moreover, every entry of
every matrix is either 0 or of the form ξkXij.

Proof. We use induction on s. We construct the factorization over Q[ξ], but show as we
do so that the entries of the matrices constructed are in Z[ξ].

If s = 1 we have that

(x1,1x1,2 · · ·x1,d) = (x1,1)(x1,2) · · · (x1,d).
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By part (b) of the Proposition on p. 3 of the Lecture Notes of November 13, we have a
corresponding Clifford module.

Now suppose that we have constructed a matrix factorization β1, . . . , βd of size ds−1

for
f1 = X11X12 · · ·X1d + · · ·+ Xs−1,1Xs2 · · ·Xs−1,d

that satisfies the conditions of the theorem. Let M be the corresponding Clifford module.
We also have a factorization for g = xs,1 · · ·xsd

, namely

(xs,1xs,2 · · ·xs,d) = (xs,1)(xs,2) · · · (xs,d).

Since the two sets of variables occurring in f1 and g respectively are disjoint, the twisted
tensor product M ⊗K N , where K = Q[ξ], of the corresponding Clifford modules is a
Clifford module Q over C(f1 + g) = C(f), by the Theorem at the top of p. 4 of today’s
Lecture Notes. Note that each Nj has dimension 1, and that

(∗) Qi = Mi−1 ⊗K N1 ⊕Mi−2 ⊗K N2 ⊕ · · · ⊕Mi ⊗K Nd

has dimension sd−1. Then Q gives a matrix factorization of f = f1 + g of size ds−1 over
Q[ξ].

However, we shall give explicit bases for the Qi and show that the matrices that occur
have entries of the form specified in the statement of the theorem, which shows that one has
a matrix factorization over Z[ξ]. We use all the tensors of pairs of basis elements, one from
one of the Mi and one from one of the Nj but order the basis for Qi as indicated in the direct
sum displayed in (∗) above. The result is that the map from Qi → Qi+1 that comes from
multiplication by c1,1e1,1 + · · ·+ cs−1,des−1,d (the indexing on the scalars ci,j corresponds
to the indexing on the variables Xi,j) has as its matrix the result obtained by substituting
the ci,j for the Xi,j in diag(βd+1−i−1, βd+1−i−2, · · · , βd+1−i), for the map is the direct
sum of the maps Mi−j ⊗K Nj → Mi−j+1 ⊗K Nj induced by the maps Mi−j → Mi−j+1.

On the other hand, the map from Qi → Qi+1 given by multiplication by c′1e
′
1 + · · · c′de′d

maps the j th term Mi−j ⊗K Nj to the j + 1 st term Mi−j ⊗K Nj+1, and corresponds to
multiplication by ξi−jXs,d+1−j evaluated at (c′) on the summand Mi−j⊗K Nj , which has
K-vector space dimension ds−2. The result γd+1−i is the matrix

cyc(ξi−dXs,1Ids−2 , ξi−(d−1)Xs,2Ids−2 , . . . , ξi−1Xs,1Ids−2),

Therefore, we get a matrix factorization of f with d factors of size ds−1 in which

αi = diag(βi−1, βi−2, · · · , βi) + γi.

Since all of the coefficients needed are 0 or powers of ξ, this is a factorization over Z[ξ].
All of the variables occur, possibly with coefficient ξk, but ξ is a unit in Z[ξ], and so all of
the conditions of the theorem are satisfied. �


